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ABSTRACT In the classification of motor imagery Electroencephalogram (MI-EEG) signals through deep
learning models, challenges such as the insufficiency of feature extraction due to the limited receptive
field of single-scale convolutions, and overfitting due to small training sets, can hinder the perception
of global dependencies in EEG signals. In this paper, we introduce a network called EEG TBTSCTnet,
which represents Three-Branch Temporal-Spatial Convolutional Transformer. This approach expands the
size of the training set through Data Augmentation, and then combines local and global features for
classification. Specifically, Data Augmentation aims to mitigate the overfitting issue, whereas the Three-
Branch Temporal-Spatial Convolution module captures a broader range of multi-scale, low-level local
information in EEG signals more effectively than conventional CNNs. The Transformer Encoder module
is directly connected to extract global correlations within local temporal-spatial features, utilizing the
multi-head attention mechanism to effectively enhance the network’s ability to represent relevant EEG signal
features. Subsequently, a classifier module based on fully connected layers is used to predict the categories
of EEG signals. Finally, extensive experiments were conducted on two public MI-EEG datasets to evaluate
the proposed method. The study also allowed for an optimal selection of channels to balance accuracy and
cost through weight visualization.

INDEX TERMS EEG classification, motor imagery, transformer, temporal-spatial convolutional network,
data augmentation.

I. INTRODUCTION
The quest for efficient and accurate Motor Imagery Elec-
troencephalogram (MI-EEG) classification has been at the
heart of Brain-Computer Interface (BCI) research, driven
by its potential to revolutionize assistive technologies and
rehabilitative medicine [1]. BCIs based on EEG have broad
prospects in many application fields in daily life because
of their reliability and convenience, ranging from func-
tional rehabilitation for patients with motor disorders [2],
sleep stage classification [3], emotional regulation, to general
intelligent applications such as brain-controlled systems [4].

The associate editor coordinating the review of this manuscript and

approving it for publication was Jad Nasreddine .

Despite remarkable strides in this domain, leveraging deep
learning and advanced signal processing techniques, exist-
ing methodologies often face challenges, such as high
inter-subject variability, limited robustness against noisy
EEG data, and suboptimal generalization across diverse
datasets.

The pioneering integration of Convolutional Neural
Networks (CNNs) and Long Short-Term Memory (LSTM)
networks for MI-EEG classification, exhibits significant lim-
itations [5], [6], [7], [8], [9]. For instance, although models
such as EEG-inception [10] demonstrate superior perfor-
mance in controlled datasets, they struggle to maintain
consistency across varying experimental conditions or in
real-world BCI applications owing to their complexity and

79754

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 12, 2024

https://orcid.org/0009-0007-1601-7949
https://orcid.org/0009-0004-2069-9637
https://orcid.org/0000-0002-1711-3007


W. Chen et al.: Three-Branch Temporal-Spatial Convolutional Transformer for Motor Imagery EEG Classification

computational demands. Similarly, only attention mecha-
nisms underscore the criticality of channel interdependen-
cies but often overlook the dynamic temporal relationships
intrinsic to EEG signals, impacting their adaptability and
classification accuracy [11], [12], [13].

To address these challenges, we propose a Three-
Branch Temporal-Spatial Convolutional Transformer frame-
work called EEG TBTSCTnet to synergistically leverage
the advantages of multi-branch CNNs and the Transformer.
The entire framework is composed of a Data Augmentation
module, Three-Branch Temporal-Spatial Convolution mod-
ule, Transformer Encoder module, and classifier module, all
serially connected. Initially, a Data Augmentation strategy is
employed to expand the small sample data to mitigate the
overfitting issue [14], [15], [16]. In the convolution module,
three scales of temporal and spatial convolutions are utilized
to capture local time and spatial features, respectively. The
obtained features were then subjected to an average pooling
layer, reducing the model complexity, and eliminating redun-
dant information. Subsequently, the three feature matrices are
concatenated and fed into the Transformer Encoder module,
where a multi-head self-attention layer further learns global
temporal dependencies. Finally, a simple fully connected
layer and Softmax function were used to obtain decoding
results. Detailed comparative experiments on two different
modes of EEG signal datasets revealed the superior perfor-
mance of the EEG TBTSCTnet.

The main contributions of this study are as follows:

• Development of EEG TBTSCTnet: A pioneering
framework combining multi-branch CNNs with Trans-
former technology for advanced MI-EEG classification,
addressing current challenges in the field.

• Holistic feature extraction and classification Approach:
Data Augmentation, Three-Branch Convolution, and
Transformer Encoder modules are incorporated to
enhance model performance by effectively capturing
both local and global EEG signal features.

• Balancing accuracy and cost: Weight visualization
and recursive channel elimination reveal that fewer
EEG channels do not significantly impact performance,
allowing for an optimal selection of channels to balance
accuracy and cost.

• Insensitivity to Hyperparameter Selection: Extensive
experiments were conducted to investigate the influence
of the Transformer module and attention parameters.
The results indicate that the model is insensitive to the
number of heads and the depth of the self-attention
layers in the multi-head self-attention module when pro-
cessing EEG data.

The remainder of this paper is organized as follows.
Related work is presented in Section II. A detailed description
of the method is provided in Section III. The experiments
and results are discussed in Section IV. The limitations and

future work are presented in Section V, and conclusions are
presented in Section VI.

II. RELATED WORKS
Recent studies in the field of MI-EEG classification have
predominantly focused on developing more accurate and
robust classification models to enhance the performance of
BCI systems. This article reviews several key studies in this
field, showcasing the latest technological advancements and
methodologies.

Zhang et al. [10] introduced an EEG-inception CNN archi-
tecture for MI-EEG classification. This model, built on the
inception-time network backbone, not only offers high accu-
racy but also processes raw EEG signals directly, eliminating
the need for complex preprocessing steps. Li et al. [17]
proposed a strategy based on FBCSP combined with a
voting mechanism for three-class motor imagery classi-
fication, addressing the challenge of extending the CSP
algorithm to multi-class MI scenarios. Their approach, which
transforms a three-class problem into two binary-class prob-
lems, demonstrated an encouraging average classification
accuracy of 68.6% with BCI competition IV Dataset 2a.
Lawhern et al. [18] unveiled EEGNet, a versatile CNN for
EEG-based BCIs, adept at classifying signals across multi-
ple paradigms with minimal data, demonstrating robustness
and high performance. Sakhavi et al. [19] utilized CNNs
to enhance the extraction of temporal features from EEG
signals by customizing parameters for individual subjects,
significantly advancing BCI performance. Zheng et al. [20]
introduced a Robust Support Matrix Machine (RSMM)
for EEG classification, addressing EEG signal complexities
with a novel classifier that utilizes matrix representation
to improve BCI performance. By decomposing EEG data
into a clean matrix with sparse noise, RSMM enhances
classification accuracy and robustness against artifacts and
noise, offering significant advancements over traditional clas-
sifiers. Yang et al. [21] devised a deep learning optimization
framework for MI-EEG recognition, integrating CNN and
RNN-LSTM to extract spatial, spectral, and temporal fea-
tures, thereby enhancing system robustness and classification
accuracy.

To address the limitations of single network models,
an increasing number of hybrid network models have
been proposed in recent years, all of which have demon-
strated promising results. Altuwaijri et al. [22] developed
a multi-branch CNN model incorporating squeeze-and-
excitation (SE) attention blocks (MBEEGSE), adaptively
modifying channel-wise feature responses by clearly specify-
ing channel interdependencies and achieving commendable
accuracy. Voinas et al. [23] focused on rehabilitation for
stroke survivors and compared different feature extraction
methods (WPD+HOS, CSP, FBCSP) for MI-EEG data clas-
sification of left and right wrist dorsiflexion, showing that the
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WPD+HOS method achieved over 70% average accuracy,
outperforming the CSP and FBCSP methods.

These studies highlight significant advances in MI-EEG
signal classification using deep learning techniques, includ-
ing efficient network architecture designs, incorporation of
attention mechanisms, and optimizations for specific applica-
tion scenarios. Together, they have propelled the development
of BCI systems in terms of accuracy, robustness, and real-
time capabilities, thereby laying a solid foundation for future
research.

Therefore, inspired by the works above, we propose the
TBTSCTnet framework as an efficient backbone.

III. METHOD
A. OVERVIEW
In this study, we introduce a novel neural network archi-
tecture called TBTSCTnet, which represents Three-Branch
Temporal-Spatial Convolutional Transformer. This frame-
work addresses the extraction of EEG signal features and
classification of MI-EEG signals in an end-to-end fash-
ion. TBTSCTnet harnesses the strength of Three-Branch
Temporal-Spatial Convolutional Networks to capture infor-
mation across various scales and contexts, coupled with
the global correlation capturing abilities of the Transformer
Encoder to learn global dependencies.

As shown in Figure 1, the model includes four mod-
ules: Data Augmentation, Three-Branch Temporal-Spatial
Convolutional Network, Transformer Encoder, and Fully
Connected Classification. Preprocessing precedes the input
into TBTSCTnet, with a Segmentation and Reconstruc-
tion data augmentation technique applied for performance
enhancement. Within the Three-Branch Temporal-Spatial
Convolutional Network module, Temporal Convolutions uti-
lize the temporal dimension for feature extraction, whereas
Spatial Convolutions operate along the electrode channel
dimension, utilizing average pooling to suppress noise inter-
ference [24]. The features were extracted using three sets
of convolutional kernels and pooling layers of varying
sizes. These extracted features are then concatenated to
form a comprehensive matrix encapsulating the multiscale
temporal-spatial information. This matrix is then fed into the
Transformer Encoder with Multi-Head Attention to extract
long-term temporal features. Finally, a simple two-layer
fully connected network with a Softmax layer executes the
classification.

B. PREPROCESSING AND DATA AUGMENTATION
To preserve the structural integrity of the EEG data, min-
imal preprocessing is applied before feeding the raw EEG
trials into the model. A 6th-order Chebyshev filter is used
to constrain the EEG signal frequency within the range of
[W1,W2]Hz, with the aim of eliminating various high and
low-frequency artifacts while retaining valuable rhythmic
information. Specifically, [W1,W2] is set to [8,30].

For the dataset BCI competition IV dataset 2a [25],
TBTSCTnet model takes as input a motor imagery trial Xi ∈

RC×T consisting of C channels (EEG electrodes) and T time
points. The objective of the TBTSCTnet model is to map the
input MI trial Xi to its corresponding class yi, given a set ofm
labeled MI trials S = {Xi, yi}mi=1, where yi ∈ {1, . . . ,n} is the
corresponding class label for trial Xi and n is the total number
of defined classes for set S. For each Subject in this dataset,
T = 1000 time points, C = 22 EEG channels, n = 4 MI
classes, and m = 48 MI trials.
For BCI Competition IV Dataset 2b [25], the data dimen-

sions for Xi, yi, and S are consistent with those of Dataset 2a.
However, EEG data originate from three electrodes C3, Cz,
and C4, which are responsible for recording motor imagery.
Consequently, the channel configuration differed, as did the
number of trials per subject. For each Subject in this dataset,
T = 1000 time points, C = 3 EEG channels, n = 2MI
classes, and m = 160 MI trials were used.
Subsequently, a Segmentation and Reconstruction data

augmentation technique is employed to enhance the per-
formance of the model during the training phase. This
augmentation strategy is specifically designed for EEG data,
to address the challenges associated with limited labeled
data for neural network training. During the Segmentation
and Reconstruction process, the EEG data are organized into
distinct segments, which are subsequently reconstructed to
generate augmented training samples [26] [27]. Augmenta-
tion is conducted within each class, where the EEG signals
were categorized based on the corresponding class labels.

C. NETWORK ARCHITECTURE
As shown in Figure 1, the input is a batch of preprocessed
EEG trials Xi ∈ RC×T ,expanded by one dimension as the
convolution channel, denoted by Xi ∈ RC×1×T .

1) THREE-BRANCH TEMPORAL-SPATIAL CONVOLUTIONAL
NETWORK
The Three-Branch Temporal-Spatial Convolutional Net-
work (TBTSCN) is a pivotal component of TBTSCT-
net. It is designed to effectively capture and process the
temporal-spatial features of EEG signals at multiple scales.
This method facilitates a deeper and thorough comprehen-
sion of EEG data, improving the accuracy of the models for
MI-EEG classification. TBTSCN achieves this by employ-
ing convolutional layers that operate at different branches,
each of which extracts distinct scale-specific features. These
layers were then integrated to form a cohesive feature map
that represented a wide range of temporal and spatial signal
characteristics. This three-branch approach is instrumental
for improving the accuracy and reliability of EEG signal
classification, making it a valuable tool in the field of MI-
EEG classification.

As shown in Figure 2, the structure of the TBTSCN con-
sists of several convolutional layers that operate at different
temporal branches. The input EEG signal is passed through
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FIGURE 1. The framework of Three-Branch Temporal-Spatial Convolutional Transformer (TBTSCTnet), including a Data Augmentation module,
a Three-Branch Temporal-Spatial Convolutional Network module, a Transformer Encoder module, and a classifier module, where BN stands for Batch
Normalization and ELU stands for Exponential Linear Unit.

three parallel temporal convolutional layers, each with a dis-
tinct filter size: (1,70), (1,40), and (1,20), all with a stride of
(1,1), allowing the network to capture various time-dependent
features from the input. The outputs of these layers are then
passed through the respective spatial convolution layers with
a filter size of (ch,1) and a stride of (1,1), further refining the
feature extraction process. Following this, batch normaliza-
tion [28] and exponential linear unit (ELU) [29] activation
functions were applied. After the initial temporal and spatial
convolutions, the network integrated three parallel branches
of the average pooling layers. Each branch corresponds to
a different filter size, specifically tailored to the features
extracted at each branch. The first pooling layer utilize a pool
size of (1,30) with a stride of (1,20), the second employs a
pool size of (1,60) with the same stride, and the third uses
a pool size of (1,80) with a stride of (1,20). This design
allows the network to down-sample the feature maps in a
manner that preserves the critical spatial information across
multiple branches, which is essential for accurately capturing
the dynamics of EEG signals. Finally, they were concatenated
to a (3×m, k) tensor, which is used as the input for the next
module.

2) TRANSFORMER ENCODER
As shown in Figure 3, it begins with an input feature map
processed through linear layers to generate queries, keys, and
values [30]. These are essential components of the attention
mechanism that allow the model to focus on different parts of

FIGURE 2. Architecture of the Three-Branch Temporal-Spatial
Convolutional Network Module in TBTSCTnet, where BN stands for Batch
Normalization and ELU stands for Exponential Linear Unit.

the input sequence. The queries, keys, and values are then
passed through multiple heads in the multi-head attention
mechanism, where each head captures different aspects of the
input data. The attention outputs from all the heads were con-
catenated, scaled, and normalized using Softmax. The final
step in Transformer Encoder is a feed-forward neural network
that processes the concatenated output to produce the final
output of the Transformer Encoder block. This architecture
is particularly effective for capturing both local and global
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FIGURE 3. Architecture of the Transformer Encoder Module in TBTSCTnet.

dependencies within the input data, making it suitable for
MI-EEG classification tasks. The dimensions are transformed
as follows:

a) Linear projections for queries, keys, and values for each
head h 

Qh = ZWQ
h

Kh = ZWK
h

Vh = ZWV
h

(1)

where WQ
h ∈ Rk×dq ,WK

h ∈ Rk×dk ,WV
h ∈ Rk×dvare weight

matrices for queries, keys, and values, respectively.
b) Scaled dot-product attention for each head:

Attention (Qh,Kh,Vh) = softmax

(
QhKT

h
√
dk

)
Vh (2)

where dk is the dimensionality of the keys. The output dimen-
sion for the attention matrix of each head is RN×dv .
c) Concatenation of all heads’ outputs and final projection:{
MultiHead (Q,K ,V ) = Concat (head1, . . . , headh)WO

headi = Attention
(
QWQ

i ,KWK
i ,VWV

i

)
(3)

whereWO
∈ Rhdv×dmodel is the final projection matrix.

3) CLASSIFICATION
Final classification layer is a classifier composed of two
fully connected layers that precede a Softmax function [31].
The initial dense layer serves to interpret the rich, feature-
laden representations delivered by the preceding network
stages, distilling this information into a format suitable for

classification. Subsequently, a second dense layer refines
the distilled information, further tuning the discriminative
capabilities of the network. The Softmax function operates
as the final component of this architecture, converting the
output of the final dense layer into a probability distribution
across the anticipated classes. This setup ensures that the
network output can be interpreted as the likelihood of each
class, thus enabling a decision-making process based on the
probabilistic assessment of the input EEG signals.

IV. EXPERIMENTS AND RESULTS
A. EVALUATION INDICATORS
The performance of classification models accuracy (Acc)
and kappa coefficient are two widely recognized metrics for
evaluating the performance of classification models. Accu-
racy is defined as the proportion of true results (both true
positives and true negatives) among the total number of cases
examined. It is calculated using the formula:

Acc =
TP+ TN

TP + TN + FP + FN
(4)

where TP, TN, FP, and FN denote the number of true pos-
itives, true negatives, false positives, and false negatives,
respectively.

The kappa coefficient, also known as Cohen’s kappa,
measures the agreement between two raters who classify
N items into C mutually exclusive categories. The kappa
score accounts for the possibility of agreement occurring
by chance, providing a more robust understanding of the
classifier’s performance, especially in imbalanced datasets.
It is calculated as

kappa =
po − pe
1 − pe

(5)

where po is the relative observed agreement among raters,
and pe is the hypothetical probability of chance agreement.
A kappa value of 1 implies perfect agreement, whereas a
value of 0 indicates that the agreement is no better than
chance.

B. EXPERIMENTAL SETUP
The experimental setup for TBTSCTnet is conducted in a
controlled environment furnished by local platforms. The
hardware infrastructure is centered around an AMD Ryzen
7940HS CPU coupled with 32GB of RAM and an Nvidia
RTX 4060 GPU, featuring 8GB of memory. The software
framework is grounded in a Windows 11 operating system,
with Python 3.11 as the programming language milieu. All
the experimental procedures were executed using PyTorch as
the backend.

To optimize the TBTSCTnet model, the Adam optimiza-
tion algorithm is employed for the TBTSCTnet model, with
the batch size adjusted to 72 for Dataset 2a and 80 for Dataset
2b, maintaining a learning rate of 0.0001. A cross-entropy
loss function is employed to refine the training process.
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FIGURE 4. Comparison of classification accuracy of the proposed model with other methods on the test set in Dataset 2a.

FIGURE 5. Comparison of classification accuracy of the proposed model with other methods on the test set in Dataset 2b.

TABLE 1. Comparison of classification accuracy of our model with other methods on the test set in Dataset 2a.

TABLE 2. Comparison of classification accuracy of our model with other methods on the test set in Dataset 2b.

Dropout rates of 0.5 within the Three-Branch Convolution
module and 0.3 in the Transformer encoder were imple-
mented to prevent overfitting. The self-attention mechanism

is set to execute six times with 10 heads, balancing efficiency
and robustness in model training. Finally, the number of
epochs is set to 500.
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FIGURE 6. Confusion matrices of dataset 2a.

C. DATASETS
To assess the robustness of our EEG-based classification
method, we used two distinct datasets, each with unique
characteristics.

The first dataset from BCI Competition IV (Dataset 2a),
courtesy of the Graz University of Technology, encompasses
recordings from nine individuals performing four types of
motor imagery tasks. It features two separate sessions for
each subject with a 250 Hz sampling rate using twenty-two
channels. For our analysis, we extracted a specific timeframe
from each trial and applied a band-pass filter to isolate the
relevant frequency band.

The second dataset, also from BCI Competition IV
(Dataset 2b), included EEG data from nine participants focus-
ing on two motor imagery tasks with a similar sampling
rate but utilizing three bipolar electrodes. Multiple sessions
provided a substantial number of trials for both training and
testing, with a specific segment for each trial after band-pass
filtering.

These datasets, with varied configurations, were instru-
mental in demonstrating the versatility of our classification
approach.

D. COMPARISON OF CLASSIFICATION RESULTS
1) IN OUR EVALUATION USING THE BCI COMPETITION IV,
DATASET 2A
The classification performance of each subject and the aver-
age results are shown in Figure 4 and Table 1. The FBCSP
method, which is based on machine learning, achieved a
mean accuracy of 66.18% across subjects, indicating a lack of
robustness and lower performance compared to deep learning
approaches. EEGNet, despite its compact framework, showed
an impressive capability for temporal feature extraction and
maintained good generalization. The EEG-Inception model
adeptly captured features across different time scales through
its dual-scale inception structure. C2CM, while incorporating

FIGURE 7. Confusion matrices of dataset 2b.

FIGURE 8. Ablation Study Results on Accuracy Across Subjects for
TBTSCTnet.

hand-crafted features with deep models, did not outperform
our method, except for one instance. This underlines the
potential limitations of models that do not adapt across
diverse subjects, despite parameter fine-tuning. In com-
parison with recent studies, the method proposed in this
study significantly enhances MI-EEG classification tasks.
It employs TBTSCN for feature extraction from EEG signals
and utilizes Transformer Encoder to analyze the combined
features, effectively reducing the generalization issues caused
by inter subject variability. This approach has achieved high
classification performance for most subjects, with an aver-
age accuracy of 77.39%, surpassing the average accuracy of
existing deep learning models.

To further analyze the impact of TBTSCTnet on the recog-
nition of each class of MI-EEG, the confusion matrices
for dataset 2a under the model are calculated, as shown in
Figure 6. In this figure, the horizontal axis of the confusion
matrix represents the categories of motor imagery predicted
by the model. The diagonal elements indicate the proportion
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TABLE 3. Average accuracy comparison of TBTSCTnet components in
ablation study.

of correct classifications for the four types of motor imagery
tasks by the model, while the remaining results represent
the proportion of misclassifications. For most subjects, the
proposed model achieves a prediction accuracy of over 76%
when predicting tasks involving the left hand, right hand, both
feet, and the tongue, demonstrating strong stability.

2) IN OUR EVALUATION USING THE BCI COMPETITION IV,
DATASET 2B
As shown in Figure 5 and Table 2, the performance data
highlight that our TBTSCTnet model has achieved supe-
rior classification accuracy in comparison to the RSMM,
GAN-RNN, ssCSP, and SSMM models for most subjects.
Particularly noteworthy is the model’s performance for Sub-
ject 4 and Subject 8 where our model demonstrates its
robustness with accuracy rates of 91.56% and 93. 12%,
respectively. Across all subjects, our model presents an aver-
age accuracy of 78.20%, which is in line with a kappa
coefficient of 0.61, reflecting ameaningful level of agreement
beyond chance. These results reinforce the capability of our
model to accurately classify MI-EEG signals.

To further analyze the impact of TBTSCTnet on the recog-
nition of each class of MI-EEG, the confusion matrices
for dataset 2b under the model are calculated, as shown in
Figure 7.

E. ABLATION STUDY
After verifying the overall framework, ablation studies were
conducted. This process involved systematically removing
each component from the model to assess the efficacy of
several key feature transfer components. The experimental
results for Dataset 2a are presented in Figure 8 and Table 3.

1) DATA AUGMENTATION
Based on the comparison shown in Figure 8, it is evident that
Data Augmentation plays a beneficial role in enhancing accu-
racy for all the subjects. As indicated in Table 3, the average
accuracy of TBTSCTnet with Data Augmentation is 7.29%
higher than that of TBTSCTnet without Data Augmentation.
This clearly demonstrates the value of incorporating Data
Augmentation in themodel to improve its performance across
various subjects. In conclusion, the strategic integration of
Data Augmentation into the TBTSCTnet framework is piv-
otal for achieving a superior classification accuracy in EEG
signal analysis.

FIGURE 9. Relationship between the indices of the removed EEG
channels and accuracy. The vertical axis represents continued removal
based on the previous removals, from top to bottom.

2) TBTSCN
The TBTSCN significantly enhances the model’s capabil-
ity by capturing features across various branches, which is
instrumental in boosting the overall performance. As illus-
trated in Figure 8, the transition from the yellow to green
line, which indicates a substantial improvement in accuracy,
is attributed solely to the inclusion of TBTSCN. Table 3
further quantifies this impact, showing a 36.35% increase in
average accuracy upon integrating TBTSCN, thereby under-
scoring its vital role in the precision of the model.

3) TRANSFORMER ENCODER
Incorporating the Transformer Encoder into the TBTSCTnet
significantly improves the model’s understanding of EEG
data by capturing global dependencies. As shown in Figure 8,
the addition of the Transformer Encoder (indicated by the red
line) enhances the accuracy of the model, and the average
accuracy is enhanced by 2.36%. The impact of this compo-
nent is evident from the results, with a marked increase in
performance, highlighting the ability of the encoder to extract
relevant features over long sequences, which is crucial for
EEG signal classification.

F. TBTSCNET WEIGHT VISUALIZATION TO EXPLAIN THE
EFFECT OF THE NUMBER OF EEG CHANNELS ON WHOLE
PERFORMANCE
To discuss the effect of the number of EEG channels on
overall performance, this study proposes a method that
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combines weight visualization and recursive channel elimina-
tion to identify the most valuable EEG channels quickly and
rationally. This approach avoids the traditional large-scale
combinatorial search for identifying EEG channels. Specif-
ically, the convolutional kernels in the spatial convolution
module of the TBTSCN are visualized. Note that the height
of these convolutional kernels is equal to the number of EEG
channels, as shown in the upper part of Figure 10. Then, the
columns of the convolutional kernels are summed, as depicted
in the lower part of Figure 10, to determine the importance
of each EEG channel to the classification results. Figure 10
already marks the actual brain location corresponding to each
channel. The importance of EEG channels in descending
order is: [16, 7, 14, 18, 6, 19, 21, 9, 15, 12, 22, 2, 20, 3, 5,
11, 13, 10, 1, 17, 4, 8].

Next, the recursive channel elimination was implemented.
The least important channels are successively removed,
and the final classification accuracy is recorded after each
removal, as shown in Figure 9. It can be observed that remov-
ing the 8th, 4th, and 17th channels does not significantly
decrease the classification accuracy. However, after removing
the first channel, the accuracy drops by 1.3%. Interestingly,
retaining only the top 9 channels from the sorted list still
results in a final classification accuracy exceeding 72%.

The above study indicates that it is not necessary to use
data from all 22 electrodes to achieve high accuracy; using
data from 19 electrodes can attain the same level of accuracy.
If there are cost constraints on the sampling equipment, even
selecting only the top 9 electrodes for sampling and analysis
is viable. This study demonstrates the optimal method for
selecting channels to balance accuracy and cost.

G. COMPARING DIFFERENT TRANSFORMER ENCODER
SCHEMES
The number of heads in the multi-head attention mechanism
of the transformer model is a crucial parameter that facil-
itates the learning of different aspects of features. We also
evaluated the impact of varying the number of heads on the
model performance. As shown on the left side of Figure 11,
we experimented with five different numbers of heads rang-
ing from 1 to 20. On the vertical axis, there is no clear
relationship between the number of heads and the impact on
the results, with no significant difference in the distribution
across different subjects. The average accuracy remains mod-
erately fluctuating, with only a 1.93% range on dataset 2a.
On dataset 2a, the average accuracy of using ten heads is
1.28% higher than that of using only one head. Overall, vari-
ations in the number of heads did not significantly enhance
feature learning.

Depth is also a key factor that influences the fitting capa-
bility of a model, particularly in traditional models. As shown
on the right side of Figure 11, we explored the impact of
depth on accuracy by incrementally increasing the depth of
self-attention layers from one to six. It can be observed that
for dataset 2a, the highest accuracy is only 1.97% higher than
the lowest accuracy, with the difference being statistically

FIGURE 10. This figure consists of three parts. The top section shows a
schematic diagram of the convolutional kernels in the spatial CNN and
the distribution of electrodes on the brain. The middle section displays a
heatmap of the convolutional kernel weights. The bottom section
indicates the importance of each EEG channel to the classification results.

FIGURE 11. Accuracy Trends Across Varying Number of Heads and Depth
of Self-Attention Layers on Transformer Encoder Module.

insignificant. However, the number of parameters in the
transformer dramatically increases with depth, significantly
increasing the training cost of the model. Hence, it can be
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concluded that the TBTSCTnet is insensitive to the depth of
self-attention.

V. LIMITATIONS AND FUTURE WORK
The proposed TBTSCTnet model, while demonstrating sig-
nificant improvements in MI-EEG classification accuracy,
is not without its limitations. One primary limitation is the
model’s dependence on large-scale data for training, which
may not always be feasible in real-world scenarios due to
the scarcity of labeled EEG data. Additionally, the com-
putational complexity of the model, particularly the Trans-
former Encoder module, may pose challenges for deployment
in resource-constrained environments. The model’s perfor-
mance variability across different subjects also indicates a
need for further refinement to enhance its robustness and
generalization capabilities.

Future work will focus on several key areas to address
these limitations. Firstly, optimizing the model architecture to
reduce computational demands without compromising accu-
racy will be crucial for practical applications. This could
involve investigating alternative lightweight Transformer
architectures or hybrid models that balance performance and
efficiency. Secondly, improving the model’s adaptability to
individual differences in EEG signals through personalized
training strategies or domain adaptation techniques will be a
significant focus, aiming to enhance the generalization of the
TBTSCTnet model across diverse user populations.

VI. CONCLUSION
In conclusion, the TBTSCTnet significantly advances
MI-EEG classification by addressing feature extraction and
overfitting challenges. By integrating Data Augmentation,
Three-Branch Temporal-Spatial Convolutions, and Trans-
former encoder modules, TBTSCTnet captures both local and
global features, enhancing classification performance. Exten-
sive experiments on public MI-EEG datasets demonstrate
the model’s robustness and adaptability, achieving higher
accuracy than existing methods.

The weight visualization study shows that fewer EEG
channels do not significantly impact performance, allowing
for an optimal selection of channels to balance accuracy and
cost. Additionally, experiments with different Transformer
encoder schemes reveal minimal impact from varying the
number of heads and the depth of self-attention layers, indi-
cating the model’s insensitivity to these parameters. The
ablation study confirms the importance of each module,
particularly the Data Augmentation and Three-Branch Con-
volutional Network, in enhancing overall accuracy.

Future work will focus on optimizing the model for
real-world applications and improving its adaptability to indi-
vidual EEG signal variations.

REFERENCES
[1] X. Gao, Y. Wang, X. Chen, and S. Gao, ‘‘Interface, interaction, and intel-

ligence in generalized brain–computer interfaces,’’ Trends Cognit. Sci.,
vol. 25, no. 8, pp. 671–684, Aug. 2021.

[2] S. Samejima, A. Khorasani, V. Ranganathan, J. Nakahara, N. M. Tolley,
A. Boissenin, V. Shalchyan, M. R. Daliri, J. R. Smith, and C. T. Moritz,
‘‘Brain-computer-spinal interface restores upper limb function after
spinal cord injury,’’ IEEE Trans. Neural Syst. Rehabil. Eng., vol. 29,
pp. 1233–1242, 2021.

[3] R. Yu, Z. Zhou, S. Wu, X. Gao, and G. Bin, ‘‘MRASleepNet: A multi-
resolution attention network for sleep stage classification using single-
channel EEG,’’ J. Neural Eng., vol. 19, no. 6, Dec. 2022, Art. no. 066025.

[4] X. Shen, X. Zhang, Y. Huang, S. Chen, Z. Yu, and Y. Wang, ‘‘Intermediate
sensory feedback assisted multi-step neural decoding for reinforcement
learning based brain-machine interfaces,’’ IEEE Trans. Neural Syst. Reha-
bil. Eng., vol. 30, pp. 2834–2844, 2022.

[5] A. Echtioui,W. Zouch,M. Ghorbel, C.Mhiri, andH. Hamam, ‘‘Multi-class
motor imagery EEG classification using convolution neural network,’’ in
Proc. 13th Int. Conf. Agents Artif. Intell., 2021, pp. 591–595.

[6] J. Hwang, S. Park, and J. Chi, ‘‘Improving multi-class motor imagery EEG
classification using overlapping sliding window and deep learning model,’’
Electronics, vol. 12, no. 5, p. 1186, Mar. 2023.

[7] Z. Wang, L. Cao, Z. Zhang, X. Gong, Y. Sun, and H. Wang, ‘‘Short time
Fourier transformation and deep neural networks for motor imagery brain
computer interface recognition,’’ Concurrency Comput., Pract. Exper.,
vol. 30, no. 23, Dec. 2018, Art. no. e4413.

[8] S. Belgacem, A. Echtioui, R. Khemakhem, W. Zouch, M. Ghorbel,
I. Kammoun, and A. B. Hamida, ‘‘Deep learning models for classification
ofmotor imagery EEG signals,’’ inProc. 6th Int. Conf. Adv. Technol. Signal
Image Process. (ATSIP), May 2022, pp. 1–4.

[9] F. Hassan, S. F. Hussain, and S. M. Qaisar, ‘‘Fusion of multivariate EEG
signals for schizophrenia detection using CNN and machine learning
techniques,’’ Inf. Fusion, vol. 92, pp. 466–478, Apr. 2023.

[10] C. Zhang, Y.-K. Kim, and A. Eskandarian, ‘‘EEG-inception: An accu-
rate and robust end-to-end neural network for EEG-based motor
imagery classification,’’ J. Neural Eng., vol. 18, no. 4, Aug. 2021,
Art. no. 046014.

[11] Y. Wen, W. He, and Y. Zhang, ‘‘A new attention-based 3D densely con-
nected cross-stage-partial network for motor imagery classification in
BCI,’’ J. Neural Eng., vol. 19, no. 5, Sep. 2022, Art. no. 056026.

[12] S. Bagchi and D. R. Bathula, ‘‘EEG-ConvTransformer for single-trial
EEG-based visual stimulus classification,’’ Pattern Recognit., vol. 129,
Sep. 2022, Art. no. 108757.

[13] J. Kalafatovich, M. Lee, and S.-W. Lee, ‘‘Decoding visual recognition of
objects from EEG signals based on attention-driven convolutional neural
network,’’ in Proc. IEEE Int. Conf. Syst., Man, Cybern. (SMC), Oct. 2020,
pp. 2985–2990.

[14] O. George, R. Smith, P. Madiraju, N. Yahyasoltani, and S. I. Ahamed,
‘‘Data augmentation strategies for EEG-based motor imagery decoding,’’
Heliyon, vol. 8, no. 8, Aug. 2022, Art. no. e10240.

[15] Z. Zhang, F. Duan, J. Solé-Casals, J. Dinarès-Ferran, A. Cichocki,
Z. Yang, and Z. Sun, ‘‘A novel deep learning approach with data aug-
mentation to classify motor imagery signals,’’ IEEE Access, vol. 7,
pp. 15945–15954, 2019.

[16] Y. Pei, Z. Luo, Y. Yan, H. Yan, J. Jiang, W. Li, L. Xie, and E. Yin, ‘‘Data
augmentation: Using channel-level recombination to improve classifica-
tion performance for motor imagery EEG,’’ Frontiers Hum. Neurosci.,
vol. 15, Mar. 2021, Art. no. 645952.

[17] B. Li, B. Yang, C. Guan, and C. Hu, ‘‘Three-class motor imagery classifi-
cation based on FBCSP combined with voting mechanism,’’ in Proc. IEEE
Int. Conf. Comput. Intell. Virtual Environ. Meas. Syst. Appl. (CIVEMSA),
Jun. 2019, pp. 1–4.

[18] V. J. Lawhern, A. J. Solon, N. R.Waytowich, S.M.Gordon, C. P. Hung, and
B. J. Lance, ‘‘EEGNet: A compact convolutional neural network for EEG-
based brain–computer interfaces,’’ J. Neural Eng., vol. 15, no. 5, Oct. 2018,
Art. no. 056013.

[19] S. Sakhavi, C. Guan, and S. Yan, ‘‘Learning temporal information for
brain-computer interface using convolutional neural networks,’’ IEEE
Trans. Neural Netw. Learn. Syst., vol. 29, no. 11, pp. 5619–5629,
Nov. 2018.

[20] Q. Zheng, F. Zhu, and P.-A. Heng, ‘‘Robust support matrix machine for
single trial EEG classification,’’ IEEE Trans. Neural Syst. Rehabil. Eng.,
vol. 26, no. 3, pp. 551–562, Mar. 2018.

[21] B. Yang, C. Fan, C. Guan, X. Gu, and M. Zheng, ‘‘A framework on opti-
mization strategy for EEGmotor imagery recognition,’’ inProc. 41st Annu.
Int. Conf. IEEE Eng. Med. Biol. Soc. (EMBC), Jul. 2019, pp. 774–777.

VOLUME 12, 2024 79763



W. Chen et al.: Three-Branch Temporal-Spatial Convolutional Transformer for Motor Imagery EEG Classification

[22] G. A. Altuwaijri, G. Muhammad, H. Altaheri, and M. Alsulaiman,
‘‘A multi-branch convolutional neural network with squeeze-and-
excitation attention blocks for EEG-based motor imagery signals
classification,’’ Diagnostics, vol. 12, no. 4, p. 995, Apr. 2022, doi:
10.3390/diagnostics12040995.

[23] A. E. Voinas, R. Das, M. A. Khan, I. Brunner, and S. Puthusserypady,
‘‘Motor imagery EEG signal classification for stroke survivors rehabil-
itation,’’ in Proc. 10th Int. Winter Conf. Brain-Comput. Interface (BCI),
Feb. 2022, pp. 1–5.

[24] J. Chen, Z. Yu, Z. Gu, and Y. Li, ‘‘Deep temporal-spatial feature learning
for motor imagery-based brain–computer interfaces,’’ IEEE Trans. Neural
Syst. Rehabil. Eng., vol. 28, no. 11, pp. 2356–2366, Nov. 2020.

[25] W.-L. Zheng and B.-L. Lu, ‘‘Investigating critical frequency bands and
channels for EEG-based emotion recognition with deep neural networks,’’
IEEE Trans. Auto. Mental Develop., vol. 7, no. 3, pp. 162–175, Sep. 2015.

[26] F. Lotte, ‘‘Signal processing approaches to minimize or suppress calibra-
tion time in oscillatory activity-based brain–computer interfaces,’’ Proc.
IEEE, vol. 103, no. 6, pp. 871–890, Jun. 2015.

[27] R. T. Schirrmeister, J. T. Springenberg, L. D. J. Fiederer, M. Glasstetter,
K. Eggensperger, M. Tangermann, F. Hutter, W. Burgard, and T. Ball,
‘‘Deep learning with convolutional neural networks for EEG decoding
and visualization,’’ Hum. Brain Mapping, vol. 38, no. 11, pp. 5391–5420,
Nov. 2017.

[28] S. Ioffe and C. J. A. Szegedy, ‘‘Batch normalization: Accelerating
deep network training by reducing internal covariate shift,’’ 2015,
arXiv:1502.03167.

[29] D.-A. Clevert, T. Unterthiner, and S. J. Hochreiter, ‘‘Fast and accurate deep
network learning by exponential linear units (elus),’’ in Proc. Int. Conf.
Learn. Represent., vol. abs/1511.07289, 2016.

[30] A. Vaswani, ‘‘Attention is all you need,’’ in Proc. Adv. Neural Inf. Process.
Syst., vol. 30. Red Hook, NY, USA: Curran Associates, 2017, pp. 1–11.

[31] Y. LeCun, Y. Bengio, and G. J. Hinton, ‘‘Deep learning,’’ Nature, vol. 521,
no. 7553, pp. 436–444, 2015.

[32] K. K. Ang, Z. Y. Chin, C. Wang, C. Guan, and H. Zhang, ‘‘Filter bank
common spatial pattern algorithm on BCI competition IV datasets 2a and
2b,’’ Frontiers Neurosci., vol. 6, p. 39, Apr. 2012.

[33] W. Samek, F. C. Meinecke, and K.-R. Müller, ‘‘Transferring subspaces
between subjects in brain-computer interfacing,’’ IEEE Trans. Biomed.
Eng., vol. 60, no. 8, pp. 2289–2298, Aug. 2013.

[34] Q. Zheng, F. Zhu, J. Qin, B. Chen, and P.-A. Heng, ‘‘Sparse support matrix
machine,’’ Pattern Recognit., vol. 76, pp. 715–726, Apr. 2018.

WEIMING CHEN is currently pursuing the bach-
elor’s degree with Jilin University. His research
interests include deep learning and algorithm for
analysis and processing of electroencephalogram
signals.

YIQING LUO is currently pursuing the bachelor’s
degree with Jilin University.

JIE WANG is currently pursuing the bachelor’s
degree with Jilin University.

79764 VOLUME 12, 2024

http://dx.doi.org/10.3390/diagnostics12040995

