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ABSTRACT The presence of muscles throughout the active parts of the body, such as the upper and lower
limbs, makes electromyography-based human-machine interaction prevalent. However, muscle signals are
stochastic and noisy, with noises being both regular and irregular. Irregular noises due to movements or
electrical switching require dynamic filtering. Conventionally, filters are stacked, which unnecessarily trims
and delays the signal. This study introduces a decontamination technique involving a supervised rewarding
strategy to drive a deep Q-network-based agent (supDQN). It applies one of three filters to decontaminate
a 1 sec long surface electromyography signal, which is dynamically contaminated. A machine learning
agent identifies whether the signal after filtering is clean or noisy, generating a reward accordingly. The
identification accuracy is enhanced by using a local interpretable model-agnostic explanation. The deep
Q-network is guided by this reward to select the filter optimally while decontaminating a signal. The
proposed filtering strategy is tested on four noise levels (−5 dB, −1 dB, +1 dB, +5 dB). supDQN filters
the signal desirably when the signal-to-noise ratio (SNR) is between -5 dB to +1 dB but filters less desirably
at high SNR (+5 dB). A normalized root mean square (�) is formulated to depict the difference of the
filtered signal from the ground truth. This is used to compare supDQN and conventional methods, including
wavelet denoising with debauchies and symlet wavelet, high-order low-pass filter, notch filter, and high-pass
filter. The proposed filtering strategy gives an average � value of 1.1974, which is lower than that of the
conventional filters.

INDEX TERMS Deep reinforcement, EMG decontamination, motion artifact, powerline interference, white
noise, biomedical measurement.

I. INTRODUCTION
Surface electromyography (sEMG) applications have
increased rapidly in the past two decades and are still
accelerating. According to data from the Web of Science, the
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number of studies on sEMG per year has gone from 32 in
2003 to 445 in 2022 [1]. In these studies, the most commonly
observed applications of sEMG signal are rehabilitation,
robotic prosthesis, medical diagnosis, gesture-controlled
robotics, analysis, medical research, etc [2], [3], [4].While all
these studies consider using machine learning and artificial
intelligence to achieve the task, the raw sEMG signal requires
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a highly accurate and precise pre-processing methodology
to remove noise. In sEMG signal, these noises are usually
referred to as noise or contaminants in signal, which can be
caused by motion artifact (MOA), physiological interference,
powerline interference (PLI), white Gaussian noise (WGN),
amplifier saturation, fatigue muscles, etc [5]. Removing such
contaminants is necessary to avoid deviation from the actual
outcome of these studies. Therefore, there is a need to identify
and remove these contaminants from an sEMG signal.

Significant efforts have been made to decontaminate an
sEMG signal. Themost common decontamination techniques
used in sEMG signal pre-processing are bandpass filtering
(BPF) and notch filtering (NF). BPF is used to reduce the
power level of samples having a frequency beyond the range
of sEMG signals, while NF is used to do the same for
a specific frequency, which reduces the PLI level in the
signal [6], [7], [8]. However, these are static filters that act
on the entire signal. Which can result in a reduction in
power levels of the actual sEMG signal. The advanced form
of filtering includes wavelet denoising [9], decompositional
filtering techniques [10] and signal whitening [11]. Wavelet
denoising is a premature technique that removes coefficients
beyond a defined threshold. It is very useful in analysis.While
the decompositional filtering techniques are very efficient,
they are difficult to tune. The selection of the mother wavelet
and degree of decomposition is a very hectic task. The more
robust methods ICA and PCA are introduced in [12], [13],
and [14]. These methods can reliably separate noises of
different kinds however, ICA fails when the source of the
signal is Gaussian in nature (as in sEMG and WGN) [15],
additionally they are not adaptive and they are usually
effective, only at a high power level of noise. As the noise
level reduces, they fail to identify, making it difficult to
separate noise from clean signal.

There are learning-based adaptive filtering methods
employing variants of least mean square algorithms to tune
the weights of a finite impulse response (FIR) or infinite
impulse response filter (IIR) based filter [16], [17]. These
filters are widely used in fetal ECG denoising using the
mother’s ECG signal as a reference signal [18]. While its
applications are ubiquitous, the major drawback of these
filters is the requirement of a reference signal at all times to
determine the coefficients of filters. Generally, sEMG signal
acquisition does not involve the acquisition of a reference
signal. Moreover, depending on the algorithm, such filters
also take substantial time to settle at a final coefficient for
the FIR or IIR filter. Therefore, they are not popular among
sEMG signal filtering. Recently, in [19], Iqbal demonstrated
the use of an autoencoder in generating filtered signals
out of contaminated seismic signals. A similar strategy is
also followed in [20] to denoise ECG contaminated with
EOG and EMG signals. However, both auto-encoder-based
techniques are similar to adaptive filtering and employ a
ground-truth signal during training. Usually, ground truth
signal labeling requires a denoised signal with high fidelity.

Due to the lack of standardization of sEMG signals, it is
difficult to obtain ground truth. The other important issue is
converting the 1-D signal to a 2-D image in the pre-processing
stage, using short-time discrete cosine transformation. This
transformation from 1-D to 2-D can significantly impact
deployable models. Deployable models have time and
memory constraints, and processing in 2-D may affect
adverse. A brief comparison of the same is highlighted
in [21]. Due to the dynamic and unpredictable nature of
sEMG signals, most of these approaches fail to address
justified filtering. Therefore, in most of the application-
oriented articles, it can be observed that the popular filtering
methods among them remain to be LPF, BPF, HPF, and
wavelet denoising techniques due to their simplicity in usage
and efficiency performance, without affecting the analysis
greatly.

However, reinforcement learning (RL) methods have
proven very suitable under such dynamic environments.
Apart from its wide applications in robotics and games [22],
[23], it has also been used in signal processing. In the past,
Sahba and Tizhoosh have demonstrated the use of multiple
filters optimally selected by an RL agent to filter an image
in [24]. The agent in their study would select the weight
values of different filters to obtain an image with a higher
SNR. Other RL applications in image denoising have been
demonstrated in [25] and [26]. In [27], Liang et al. have
used an asynchronous advantage actor-critic (A3C) agent
to dynamically alter the denoiser to denoise complex and
diverse seismic signals. In [28], hand gesture recognition
using sEMG signals is achieved with deep Q-learning and
double deep Q-learning. In all these studies, implementing
RL to those problems requires formulating the problem as a
Markov decision process (MDP). In [29], Tosin and Balbinot
formulated noise removal as an MDP and dynamically
filtered four different types of noise introduced at different
intervals of a signal. They considered an actor-critic agent
with a fuzzy logic-based rewarding strategy to achieve
optimal noise filtering. The fuzzy logic-based rewarding
strategy requires an inference table, which can only be
determined by an expert. However, in [29], the authors
deduced a heatmap-based fuzzy inference table before the
learning process. This heatmap table guides the output of
the fuzzy system, which is then used to generate a reward.
This becomes tedious when a change in noise level is
introduced.

This forms the motivation of this article to develop an
automated signal decontamination technique with the help of
a supervised rewarding strategy in reinforcement learning to
select a filter optimally in a dynamically contaminated sEMG
signal within an allowable time constraint. To address the
issues above, a supervised rewarding strategy is proposed,
which aims to simplify and diversify the reward generation
process while improving efficiency at each step of reward
generation. At the same time, a reinforcement learning agent
capable of solving this problem efficiently is obtained, tested,
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FIGURE 1. Flow of study: Stages 1 and 2 deal with artificial contamination of a clean sEMG signal. They have been discussed in Section II under the
subtopics of signal cleaning and artificial contamination, respectively. Stage 3 deals with the methodology of proposed filtering and it has been discussed
in Section III. Stage 4 is the results and comparative analysis which is discussed in Section IV.

and evaluated. Desirably, such an agent should display the
following characteristics:

• It should respond to different noises dynamically.
• Its computational complexity must be within a limited
range.

• It must be independent of the ground-truth signal.
The main applications of the proposed method may include
denoising signals exposed to dynamic changes in noises,
denoising signals with non-stationary characteristics, and
recurring signals with irregular noises, such as biopotential
signals like EEG and EMG.Due to the lack of standardization
and availability of ground truth signals during the acquisition,
these signals are better suited for application with the
proposed method.

The work done in this study is as follows:
• A deep Q-network-based learning agent that learns
to identify and decontaminate an sEMG signal
dumped with three different noises at different
intervals.

• A new and efficient reward generation strategy
involvingmachine learning agents (MLA) is proposed to
decontaminate sEMG signals. To improve the efficiency
of the MLA, a local interpretable model-agnostic
explanation (LIME) tool is used to interpret and finally
select the optimal set of features.

The upcoming sections are organized as follows: The
problem is introduced in Section I. Section II and III present
the foundation of the dataset and the proposed filtering
method, respectively. The result with analysis is discussed in
Section IV. Section II - IV are the four stages described in
FIGURE 1 indicating the flow of the study. Finally, the study
is concluded in Section V.

II. DATASET
This section presents the artificial generation method of
noisy sEMG signals for the study. Mathematically, the
artificial contamination can be represented in equation (1).
This equation represents a general idea of the addition
of noise (n(t)) on top of a clean signal (x(t)) at a level
decided by the value of A to obtain a noisy sEMG
signal (y(t)).

y(t) = x(t)+A×n(t) (1)

For the study, three clean signals are obtained following
the procedure described in Section II-A. Three different
types of noise (MOA, PLI, and WGN) are considered,
which is elaborated in subsection II-B. The other noises are
physiological (electrocardiogram (ECG)) and instrumental
noise, which are not considered in the study due to a lack
of standardization in integrating ECG with sEMG to produce
noisy sEMG and a lack of a model to represent instrumental
noise. Subsection II-B also explains the procedure of
contamination. The reliability of the filtering agent is checked
at the different SNRs:−5 dB,−1 dB,+1 dB, and+5 dB. The
outcomes of this section are nine noisy sEMG datasets at four
different noise levels.

A. SIGNAL CLEANING
sEMG signal is acquired using aBIOPACMP150 device [30].
The signal is acquired while the subject holds a book for
2 minutes. The acquisition frequency is 2 kHz, and only
one channel is used. For a proper analysis, the procedure
mentioned above is repeated ten times while holding the
book in different ways, as shown in FIGURE 2. Since the
study revolves around the identification and removal of noise,
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FIGURE 2. The ten hand activities performed to obtain sEMG signals.

the cleanest possible form of sEMG signal is acquired by
setting up the options for low-pass filtering. Any value of the
frequency component above the range occupied by the sEMG
signal [31] is filtered using the 500 Hz LP mode of filtered
signal acquisition. The acquired signal, however, is not free of
low-frequency MOA and PLI. These noises are filtered using
digital filters, and a signal purity check is performed using the
method described in [32]. The purity of the signal is checked
over a window of 1 sec following the constraints given in
TABLE 1. If the SMR, SNR, DEF, and DPR values are inside
the acceptable range, it is marked ‘good’. It is intuitively
deduced that if the percentage of total good marked segments
over the entire signal is above 90%, the signal can be assumed
to be suitable. However, if a signal is found impure, it is
discarded. The pre-processed signal obtained at the end of
this stage is referred to as a clean signal in further stages. For

TABLE 1. Constraints to check purity of signal [32].

a generalized analysis, two conditions need to be fulfilled by
the clean signal datasets:

• The signals to be considered should be different from
each other based on activity.

• The signals must fulfill the cleanliness criteria as shown
in TABLE 1.

Initially, ten raw sEMG datasets are obtained with a
length of 96 sec. After filtering and signal purity checks,
it is observed that only one sEMG dataset (sEMG-10) is
suitable in the length of 96 sec (refer, TABLE 2). Since,
considering the 96 sec long signal violates the conditions for
generalized analysis, two more signals close to 90% clean
are explored (sEMG-6 and sEMG-9). Dividing these three
signals (sEMG-6, sEMG-9, and sEMG-10) further into 32 sec
long signals, it is observed that the conditions are fulfilled
(refer to TABLE 3). These three clean signals of length 32 sec
are selected for the study.

TABLE 2. Signal cleanliness checked over 96 sec long signals.

TABLE 3. Signal cleanliness checked over 32 sec intervals.

B. ARTIFICIAL CONTAMINATION
The three clean sEMG signals are used to obtain nine noisy
sEMG signals. The three noises used for doping with a
clean signal include MOA, PLI, and WGN. These noises are
added randomly to the signal in windows of 500 msec. Three
random sequences are prepared, as shown in FIGURE 3.
After these three sequences, noises are added to the three
clean datasets, forming nine noisy sEMG datasets. The
information regarding the dataset of noise used during noise
addition is described in brief as follows:

FIGURE 3. Illustration of noise added in random sequence.

1) MOTION ARTIFACT
MOA is a low-frequency and high-power level artifact
with a typical frequency range of 0.5 to 20 Hz. It is a
result of skin-electrode interface movement. It cannot be
generated. Therefore, it is collected using the BIOPAC
MP150 DAQ setup. However, while collecting the signal for
MOA, a series of 50-60 taps are done in the proximity of the
electrode-attached muscle in one minute [29]. To retain only
the signal containing MOA, the obtained signal is filtered
beyond 35 Hz using a low pass filter with a cutoff frequency
of 35 Hz. The resulting signal is assumed to be a purely MOA
noise.

2) POWERLINE INTERFERENCE
PLI is electromagnetic interference occurring due to the
electrical devices in proximity to the acquisition setup.
It affects the frequency domain, specifically at the powerline
frequency. In the study, PLI is a sine function as represented
in equation (2)

nPLI(t) = sin(2π ×50t)+
1
3
sin(2π ×150t) (2)
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3) WHITE GAUSSIAN NOISE
WGN is a Gaussian noise distributed throughout the
frequency domain with a low power level. Since it is
distributed in the entire frequency range, its filtering
is the most difficult. However, [5], [33] suggests that
removing the signal after 500 Hz should effectively improve
the SNR of the signal. Data for WGN is obtained using
the wgn function in MATLAB with a random power level
between −8 and −4 dB. In equation (3a), r is a random
variable obtained from the set of real numbers uniformly
distributed over the range of −8 and −4 dB.

r ∈ N∩ [−8, −4] (3a)

nWGN(t) = wgn(r) (3b)

The final noisy datasets (NDs) are prepared by adding
nmoa(t), npli(t) and nwgn(t) to the main signal dataset (SD) in
a pre-defined random sequence. This can be mathematically
expressed as follows:

yijk (t) = xji (t)+α(pkinmoa(t)+qkinpli(t)+ rkinwgn(t)) ∀i

(4)

Here, pki ,qki ,rki ∈ {0,1} and pki + qki + rki = 1 ∀ i ∈ Z+
∩

[1,T ]. xji (t) represents the 1000 samples long ith segment
of the jth clean signal. T represents the total timesteps in
an episode. yjk (t) corresponds to the ith segment of final
noisy signal obtained out of jth clean signal doped with
noise following k th noise sequence. Here, j,k ∈ {1,2,3}. ‘α’
indicates the level of noise, and it is given by the following
equation,

α =
Pc

Pn× (100.1 Preq −1)
(5)

Here, Pc, Pn, Preq represents the power level of the clean
signal, noise signal, and required SNR in dB, respectively.

III. METHODOLOGY
The filtering problem considered in this study is viewed
as a reinforcement learning problem. A DQN agent-based
reinforcement learning environment is set up to achieve
dynamic filtering of an sEMG signal. Where the goal of
the agent is to minimize the noise appearing in the signal
by taking suitable filtering action. FIGURE 4 depicts the
flow of the algorithm. The three key components of this
algorithm are environment setup, rewarding strategy, and
agent learning. At any timestep ‘t’, six features are extracted
from a segment of signal segt . These features constitute the
observations at that timestep. Viewing the observation, the
agent takes a filtering action on the current segment (segt )
following an ϵ − greedy policy. The features corresponding
to this filtered segment are input to a pre-trained machine
learning agent (MLA) to generate reward based on clean
or noisy. The reward is used to update a deep network for
Q-value estimation, which is called a critic network. Finally,
the timestep is incremented in which the next segment of
signal (segt+1) becomes the next observation. The subsequent
sections elaborate all these procedures.

FIGURE 4. Overall flowchart of proposed methodology.

A. sEMG ENVIRONMENT SETUP
The sEMG signal is treated as the environment in which a
timestep increment is observed over a window of 500 msec
of the signal. At timestep, t = 1, the first 500 msec of
the signal becomes the current observational segment, and
the subsequent 500 msec becomes the next observational
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segment for t = 2. Therefore, a maximum of 64 timesteps are
possible in a particular episode. At the end of Section II-B,
nine noisy sEMG datasets (NDs) are formed. One of the
nine is used for training (ND1), and the rest are for
testing and evaluation (ND2-ND9). After the training, four
supDQN filtering agents are formed, each for a specified
SNR level.

1) OBSERVATIONS
The physical significance of observation in any environment
is the physical values that may represent the situation of the
environment at that timestep. In this case, at any timestep, the
environment can be represented by deformation ratio (DEF),
peak density (DPR), signal-to-motion artifact ratio (SMR),
signal-to-noise ratio (SNR), signal-to-powerline ratio (SPR)
and signal-to-electrocardiogram ratio (SER). There can be
more observations from the environment at any particular
timestep. However, their values may be insignificant from the
perspective of the goal. Procedures to compute these physical
parameters are referred from [29] and [32].

2) ACTIONS
Actions are the tasks that an agent performs on its
environment at any particular time step. In this case, filtering
the raw signal is considered the action. The different actions
that the agent is equipped with are high pass filtering (HPF)
against MOA, low pass filtering (LPF) against WGN, and
specific frequency notch filtering (NF) against PLI. The
filters are digital elliptic filters with an 80 dB attenuation.
Elliptic filters are chosen for their better steady-state response
even at a reduced order of the system. At any timestep, the
agent observes the environment it is currently in and then
takes action following a policy. The task of the supDQN agent
is to obtain a policy that yields the highest Q-value over an
episode. The supDQN agent and the Q-value are defined in
Section III-B.

3) REWARDING STRATEGY
Reward is the performance measure of an action. To obtain
an optimal policy, the reward must be a positive incentive
for good and a negative incentive for wrong action. It can be
represented as a function of state (s) and action (a). However,
due to the stochastic nature of an sEMG signal and its features
(i.e., observations at every timestep), it is necessary to use a
trained MLA to distinguish good action from bad. Therefore,
during the study, the reward for an action is determined by an
MLA, trained with the training dataset to identify clean and
noisy signals.

In this context, the training dataset is obtained by adding
a specific noise to the clean signal (SD1). The cleaned
version of this signal is obtained by filtering it with a noise-
specific filter. In this case, the noise-specific filter is HPF
for MOA, NF for PLI, and LPF for WGN. All the other
combinations of actions and noise are labeled as noisy.
Therefore, the dataset consists of two signals labeled as noisy
and clean for a single action. This dataset is pre-processed,

FIGURE 5. Rewarding strategy.

in which the six features (DPR, DEF, SER, SMR, SNR,
SPR) are extracted from the signals. Using this feature-based
dataset, six of the widely used MLAs, including support
vector machine (SVM) [34], linear discriminant analysis
(LDA) [35], artificial neural network (NN) [36], decision
tree, logistic regression, and k-nearest neighbors are trained
to perform binary classification.

However, only one MLA is selected based on maximum
accuracy. The LIME analysis is performed on the selected
MLA to study the relevance of features in enhancing MLA’s
accuracy. The outputs from LIME (refer to FIGURE 6)
suggest that in some cases, a few out of the six states/features
can be used for noise identification and improve the accuracy
of that model [37], [38], [39]. The length of the bar in the
FIGURE 6 represents that feature’s ability to improve the
identification of either noise (red bar) or clean (blue bar).
Hence, the features not contributing to a higher accuracy are
eliminated from the bottom of the list in each case, and the
same classifier is trained again with the reduced feature set.
Since every filtering action affects the signal environment
differently, it is necessary to find a fitting MLA for each
action in every environment to generate the correct reward.
Therefore, three MLAs are selected for three actions, and
each MLA is tuned optimally to correctly generate a reward
signal with high accuracy.

The study is extended with a reliability analysis of other
noise levels. Four noise levels are considered (−5 dB,
−1 dB, +1 dB, and +5 dB) to achieve this. Usually, the
SNR value varies with a very low standard deviation unless
a major change appears during acquisition. Therefore, for
simplification in analysis, it is assumed that SNR remains
fixed during acquisition. Based on this assumption, the
denoising agent is proposed to be trained with a noisy dataset
at a fixed SNR. Therefore, when the SNR changes to a new
value, re-training of these MLAs is required to improve the
accuracy of the rewarding function at the new SNR. Since,
in this study, reliability analysis is done on four SNRs, and
each SNR requires three trained MLAs, 12 trained MLAs are
listed in TABLE 4 with their corresponding input features.
Therefore, TABLE 4 can be interpreted as follows: if the
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FIGURE 6. Outputs of LIME for various models.

reliability of denoiser is being evaluated for SNR= −5 dB,
and the agent takes an Action = HPF, a trained neural
network-based MLA is selected to identify and generate
reward.

The reward for the reinforcement learning (RL) agent is
dependent on the current action, level of noise, and the filtered
states. For instance, if the current action is LPF at noise level
SNR = −5 dB, the MLA will consider only four features
(i.e., DEF, DPR, SER, SPR) out of the six filtered states as
input and perform classification and generate a reward based
on the predicted label. A reward of +2 is awarded when the
predicted label is clean else a reward of 0 is given to theMLA.
The complete rewarding strategy is pictorially represented in
FIGURE 5. Here, the MLA select line is a four-bit binary
select line that uses only 12 states to merely select an MLA
for a particular action and a noise level.

TABLE 4. List of MLAs employed for reward generation due to each
action at various noise levels.

B. SUPERVISED REWARD BASED DEEP Q-NETWORK
(supDQN) AGENT
Deep Q-learning (DQN) is an extension of the Q-learning
algorithm. It combines deep learning with the existing
knowledge of Q-table update [23]. When the state space
is continuous, it becomes difficult to contend all the
states in a Q-table. In such cases, a universal function
approximator like a deep neural network can be considered

to estimate the Q-values. This function approximator is
generally parameterized in θ , and it learns to approximate
much better by minimizing a loss as given in equation (6)

Li(θi) = Es,a,r,s′∼p(.)((yi−Q(s,a;θi))2) (6a)

yi = r+γ max
a′

Q(s′,a′
;θi−1) (6b)

Where Li(θi) is the loss function for the Q-value approximator
network. It is equal to the expected temporal difference (TD)
of the TD target (from the previous iteration) and estimated
Q-value in the present iteration (i). yi represents the Q-value
estimation parameterized over θi−1 (θ at previous iteration)
and γ is the discount factor. Q(s,a;θ ) represents the Q-value
function of state s and action a, parameterized in θ .

In this study, while the states for the training environment
(ND1) are fixed and discrete in 64 timesteps, a Q-learning
algorithm is suitable for learning the optimal policy to reduce
noise. However, as the environment changes during testing
or implementation, the Q-table fails to adjust the new states
in the Q-table because the states are continuous in this case,
resulting in the agent’s failure. The Q-value is estimated using
a deep neural network for continuous state/observation (s)
and discrete action (a).

Q∗(s,a;θ ) = E[r+γ max
a′

Q∗(s′,a′
;θ )] (7)

Q∗(s,a;θ) is the quality of taking action a, starting from
state/observation s and following the optimal policy path
thereafter parameterized over θ (also known as optimal
Q-value function). Mathematically this is equivalent to the
expected immediate return (r) plus the discounted future
optimal return (γ maxa′ Q∗(s′,a′

;θ )). Here, s′ represents
states/observations at the next timestep, which differs from
affected states explained in Section III-A3. Since the DQN
agent is driven by a supervised learning-based rewarding
strategy, it is named supDQN. Once the supDQN is trained,
the Q-value estimator network stops updating its parameter θ .
When this trained model is simulated, the trained estimator
network (shown as critic network in FIGURE 4) directly
estimates the Q-value from the input states and actions and
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follows the path of the learned policy. As it tries to maximize
the return, the signal is more filtered.

C. AGENT PERFORMANCE EVALUATION
In Section II-B, noises are introduced in specified segments.
The sequence of actions being taken at each segment is noted
and checked to see if the specific action helps reduce the
noise. In Section III-A2, intuitively, it is found that action
HPF, LPF, and NF are best equipped against MOA, WGN,
and PLI, respectively. Therefore, during the study, a desired
set of actions was already known to be against the type of
noise added at every segment. While evaluating the trained
supDQN agent, whether the agent acts according to the
desired set of actions is checked. The accuracy of the agent is
calculated using the following equation

Acc =
Total timesteps−number of missed actions

Total timesteps
×100

(8)

Here, missed actions are the actions that deviate from the
desired actions at any timestep. The missed actions and the
agent’s precision can be judged by using confusion matrices.
The confusion matrix shows how the agent takes action
against a particular type of noise in an environment. Noise 1,
2, and 3 correspond to MOA, PLI, and WGN, respectively,
whereas actions 1, 2, and 3 correspond to HPF, NF, and LPF,
respectively. Similarly, an action plot is plotted against the
timesteps in the x-axis. In the action plot, if the orange line
overlaps completely with the blue line, the action taken is the
same as the desired action. The filtered signal plot compares
the noisy signal after being filtered by the supDQN agent
(orange) against the original noisy signal (blue).

This filtering technique is compared against conventionally
used filtering methods based on an error parameter (�) which
is calculated as follows

� =

√
1
N

∑N
i=1(yi− xi)2√

1
N

∑N
i=1(ni− xi)2

(9)

where yi, xi, and ni represent the ith sample of the
filtered, clean, and noisy signals, respectively. A lower
value of � indicates a more clean signal. The conventional
filtering methods are compared against the proposed
supDQN-filtering agent based on this parameter later in
TABLE 6.

IV. RESULT AND ANALYSIS
In this section, the output from the resulting supDQN filter is
analyzed and compared with that of the conventional filters
which include wavelet denoisers (with debauchies (dB4)
and symlet (sym4) wavelet), low order high pass, low pass,
notch pass filter, and threshold-based denoising of individual
intrinsic mode functions in the time-domain using empirical
mode decomposition [40]. To execute this, the entire study is
carried out in a 12th generation Intel core i7 processor with

an installed RAM of 16.0 GB capacity. MATLAB R2023a
platform is used to execute all the programs and analyze
results. Four cases for four different noise levels are prepared.

A. CASE I: NOISE LEVEL −5 DB
In all the cases, the training environment is the ND1 dataset,
and the rest of the environments (ND2 to ND9) are used as
test environments to validate the agent. In this case, the noise
is added such that the SNR corresponding to each segment
is −5 dB. The three MLA for reward generation are referred
from TABLE 4. The agent-DQ1 is trained for 2000 episodes,
each with a maximum of 64 timesteps. The learning rate of
the deep neural network is 0.001, and an Adam optimizer
with a gradient decay of 0.9 and l2norm gradient thresholding
is used to optimize the weights of the neural network. The
exploration rate varies from 0.6 to 0.05, with a 0.003 decay
at every timestep. The simulation on the testing dataset is
observed, and its performance analysis recorded while testing
ND2 and ND3 is shown in FIGURE 7.

FIGURE 7. Performance of supDQN agent at a noise level of −5 dB.

FIGURE 7a-7b are the simulation results with the supDQN
agent acting on dataset ND2 at a noise level of −5 dB.
Whereas FIGURE 7c-7d are the simulation results with
supDQN agent acting on dataset ND3 at a noise level of
−5 dB. FIGURE 7 suggests that at this noise level, the
supDQN agent acts against the desired action 14 times
while correctly identifying and filtering contaminant at
114 different timesteps. For the rest of the environments, only
the accuracy and error ratio parameter � associated with the
testing environment is mentioned in TABLE 5 and TABLE 6,
respectively. The optimizer settings for the estimator network
and the exploration decay rate are the same for the rest of the
cases.

B. CASE II: NOISE LEVEL −1 DB
The agent-DQ2 is trained and tested on the sEMG
environment, including a −1 dB noise level at different
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segments. The simulation results are shown in FIGURE 8.
It suggests that the supDQN agent fails to follow the desired
action in 5 cases and correctly identifies and decontaminates
the signal in 123 different timesteps.

FIGURE 8. Performance of supDQN agent at a noise level of −1 dB.

C. CASE III: NOISE LEVEL +1 DB
The agent-DQ3 is trained and tested on an sEMG
environment with a +1 dB noise level at different segments.
The simulation results are shown in FIGURE 9. It suggests
that the supDQNagent fails four times and correctly identifies
and decontaminates the signal 124 times.

FIGURE 9. Performance of supDQN agent at a noise level of +1 dB.

D. CASE IV: NOISE LEVEL +5 DB
The agent-DQ4 is trained and tested on an sEMG
environment with a +5 dB noise level at different segments.

The simulation results are illustrated in FIGURE 10.
It suggests that the supDQN agent fails in 88 timesteps and
succeeds in 40 timesteps. This happens due to the low impact
of noise at this SNR level. At this level of SNR, it becomes
difficult for machine learning agents to distinguish between
noisy and clean signals based on the six features (DEF, DPR,
SER, SMR, SNR, and SPR). For better distinction, there is a
need to exploit additional features that can prove helpful for
noise identification at this noise level.

FIGURE 10. Performance of supDQN agent at a noise level of +5 dB.

TABLE 5 presents the accuracy of supDQN agents in
following the desired policy at different noise levels for all
the testing datasets.

TABLE 5. Accuracy (in %) of supDQN at following the desired actions in
different noisy sEMG environments and at different noise levels.

TABLE 6 shows the performance of supDQN compared to
the performance of other filters. Each filter’s performance is
evaluated using equation (9) at different noise levels for each
test environment. The resulting values are then compared.
Due to the consistency in maintaining the minimum � of
1.1974, which is expressed by the mean � in TABLE 6,
it can safely be said that the supDQN decontaminates a mixed
noise signal more effectively compared to the other filtering
techniques. In 23 out of 32 cases, it performs better than the
rest, and in 4 cases, it performs better than most filtering
methods except HPF. In FIGURE 10, it can be observed
that when the agent is unable to identify noises correctly,
it takes the HPF action more likely compared to the other.
It is an adaptable learning agent that quickly adjusts to new
environments after a little training since the learning process
is dynamic.
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TABLE 6. Performance comparison table between the proposed method
and conventional method.

E. COMPUTATIONAL COMPLEXITY
The computational complexity of any algorithm is the
number of additions and multiplications involved in
producing results. Time consumption analysis is an
extension of this analysis, which provides an estimated
time that might be consumed by different hardware to
produce the result. A computational complexity analysis
is provided for the proposed architecture for a generalized
comparison. The proposed architecture involves the
following
processes:

• A frequency domain transformation: S log(S)
• Calculation of six features in the frequency domain:
6×O(S/2)

• Q - function approximation through neural network
structure given in FIGURE 4: O(10D + 10(bias) +

10(ReLU) + 10 × 10 + 10(bias) + 10(ReLU) + 5A +

5(bias)+5(ReLU)+5×5+5(bias)+5(ReLU))
• Filtering using a single FIR filter, which involves
convolution operation: O(N +S−1)2

• Reward generation through an MLA: max(O(1 ×

D), O(1×D2), O(87))
Here, D represents a number of features in an observation,
N represents the order of the employed filter, S represents a
number of samples, and A= 1 represents a number of action
inputs. The bias, ReLU, inside the parenthesis indicates the
mathematical operation. TABLE 7 provides a comparative
analysis of the computational complexity of stacked filters
and the proposed method. Because filters must be stacked
to achieve similar � values using the conventional method,
this table highlights the necessity of employing a single filter

rather than stacking filters to lower computations and achieve
filtering in reduced time.

TABLE 7. Computational complexity comparison table.

V. CONCLUSION
This study presented a dynamic noise reduction technique
that showed supremacy over conventional filtering techniques.
supDQN is an environment-interacting agent, and its ability
to filter segment by segment enables it to react to noise
dynamically. It allows the filtering agent to filter noises
dynamically. To achieve this, a supervised MLA was used
to generate a reward and properly direct the supDQN agent
to filter optimally in an unknown sEMG signal environment.
At a higher noise level in the signal (i.e., when SNR is
−5 dB, −1 dB, or +1 dB), the MLA accurately identified
clean from noisy signal, which ensured a better degree of
contamination removal. However, when the noise level in
the signal is low (i.e., when SNR is +5 dB or more), the
noisy signal is similar to the clean signal, which causes
difficulty for the MLA in distinguishing noisy from the
clean signal. Therefore, the agent fails to follow the desired
filtering actions at every timestep. However, it minimized
noise better than conventional techniques (refer TABLE 6).
The specific advantages that this technique provides over
traditional methods are listed as follows:

• Environment interactive filter: It employs a feedback
mechanism to dynamically feed the agent with the
current state and reward from the environment. This
feedback mechanism allows the filter to respond to
noises dynamically.

• Low computational complexity: For N = 10, S = 1000,
supDQN involves 1,024,573 computations as compared
to a stack filter compared at the same efficiency, which
involves 3,054,243 computations.

• Reduced delay: An nth order filter introduces a delay of
n/2, and stacking multiple (k) such filters results in a
delay of k × n/2. supDQN uses only one filter at any
segment, producing the least delay.

• Minimized error and loss of information: The average
normalized RMSE of supDQN is 1.1974, which is
lesser than all other traditional filters. Additionally,
thresholding inwavelet denoisingmay involve some loss
of information, which is avoided by frequency-based
FIR filters employed in supDQN.

The proposed filtering technique in this study still needs
more confidence to achieve filtering in minimal time.
However, efforts have been made in this study to reduce the
time consumption of the process by replacing higher-order
filters with lower-order filters. In the future, this work can
be modified to achieve faster filtering and make it feasible
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for prostheses. Additionally, the rewarding strategy could be
improved, which can identify the contribution of different
noises in a noise-overlapped environment. However, this
study’s outcomes can be used in applications requiring a
clean sEMG signal without time constraints, such as extended
analytical research on clean sEMG signal, rehabilitation,
clinical study, medical condition diagnosis, etc. In the future,
this study can be extended to achieve faster filtering or
filtering at lower noise levels to integrate with prosthetic
devices. Additionally, to avoid the impact of noise level on
the filtering, more advanced features can be explored that
may provide better differentiation between noisy and clean
signals at lower noise levels. Deep learning architecture can
be exploited to do the same.
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