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ABSTRACT Unmanned Aerial Vehicles (UAVs) are used in various applications, including crowd man-
agement, crime prevention, accident detection, and rescue operations. However, since UAVs perform their
tasks independently, some UAV applications are dynamic and geographically distributed, which may require
extensive real-time processing capabilities. Thus, processingUAVdata locally can be challenging due to their
limited computing capabilities. To overcome such limitations, fog and cloud computing can facilitate UAV
application development by providing additional resource capacities when needed. Despite this, designing
sophisticated and efficient UAV task offloading strategies that collaborate with fog and cloud technologies
considering their service latency and energy consumption, is rarely addressed in the literature. Therefore,
a collaborative offloading strategy for UAV applications is presented in this work, leveraging fog and cloud
computing advantages and capabilities. This approach aims to minimize UAVs’ service latency and energy
consumption, as well as provide the required resources and services in real time. In addition, task offloading
decisions are formulated using the Mixed-Integer Linear Programming (MILP) model to reduce the energy
consumption of the entire UAV-fog-cloud system by optimizing the allocation of computation resources
and communication requested by each UAV. The simulation results demonstrate that the proposed strategy
can significantly reduce UAV service latency by 15.38%, 35.29%, and 59.26%, as well as decrease overall
energy consumption (including processing and networking) by 3.3%, 7.37%, and 12% when compared to
alternative standalone strategies (namely UAV, fog, and cloud).

INDEX TERMS Unmanned aerial vehicle (UAV), cloud computing, fog computing, collaborative UAVs,
energy-efficiency, task offloading.

I. INTRODUCTION
Unmanned Aerial Vehicles (UAVs) that have sensors, cam-
eras, memory, and communication devices are becoming the
most investigated emerging technologies in different fields,
such as military, civilian, and industrial applications. Also,
UAVs can play significant roles in many areas, such as
providing logistic services, controlling, monitoring, andman-
aging crowds, since they are commercially available and
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inexpensive. Moreover, UAVs can reduce operational costs
and risks, and improve work efficiency (e.g., by reducing
human interventions and reaching areas that are difficult to
access using manned vehicles) [1]. However, UAVs that per-
form heavy tasks (e.g., image analysis and video recording)
require high network traffic and produce more processing
data. This leads to the requirement for more computational
resources and communication support [2]. Also, processing
UAV data locally is a challenging task due to their limited
computing capabilities [3]. In this regard, some computing
tasks can be offloaded from theUAVs and processed remotely
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on a cloud server, or fog nodes located at the edge of the
networks [4].

Both cloud and fog computing are enabling technologies
for operating and developing UAV applications, as well as
providing additional resource capacity and network coverage
for UAVs. Even though cloud computing is capable of pro-
viding efficient computing services, there will be significant
communication delays when data is offloaded from local
UAV devices to a remote cloud and retrieved data from the
cloud to the UAVs [5]. Thus, cloud computing often fails to
satisfy the requirements of geo-distributed UAV devices and
Internet of Things (IoT) sensors in terms of latency-sensitive
applications, mobility support, and location awareness. This
results in congested networks, high service latency, and
poor Quality of Service (QoS). Therefore, a fog computing
paradigm has emerged as an intermediary layer to extend
cloud resources and services closer to UAV devices. Fog
computing supported by sufficient computing resources can
reduce service latency during the UAV offloading process [6].
However, there are some UAV tasks that cannot be performed
at fog nodes because of their limited computation resources
and storage. Therefore, cloud resources are required to exe-
cute these tasks [7].

To alleviate these constraints and obtain process-
ing and communication requirements, heavy computation
tasks and latency-sensitive tasks can be offloaded from
UAVs and slightly processed on more resourceful platforms
(i.e., fog and cloud systems). Where cloud services provide
resource-intensive, and scalable resources to meet compu-
tation demand, while fog services provide low latency for
UAV applications to satisfy the stringent delay requirement
(since fog nodes are closer to the UAVs). By combining fog
and cloud computing models, different service capabilities
can be provided (e.g., increasing processing and storage,
and decreasing service latency) while maintaining the UAV’s
resources (e.g., battery) at a healthy level. Also, the collab-
oration between UAVs can be considered in order to reduce
services’ latency and support required resources and services
in real time.

Therefore, in this work, a collaborative approach for UAV
applications is presented to minimize service latency and
support the required resources and services in real time. For
example, when one UAV requires extra resources in certain
areas, the UAVs will collaborate to provide the needed ser-
vices such as processing capabilities, low service latency,
communication, and data storage. In addition, this approach
takes advantage of fog and cloud computing capabilities
that dynamically support certain UAV applications at differ-
ent locations. Accordingly, task offloading decisions using
the Mixed-Integer Linear Programming (MILP) model are
formulated to reduce the energy consumption of the entire
proposed fog-cloud system by optimizing the allocation of
computation resources and communication requested by each
UAV. The following summarizes the main contributions to
this work:

• Develop an efficient architecture to investigate the
offloading of UAV applications and services into geo-
distributed fog-cloud environments.

• Design a collaborative UAV-Fog-Cloud strategy to effi-
ciently support the required resources for UAVs in real
time and reduce service latency.

• Optimize UAV offloading decisions over a fog-cloud
architecture, considering the power consumption of pro-
cessing and networking.

• Evaluate the efficiency and applicability of the proposed
collaborative offloading strategy, employing a simula-
tion environment and contrasting the results to other
existing strategies.

The rest of this work is organized as follows. The related
work is discussed in Section II. In Section III, a collaborative
UAV–fog–cloud system is presented along with its contact
layers. The mixed-integer linear programming (MILP) model
design is introduced in Section IV along with its input param-
eters to optimize the offloading of UAV applications into
the UAV–fog–cloud system. Section V explains the exper-
imental setup and analyses the results. The validation of
the MILP model through a heuristic approach is introduced
in Section VI. Finally, the conclusion and potential future
research directions are presented in Section VII.

II. RELATED WORK
To understand UAV-enabled fog-cloud systems from a tech-
nological perspective, it is imperative to review current
scientific achievements and their limitations related to service
latency, task offloading, and energy consumption. In this
section, an overview of these achievements is provided with
a comparison summary of closely related work, as shown in
Table 1.

A. UAV’S SERVICE LATENCY AND TASK OFFLOADING
By employing Mobile Edge Computing (MEC) servers,
UAVs act as intermediaries between ground-based users and
MEC nodes using a UAV-assisted model [8]. This model
leverages MEC storage and computing capabilities to reduce
offloaded task service times for IoT users. Accordingly,
this would help UAV task scheduling be jointly optimized.
5G mobile networks are incorporated with UAVs in [9] to
improve communication reliability and reduce end-to-end
latency. Through the use of UAVs associated with MEC,
network management has been achieved efficiently, result-
ing in lower service times and more effective offloading.
Zhou et al. [10] developed an iterative algorithm to opti-
mize task offloading, data transmission, UAV computing
capacity, UAV location, and service latency. Furthermore,
a task-offloading algorithm (iTOA) has been proposed for
UAV-enabled MEC services [11]. In their method, a deep
Monte Carlo tree algorithm is used to intelligently perceive
the network’s environment and determine on offloading deci-
sions. Compared to greedy search and game theory methods,
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TABLE 1. A comparison summary of the closely related work. TABLE 1. (Continued.) A comparison summary of the closely related work.

this method performs better than the other methods in terms
of service latency.

B. ENERGY CONSUMPTION (PROCESSING AND
NETWORKING)
To optimize task offloading and energy consumption, a UAV-
enabled MEC architecture was developed by relying on the
Markov Decision Process (MDP) [12]. In their study, UAVs
were considered as intelligent mobiles. For optimizing data
offloading based on energy consumption, a block coordi-
nate descent algorithm and successive convex approximation
techniques were presented in [13]. This technique enhanced
energy consumption and task offloading by considering a
single UAV. Due to UAVs’ limited processing capacity,
an offloading approach based on the MEC architecture has
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been introduced in [14]. In their approach, IoT devices are
used to generate data from ground-based users that is then
sent by UAVs to MEC servers located on a private network
for processing.

Using an autonomous delivery network, the energy con-
sumption of UAV-enabled MECs was analyzed in [1]. Also,
MEC-based scheduling and task-offloading methods were
specifically addressed by a computational management sys-
tem. Their integrated solution combines static task offloading
with dynamic resource scheduling. According to experi-
mental results, the system is able to handle multiple UAV
applications with less energy consumption. The GEESE sys-
tem was proposed to integrate cloudlets on multiple UAVs
in order to provide compute services at the edge of a net-
work [15]. Researchers examined the performance of their
proposed system to determine the impact of offloading com-
puting tasks on energy efficiency. Du et al. [16] presented
a UAV-based MEC model using Time Division Multiple
Access (TDMA). Based on their model, task partitioning was
optimized to reduce UAV energy consumption.

In an attempt to reduce computational complexity associ-
ated with UAV-assisted MEC, the successive convex approx-
imation and lagrangian duality method were introduced
in [17]. This approach minimizes the overall energy con-
sumption, which include (computation, communication, and
UAV energy). Furthermore, a UAV-assisted MEC system that
provides computing services to IoT devices through the use
of edge servers, is presented in [18]. This proposed system
minimizes its energy consumption by employing k-means
clustering. Also, a UAV-enabled MEC system was proposed
byHu et al. [19], employing UAVs as flyingMEC nodes. This
approachminimized energy consumption by scheduling UAV
computation resources for both UAV and ground-based users.

Moreover, an optimization method for UAV-enabled MEC
was developed in [20], which combined two layers of opti-
mization. With the help of a removal agent, a differential
evolution algorithm was proposed, and power consumption
was successfully optimized with this approach. Li et al. [21]
addressed the problem of IoT devices’ energy consumption
in UAV-enabled MEC networks. In their approach, optimiz-
ing communications and computing resource allocation have
improved energy and offloading requirements.

C. COLLABORATIVE UAVS’ TASK OFFLOADING FOR
OPTIMIZING SERVICE LATENCY AND ENERGY
CONSUMPTION
Recently, the use of UAVs as computational and communica-
tion platforms has attracted the attention of many researchers.
Some recent works support the idea of collaborative UAVs,
for example, a collaborative multi-UAV-assisted MEC sys-
tem is proposed in [22]. As part of their approach, they
studied issues related to service latency and energy mini-
mization. Also, they have optimized offloading decisions,
considering each UAV’s computation resources and commu-
nication requests. Moreover, Chen et al. [23] and Ren et al.
[24] introduced offloading methods to partially offload tasks

between a cloud server and several edge nodes for collabora-
tive execution. These methods improve service performance
and use communication and computing resources more effec-
tively. Further, Guo et al. [25] presented a delay-based
workload distribution model. It obtains workload distribution
between local edge nodes, nearby edge nodes, and cloud
servers to reduce energy consumption and task delay for
IoT-edge-cloud systems. In addition, He et al. [26] proposed
collaborative task offloading, considering energy consump-
tion and battery power. They have developed an algorithm for
collaborative task offloading to handle delay-sensitive tasks
effectively. According to Liu et al. [27] a dynamic caching
strategy was used to improve collaborative task offloading
in MEC. To effectively reduce service delays, they pro-
posed a multilayered computing strategy named Joint Task
Offloading and Service Caching (JTOSC). As shown in the
simulation results, the proposed strategy performs better in
terms of service cache rate, offloading delay, and load balance
than existing methods.

Cooperative task assignment is considered an NP-hard
problem. In previous studies, the cooperative task assign-
ment problem was formulated using mixed-integrated linear
programming (MILP) [28], which achieved an optimal
assignment solution. Rahbari et al. [2] proposed a rating
method for swarm drones based on a federated learning
strategy. The rating method continually computes drones’
offloading events, considering current properties (e.g., energy
consumption and communication latency). A novel system
for MEC has been introduced in [29]. They have presented a
genetic trajectory planning algorithm to operate IoT devices,
using multiple UAVs. Accordingly, traditional optimization
methods are used to estimate the number of UAVs and their
constructs to reduce flying distances and hence their com-
munication latency and energy consumption. Liwang et al.
[30] proposed a futures-enabled resource trading mechanism
designed to facilitate fast and efficient resource allocation
in edge computing-assisted UAV networks. The mecha-
nism leveraged futures contracts to enable proactive resource
trading between UAVs and edge computing servers. This
approach aimed to anticipate future resource demands and
efficiently allocate resources to minimize service latency,
optimize task offloading decisions, and reduce energy con-
sumption. Additionally, the authors in [31] introduced a
graph-represented approach for computation-intensive task
scheduling, leveraging the integration of air and ground vehi-
cles in vehicular network (AGVN). The solution involved
formulating the task scheduling problem as a graph-based
optimization problem, where nodes represent tasks and edges
represent communication links between UAVs and vehicles.
This approach aimed to minimize service latency and energy
consumption while ensuring efficient task offloading and col-
laboration amongUAVs. The authors in [32] proposed a novel
approach that leverages edge-assisted UAV networks for
intelligent mobile crowdsensing. They introduced task state
information sharing mechanisms to enhance task scheduling
and resource allocation, aiming to reduce service latency and
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optimize energy consumption. Also, Guo et al. [33] presented
a novel solution for optimizing task offloading and resource
allocation among multiple UAVs in advanced wireless com-
munication networks, focusing on reducing service latency,
optimizing energy consumption, and leveraging collaborative
UAV capabilities.

Based on the above review of related work, multiple
approaches have been introduced with various objectives,
such as reducing service latency, optimizing task offload-
ing, and minimizing energy consumption. Nevertheless, there
are still some challenges due to the variable dynamics of
networks and resource allocation, resulting in high service
latency and energy consumption for performing tasks on
UAVs.

It is important to note that the proposed approach shares
similarities with the works discussed in [32] and [33]
regarding their objectives. However, it offers several signif-
icant improvements compared to these approaches, listed as
follows:

• Integration of Fog and Cloud Computing: While [32]
focuses on edge-assisted UAV networks and [33]
addresses resource allocation among multiple UAVs in
wireless communication networks, the proposedmethod
integrates fog and cloud computing to overcome the
limitations of UAVs’ computing capabilities and opti-
mize task offloading strategies. This integration allows
for additional resource capacities as needed, thereby
enhancing the overall efficiency and effectiveness of
UAV applications.

• Collaborative Offloading Strategy: In contrast to the
methods described in [32] and [33], which primarily
focus on optimizing task offloading and resource allo-
cation among UAVs, the proposed method introduces
a collaborative offloading strategy leveraging fog and
cloud computing capabilities. This strategy aims to min-
imize UAVs’ service latency and energy consumption
by optimizing the allocation of computation resources
(among UAVs, fog nodes, and cloud servers) and com-
munication requested by each UAV.

• Mixed-Integer Linear Programming (MILP) Model:
While [32] and [33] use different optimization tech-
niques, the proposed method utilizes a MILP model for
task offloading decisions. This model enables the reduc-
tion of energy consumption of the entire UAV-fog-cloud
system by optimizing the allocation of computation
resources and communication, thereby enhancing over-
all system efficiency.

Motivated by these considerations, a collaborative
approach is proposed to enable smooth resource integration
between local UAV devices and services, leveraging fog and
cloud computing advantages and capabilities. Additionally,
an optimization model is presented to minimize UAV ser-
vice latency and energy consumption, considering different
traffic loads and processing requirements when placing UAV
applications in a UAV-fog-cloud architecture. It also allows

FIGURE 1. The collaborative UAV-fog-cloud architecture.

offloading heavy tasks remotely to fog and cloud nodes to
utilize their powerful services and effectively support UAV
applications.

III. THE PROPOSED SYSTEM ARCHITECTURE
As discussed in sections I and II, some UAV applications
may need to be connected to the cloud in order to benefit
from advanced services (e.g., auto-scaling resources, power-
ful processing, and data storage). However, connecting UAV
applications to the cloud may have some limitations, as the
cloud lacks support for some of the essential requirements
of UAV applications such as location awareness and mobil-
ity [29]. Also, when a task is submitted to the cloud, this may
increase service latency as well as network energy costs [2].
Hence, it is necessary to enhance task offloading strategies in
order to efficiently perform UAV applications.

In order to overcome these limitations, fog computing
enhances cloud architecture by providing distributed plat-
forms located at the edge of the network and closer to
geographically distributed UAVs [4]. It also provides mon-
itoring, processing, and communication services to support
certain UAV applications. However, since UAVs work inde-
pendently to perform their applications, there is a need to
develop a collaborative approach for UAVs to support real
time task response with low latency.

Therefore, a collaborative approach is proposed to incor-
porate three layers, namely, the UAV layer, the fog layer,
and the cloud layer, as illustrated in Fig. 1. These layers
interact with each other to efficiently support UAV offloading
decisions. In the following, each layer of the proposed system
is described:

A. UAV LAYER
This layer provides a set of collaborative UAVs, equipped
with processors, storage, and communication devices, and
working as a flying fog node. Also, these collaborative
UAVs can be allocated and reallocated to various locations
where extra resources are needed to execute different UAV
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applications and services. Therefore, instead of immediately
offloading UAV tasks to cloud or fog nodes, there are several
features that can be provided by using collaborativeUAVs [3],
for example:

• Rapid Deployment: UAVs can be quickly deployed to
support critical and urgent operations at any location
(e.g., accident detection and rescue in areas that are
difficult for humans to reach).

• Collaboration: Multiple UAVs can be allocated to
easily support and satisfy specific application require-
ments.

• Resource Elasticity: Multiple UAVs can be equipped
with different resource capabilities (e.g., a temporary
need for high processing or more storage).

B. CLOUD AND FOG LAYERS
Cloud computing is a fundamental enabler for the develop-
ment of UAV applications. It provides on-demand services
and large-scale computing resources (e.g., processing, stor-
age, and networking) to meet the requirements of UAVs.
However, cloud computing is a centralized design, which
inspired researchers to establish distributed services as a
cloud extension. Therefore, Cisco introduced the fog com-
puting paradigm in 2014 [34], which expands the usage of
cloud resources to the edge of the network (proximity to
users) to lower service latency for critical applications (e.g.,
driverless cars and UAV applications) [35]. Also, fog com-
puting is widely distributed (geographically) and can provide
networking, computing, and storage services among cloud
data centers and end devices [28].
In light of the limited computing resources of UAV devices

along with the massive amount of data generated by UAV
applications, it is suggested that tasks requiring substantial
computational resources will be performed on computing
systems that have adequate computing resources (such as fog
or cloud systems).

Hence, both cloud and fog computing are models that
deliver computational resources, where fog nodes provide
partial computing with low service latency as well as location
awareness to optimize the placement of UAV applications,
while cloud servers provide substantial computing capability
with energy-efficient processing and elastic resources [4].
These models will overcome processing capability issues
and service response time (e.g., real time analysis) of UAV
applications.

C. TELECOMMUNICATION NETWORKS
The telecommunication network can be divided into three
layers [28], including core, metro, and access network layers.

The core network, which usually refers to the Wide Area
Network (WAN), is the backbone infrastructure of a telecom-
munication network, which provides interconnection of large
areas (e.g., different cities). In addition, the core network
extensively uses the Internet Protocol (IP) via Wavelength

Division Multiplexing (WDM) for its large capacity, scala-
bility, and high bandwidth.

The metropolitan region is usually covered by a Metro
Area Network (MAN), which has a direct connection to
the WAN network. Also, the MAN network infrastructure is
operated by metro ethernet technology. This allows connec-
tivity between the WAN network and UAVs that are located
in the access network.

The access network indicates a Local Area Network (LAN)
that allows end-users to connect to the Internet from various
locations. In this work, Passive Optical Networks (PONs) are
used, and they are also recommended in the LAN network as
a leading choice [36].

IV. MILP MODEL DESIGN
The MILP model is a mathematical optimization technique
aiming to find a maximum or minimum solution subject
to linear constraints. MILP variables contain both inte-
ger and non-integer values, and the studies demonstrated
MILP is efficient in optimizing telecommunications for both
cloud and fog applications. For instance, researchers in [33]
and [34] devised models to enhance the energy efficiency
of the WAN network. Similarly, [36] concentrated on for-
mulating an energy-efficient model to optimize application
placement within cloud and fog architectures. This model
considers diverse CPU workloads along with varying down-
load rates.

This section investigates the effectiveness of offloading
UAV applications over a fog-cloud architecture using a coop-
erative approach based on the MILP optimization model.
Additionally, this approach takes into account the three
telecommunication network layers, where (LAN) is per-
formed with UAVs, (MAN) with fog nodes, and (WAN) in
the cloud.

Furthermore, the proposed system architecture is described
in terms of parameters and variables (see Tables 2 and 3).
UAV, fog, and cloud layers are included in the system archi-
tecture, as previously mentioned. In addition, a mathematical
model (MILP) is presented to optimize UAV applications’
offloading over a fog-cloud architecture, considering ser-
vice latency and energy consumption of processing and
networking.

A. UAVS, FOG, AND CLOUD LAYERS
Tables 2 and 3 describe the input parameters and variables
for UAV, fog, and cloud layers. These tables also represent
the UAV applications that will be offloaded onto fog nodes
or cloud server, along with their communication (network
traffic) and computation power consumption.

The UAV-fog-cloud system architecture consumes power
in the following ways:

1) UAV and the access network layer (UAV + Access),
shown below:(∑

s∈N
UAV(number)

s UAV(power)
)
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TABLE 2. UAV, fog, and cloud layers (computing and networking input
parameters) [37].

TABLE 2. (Continued.) UAV, fog, and cloud layers (computing and
networking input parameters) [37].

+

(∑
s∈N

GW(number)
s GW(power)

)
+ PUE(network)

(∑
s∈N

ONU(number)
s ONU(power)

)
+

(∑
s∈N

OLT(number)
s OLT(power)

)
(1)

2) Fog computing and the metro area network layer
(Fog + Metro), shown below:

PUE(fog)
(∑

s∈N
MIPS(fog)i,s PCMIPS(fog)

+

∑
s∈N

NP(fog)TUs,d

)
+ PUE(network)

((
MR(number)

s MR(power)
s

)
+

(
MS(number)

s MS(power)
s

))
(2)

3) Cloud computing and the core network layer (Cloud
+ Core), shown below:

PUE(cloud)
(∑

s∈N
MIPS(cloud)i,s PCMIPS(cloud)

+

∑
s∈N

NP(cloud)TUs,d

)
+ PUE(network)

(∑
d∈N

(power)
d

+

∑
m∈N

∑
n∈Nmm:n̸=m

∑
s∈N

∑
d∈N:s̸=d

0s,d
m,n

(power)

+

∑
m∈N

∑
n∈Nmm:n̸=m

E(power)Fm,nAm,n

+

∑
d∈N

S(power)
d

)
(3)

The power consumption of UAV (i.e., UAVs and gateway
devices), fog, and cloud layers is calculated using functions
(1, 2, and 3), considering both the processing nodes and the
internal networking (access, metro, and core networks) com-
ponents, along with the Power Usage Effectiveness (PUE)
factors (switch devices, amplifiers, transponders, and router
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ports). Access, metro, and core networks’ power consumption
is also defined in functions (1, 2, and 3), involving ONU
terminals, OLT devices, and networking PUE.

The proposed MILP model aims to minimize the power
consumption of the entire UAV-fog-cloud system. Thus,
function (4) yields the overall power consumption of the
UAV-fog-cloud architecture by summing the energy usage
across various processing and communication layers pre-
sented in functions (1 – 3) as follows:

Minimize
Power

[
(UAV+Access)+(Fog+Metro)+(Cloud+Core)

]
Subject to (s.t.) the following constraints (C1 – C12):

C1 :

∑
s,d∈N

UIi,s,d =

∑
s,d∈N

TUAV
i,s,d ∀i ∈ I

C2 :
∑

s∈N TUAV
i,s,d≥9i,d

C3 :
∑

s∈N TUAV
i,s,d≤ ω9i,d

}
∀d ∈ N, i ∈ I

C4 : Ls,d
m,n≥0

s,d
m,n

C5 : Ls,d
m,n≤0

s,d
m,n

}
∀s, d,m, n ∈ ,f

C6 : MIPS(fog)i,s = 9i,dMIPS(fog)i,s ∀d ∈ N, i ∈ I

C7 : MIPS(cloud)i,s =

∑
i∈I

MIPS(cloud)i,s ∀d ∈ N

C8 : TUs,d =

∑
i∈I

TUAV
i,s,d ∀s, d ∈ ,f

C9 : d≥

∑
s∈ TUs,d

B
∀d ∈ ,f

C10 : ONU(number)
s + OLT(number)

s

≥

∑
i∈

∑
d∈N UIi,s,d

ONU(bitrate)
+ OLT(bitrate) ∀s ∈ N

C11 : MR(number)
s +MS(number)s

≥ 2

∑
i∈

∑
d∈( ∩ ) UIi,s,d

MR(bitrate)
+ MS(bitrate) ∀s ∈ N

C12 : Ts =

∑
i∈

∑
d∈N

UIi,s,d∀d ∈ N (4)

In constraint (C1), all offloaded data from UAVs must be
handled either locally by UAV or remotely by fog nodes
or cloud server. The 9i,d is a binary variable, which is set
by the server (node d ∈ N) as 0 = OFF or 1 = ON, these
values are based on constraints (C2) and (C3), in order to
host the offloaded UAV application i ∈ I on the appropriate
node/server. The data traverses (using a physical commu-
nication link (m, n) ∈ ,f ) between nodes (s, d) ∈ ,f , are
also verified in constraints (C4) and (C5). A constraint (C6)
denotes the newly processed requests of UAV devices to
offload UAV application i ∈ I either locally to the UAV layer
or remotely to fog or cloud layers. In constraint (C7), the
number of processing requests (in either UAV, fog, or cloud
layers, where d ∈ N) is calculated. Also, constraint (C8)
describes the data traverse between the core network and the
metro network (due to UAVs placed in fog nodes and cloud
server). The number of router ports is defined in constraint
(C9) for the metro and core networks. In the access network,
the number of ONU terminals and OLT devices is consid-
ered by constraint (C10), while in the metro network, the

number of routers and switches is calculated by constraint
(C11). Finally, the total data transmission (total amount of
transferred data within the communication network) at each
node d is calculated by constraint (C12).

V. THE EXPERIMENTAL SETUP, RESULTS,
AND DISCUSSIONS
The proposed models are critically evaluated in this section
via a simulation-based experiment. Also, a brief description
of the environment setup and resources used is presented.
This is followed by a detailed discussion of the results.

A. EXPERIMENT SETUP
This section covers performance metrics for evaluating
results. To optimize energy consumption, network resource
utilization, and service latency, the proposed approach is
evaluated using a simulation environment.

Mixed Integer Linear Programming (MILP) can solve
complex optimization problems within a set of linear con-
straints, where only a limited number of variables are required
to be integers, while others can have non-integer values.
A CPLEX (IBM ILOG) optimization solver is used in the
experiment environment to solve the MILP model. A desktop
computer running Windows 10 OS has been used for the
simulation experiment. It has a 3.4 GHz Intel Core i7 CPU
and 16 GB RAM as well as 512 GB SSD storage. Fig. 2
illustrates the European national network used in this work,
which models the Euro 28 topology. It consists of (100 UAVs
in each city, 28 fog nodes covering all cities, 1 cloud server,
and 62 bidirectional links - 600 km in length). In Table 2, the
data rate andMIPS required for each UAV task are distributed
according to the heterogeneous computing capabilities of
UAVs, fog nodes, and cloud server. Furthermore, each UAV
executes different computational tasks (e.g., low, medium,
and high processing requirements), as shown in Table 4.
Based on the input parameters and variables (listed in Tables 2
and 3), simulation experiments are conducted 50 times, and
average values are calculated.

B. EXPERIMENT RESULTS AND DISCUSSIONS
This subsection evaluates the performance of the proposed
strategy (UAV-Fog-Cloud Execution) along with three differ-
ent offloading strategies:

• UAV Execution: The tasks will be processed locally
within the UAV resources or offloaded to another UAV
if the workload exceeds the UAV’s capabilities.

• Fog Execution: The tasks will be offloaded from UAV
to any appropriately connected fog nodes.

• Cloud Execution: The tasks will be offloaded from
UAV or fog nodes to a cloud server for remote process-
ing.

• UAV-Fog-Cloud Execution (Proposed Strategy): The
tasks will be handled locally for processing at the UAV
layer or offloaded remotely (to other UAVs, fog nodes,
or cloud server) based on the requested resources of the
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FIGURE 2. The European reference network topology (Euro 28 topology).

UAV applications and the hosted resource capabilities.
Using the proposed strategy, the offloading decision can
be made to minimize system overhead at the end.

In the following, the results of service latency and energy
consumption for processing different UAV tasks relative to
the above offloading strategies are discussed.

1) UAV’S SERVICE LATENCY
Fig. 3 presents the service latency versus the number of
UAVs for four different offloading strategies (mentioned in
section V, subsection B). According to the figure, the ser-
vice time for all strategies is about the same for a small
number of UAVs (e.g., under 20 UAVs). In contrast, the
delay for UAV, fog, and cloud strategies increases rapidly
with an increasing UAV count (e.g., over 20 UAVs), and
the effectiveness of the proposed strategy was superior to
UAV, fog, and cloud strategies by 15%, 30.7%, and 55%,
respectively. Due to the increase in UAVs, some fog nodes
are overloaded while others are underloaded, resulting in
poor fog strategy performance. Unlike the proposed strategy,
which can autonomously assign and execute tasks, the other
offloading strategies do not take into account the multi-level
(i.e., UAV, fog, and cloud layers) when executing tasks.

Furthermore, Fig. 4 illustrates the amount of time (service
latency) it takes to process computation tasks with differ-
ent input data sizes. In a comparison of the four strategies,
the curves indicate the amount of time and effort needed
to implement each one. According to the figure, the data
size significantly increases the overall time taken to com-
plete/deliver the service. The proposed strategy has the lowest
service latency compared to the other three strategies (i.e.,

TABLE 3. UAV, fog, and cloud layers (computing and networking
variables) [37].

UAV, fog, and cloud) by 15.38%, 35.29%, and 59.26%,
respectively. Thus, the proposed strategy can however be
adapted to execute computation tasks in the UAV layer, in the
fog layer, or in the cloud layer, depending on which location
is optimum to perform these tasks.

Fig. 5 shows the execution time of computation tasks using
fog nodes with different capabilities. This figure illustrates
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TABLE 4. The computational complexity (intensity) of different
applications [38].

FIGURE 3. Service time versus the number of UAVs.

FIGURE 4. Service time using different input data sizes.

how UAV and cloud execution strategies are not affected by
fog nodes’ capabilities, but the service time for fog execution
strategy and the proposed strategy decreases as fog nodes’
capabilities increase. Also, the proposed strategy performs
better than other strategies. To justify that, in the proposed
strategy, some UAV tasks are processed locally, while others
are offloaded to fog nodes based on the offloading deci-
sion. Thus, increasing fog nodes’ capabilities means more
resources are assigned to UAVs, resulting in shorter execution
times for the proposed strategy. In contrast, other standalone
strategies (i.e., UAVs and cloud strategies) ignore this benefit.

Finally, Fig. 6 shows the average service time of the four
strategies for each type of application (shown in Table 4 ).
The proposed strategy achieved the shortest service latency
for all types of applications, while cloud execution had the

FIGURE 5. Service time with different capabilities of fog nodes.

FIGURE 6. Service time using different applications type.

longest service latency for all types of applications. Since
cloud execution is geographically distant from its users,
it takes a long time to execute. Thus, the proposed strategy
selects the appropriate location (either in another UAV, fog,
or cloud layers) based on the requested resources of the UAV
applications.

2) ENERGY CONSUMPTION (PROCESSING AND
NETWORKING)
Fig. 7 illustrates the energy consumption of processing tasks
using the four strategies with different numbers of UAVs.
From this figure, it can be deduced that UAV numbers
increase energy consumption exponentially. With a small
number of UAVs (e.g., under 40 UAVs), there is no signif-
icant energy gap between all strategies. However, this gap is
growing with increasing numbers of UAVs, and the proposed
strategy achieves the lowest energy consumption compared
to other strategies (i.e., UAV, fog, and cloud) by 5.7%,
13.16%, and 17.5%, respectively. It also shows that cloud
and fog strategies exceed UAV strategies. Due to the fact that
UAVs in all strategies compete for limited communication
resources. These resources are used to offload computation
tasks to connected fog nodes or cloud server, where most
energy is consumed during data transmission. Nomatter what
offloading strategy is used (UAV, fog, cloud, or the pro-
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FIGURE 7. Energy consumption versus the number of UAVs.

FIGURE 8. Energy consumption using different input data sizes.

posed strategy), communication channel resources compete
between UAVs and consume more energy during offloading.
Nevertheless, the proposed approach reduces energy con-
sumption significantly compared to cloud and fog strategies.

Likewise, Fig. 8 shows the energy consumption for pro-
cessing computation tasks using the four strategies based on
different input data sizes. According to this figure, with a
small data size (less than 15 MB) almost all UAV, fog, and
cloud strategies consume the same amount of energy, while
the proposed strategy slightly outperforms them. However,
when the data size increases, UAV, fog, and cloud strategies
consume more energy than the proposed strategy by 3.3%,
7.37%, and 12%, respectively. This is due to the lengthening
of communication times and the increasing size of data,
which affects total energy consumption. Hence, by smartly
adapting the proposed strategy to handle computation tasks,
energy consumption can be reduced. In addition, it can be
determined the most energy-effective decision (the best loca-
tion to execute UAV applications).

Figure 9 presents the energy consumption of processing
UAV tasks using the four strategies relative to different fog
node numbers. This figure shows that the UAV and cloud exe-
cution strategies are not affected by the number of fog nodes,

FIGURE 9. Energy consumption with different numbers of fog nodes.

while the other strategies (fog and the proposed strategies)
continuously consume less energy when the number of fog
nodes increases. Additionally, the proposed strategy enables
lower energy consumption and better performance than the
other strategies. Due to an increase in fog nodes, UAVs are
assigned more resources (in the proposed strategy), which
leads to a decrease in energy consumption, while the cloud
strategy does not use fog nodes’ resources.

VI. THE VALIDATION OF THE MILP MODEL THROUGH A
HEURISTIC APPROACH
In this section, an alternative method is introduced to validate
the results of UAV application offloading generated by the
proposedMILPmodel. However, addressing the optimization
of UAV application offloading utilizing the MILP model
to minimize service latency and power consumption is rec-
ognized as an NP-hard problem [28]. Due to the multiple
possibilities of offloading locations (L = 29) in the scenario
considered (including 28 fog nodes covering all cities, 1 cloud
server, and 62 bidirectional links spanning 600 km), theMILP
model faces significant challenges in finding the optimal
solution within polynomial time, set as

(∑L
n=1

L!

(L−n)!

)
.

To address this issue, a sorted list of nodes across different
cities has been generated based on their weights, thereby
facilitating the selection of the optimal offloading location
for UAV applications. This approach leads to a substantial
reduction in the time required for assessing combinations
of

(∑L
n=1

L!

(L−n)!

)
, thus reducing the time complexity by a

factor of 1.5 x 1010. Here, L is designated to represent the
number of UAV applications, while n denotes the diverse
cloud server and fog node server locations. The heuristic
solution for efficient UAV application offloading within a
fog-cloud architecture is presented in Algorithm 1.

The algorithm computes the total power consumption (PC)
linked to offloading each UAV application x ∈ app within
its designated placement O⊂ R, this would be based on the
resource requirements of eachUAVapplication type. Initially,
a multi-hop heuristic approach is employed by the algorithm
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FIGURE 10. Difference between the MILP model and heuristic method.

to distribute UAV applications through the access and core
networks to target nodes d and s, thereby estimating the power
consumption of these networks. Subsequently, the algorithm
determined the best location (O′) to host UAV applications
and estimates the total power consumption (PC) of the fog-
cloud architecture.

Algorithm1Optimizing theOffloading of UAVApplications
PFS(power)

: Fog node power consumption (f ) of offloading UAV application app
into designated location O.
PCS(power)

: Cloud server power consumption (c) of offloading UAV application
app into designated location O.
Input: The sorted list of nodes (R).
Output: Optimizing the total power consumption (PC).

Optimizing the offloading decision of UAV application (O’).
1: for each (Type of UAV application x ∈ app) do
2: for each (Offloading n ⊂ v)do
3: for each (Node d ∈ s)do
4: for each (Fog/Cloud fc ∈ n)do
5: PC = (PFS(power)RdPUE(fog))(PCS(power)RsPUE(cloud))
6: end for
7: end for
8: PCapp,v =

(∑
s∈N PCapp,fc,v

)
+ LAN app,f + MAN app,c

9: end for
10: PCapp = Min {PCapp,v}
11: O’ = O
12: end for

13: Calculate PC =
∑

x∈app PCapp

Additionally, the heuristic method has been assessed using
an HP PC operatingWindows 11. The PC is equipped with an
8th Generation of Intel Core i7-12700F processor operating
at 4.60 GHz, 512GB SSD storage, and 16GB DDR4 RAM.
Employing the same European national topology (Euro
28 network) as the MILP model, the heuristic approach
produced results comparable to the MILP model within a
7-second evaluation timeframe. As depicted in Fig. 10, the
maximum difference between the heuristic method and the
MILP model in terms of total power consumption was 4.5%,
while similar savings were achieved.

VII. CONCLUSION AND FUTURE WORKS
Most computation offloading approaches for UAV applica-
tions are based on a single-level architecture. Therefore,
a collaborative UAVs approach assisted with a multi-level

fog-cloud system is presented in this work. Also, service
latency and energy consumption issues are investigated by
optimizing offloading decisions, communications, and com-
puting resource allocations over collaborative UAVs as well
as fog-cloud environments. This helped to find the optimal
location for the placement of UAV tasks for processing. Addi-
tionally, mathematical modeling is provided to demonstrate
the effectiveness of the proposed approach by comparing the
results with other existing strategies (e.g., local and remote
executions). From the results, it is clear that the proposed
strategy (UAV-Fog-Cloud execution) is capable of reducing
UAV’s service latency by (15.38%, 35.29%, and 59.26%),
and overall energy consumption of both processing and net-
working by (3.3%, 7.37%, and 12%) compared to other
standalone strategies (i.e., UAV, fog, and cloud), respectively.
A part of future work would include artificial intelligence and
machine learning methodologies such as deep learning and
reinforcement learning to handle the complexity of fog-cloud
computing systems for enhancing UAVs’ trajectories and task
offloading decisions.
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