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ABSTRACT Multimodal Sentiment Analysis (MSA) is gaining attention, but faces two main challenges:
efficient extraction of cross-modal features without redundancy and removing spurious correlations between
sentiment labels and multimodal features. In this paper, we propose a novel multimodal learning debiasing
model, named Bilateral Cross-modal Debias Multimodal sentiment analysis Model (BCD-MM), to address
these issues. Specifically, BCD-MM ultimately enhances the generalisation of the model to out-of-
distribution (OOD) situations by improving the ability of cross-modal low-redundancy feature extraction and
reducing the reliance on non-causal correlations. First, BCD-MM utilizes an attention score-based method to
preserve critical information and eliminate redundancy within modalities. It also employs a gated crossmodal
attention mechanism to filter inconsistencies through modal interaction, thereby enhancing the extraction
of cross-modal specific features. Second, BCD-MM incorporates a debiasing approach with double bias
extraction, using a Tanh-basedMeanAbsolute Error (TMAE) loss function and inverse probability weighting
to mitigate spurious correlations. Finally, extensive testing on three public datasets (MOSI, MOSEI, and
SIMS) and two OOD datasets (OOD MOSI and OOD MOSEI) demonstrates our model’s effectiveness in
both MSA and debiasing tasks.

INDEX TERMS Attention mechanisms, debiased learning, deep learning, multimodal sentiment analysis,
out-of-distribution generalization.

I. INTRODUCTION
The rise of platforms like YouTube and Instagram has led
to more expressive multimodal communication, including
voice, text, emojis, and body language. Traditional sen-
timent analysis [1], [2], [3] usually relies on only one
modality in text, speech, or facial expression, leading to
limitations such as incomplete information. Consequently,
this inability to accurately assess emotional tone, such as
sarcasm and humor, significantly limits the accuracy of the
analysis. Multimodal Sentiment Analysis (MSA) combines
these different modalities to provide a more comprehensive
understanding of sentiment [4], which is important for
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market trend analysis, personalized marketing and brand
management [5], [6], [7], [8]. In this study, we focus on
addressing two major challenges in the field of multimodal
sentiment analysis (MSA). First, the problem of inter-
modality inconsistency, for instance, how to extract and
integrate key features efficiently from different modalities
(e.g. text, sound, and video), while excluding those factors
that may lead to inconsistent or confusing information.
Second, we address the problem of non-causal links between
sentiment labels and multimodal features. This spurious
correlation may not only lead to a degradation of the model’s
generalization ability when dealing with real-world data but
also lead to a significant performance degradation when
confronted with out-of-distribution (OOD) data. At the heart
of these two challenges is ensuring that the model not only
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extracts valuable information from multiple modalities but
also effectively distinguishes and excludes misleading or
irrelevant signals, thus improving the accuracy and robustness
of multimodal sentiment analysis.

The first challenge is among the current research areas
in which less attention has been given to multimodal
feature representation learning. Previous studies [6], [7],
[8], [14], [15] tend to extract features within each modality
independently during the feature extraction process and only
consider inter-modality information sharing in the subsequent
feature fusion phase. However, this separate extraction may
lead to multiple inconsistencies, and the presence of semantic
conflicts may trigger inconsistencies in feature expression.
For example, in verbal sarcasm, there may be differences
between verbal and auditory emotional expressions. More-
over, external factors such as noise or absence in the data
can also lead to inter-modality inconsistencies. Therefore,
it is a major challenge to extract reliable features that are
complementary across modalities and remove nonessential
ambiguities to prevent such inconsistencies.

The second challenge lies in the problem of prone to
incorrect correlation matching between multimodal features
and sentiment labels. This can lead to a decrease in the
predictive accuracy of the model, especially when confronted
with out-of-distribution (OOD) data [16]. False correlation
occurs when a model incorrectly learns an association
between a specific feature (e.g. certain words in a text,
background color of a video) and a sentiment label, even
if this association does not always hold in reality [17]. For
example, as shown in the analysis of Fig.1(a), Fig.1(b), and
Fig.1(c), some words in the text modality seem to be closely
related to sentiment labels, but this may be unreliable. Also
the video and audio modals suffer from the same problem
[18]. For example, we see a smiling woman with a brown
background, which is a surface feature that can be easily
captured by the model, while words such as ‘‘like’’ appear
more frequently in the positive sample of the training set
than in the negative sample of the training set. Thus, ‘like’
and a brown background create biased, misleading links with
emotion labels, which standard MSA models fail to address
effectively. Self-MM [12] and MAG-BERT [13] models
classify neutral test samples with a brown background and
‘‘like’’ as negative samples. In fact, a brown background and
‘‘like’’ are not reliable cues for identifying negative samples.
Due to short-cut bias [19], deep neural networks can easily
adapt to this correlation to make predictions. Consequently,
this diminishes the ability to generalize in out-of-distribution
(OOD) situations. Traditional studies have used an identical
pair of robust and bias extractors for three single modal-
ities [18], thus ignoring the importance of inter-modality
complementarity for bias extraction. Therefore, improving
the out-of-distribution (OOD) generalization of MSAmodels
by minimizing multimodal pseudo-correlations presents a
significant challenge.

To address the two main challenges in MSA, we pro-
pose an integrated innovative analysis model, the Bilateral

Cross-Modal Debias Multimodal Sentiment Analysis model
(BCD-MM), featuring distinct modules for specific chal-
lenges. First, we introduce the Top Attention Extractor (TAE)
module and the Bimodal Cross Attention Gate Interaction
(BCAG) module to address inter-modality inconsistency.
The TAE module efficiently filters key information and
eliminates invalid ambiguities based on attention scores.
The BCAG module, which we have improved based on the
work of Sun et al. [20]. It is based on the Transformer
architecture and adopts a unique gating mechanism for
effective inter-modality interaction, and its parallel struc-
ture is designed to simultaneously extract inter-modality
complementary features and filter out invalid information,
thus enhancing inter-modality coherence. Second, to cope
with the problem of miscorrelation matching, we design
the Dual Unbiased Extract Robust Debiasing (DUERD)
module, which employs an inverse probability weighting
(IPW) method to assign fewer training weights to biased
samples. Then, the strategy employs a robust feature extractor
and integrates it with a dual bias extraction approach,
which combines a traditional bias feature extractor with our
newly proposed cross-modal bias extractor. This method
aims to effectively remove biases from multimodal sentiment
analysis models. Finally, inspired by Sun et al. [18],
we adopted a tanh-based mean absolute error (TMAE) loss
function, aiding in distinguishing significant from minor
errors and enhancing model performance, particularly in
addressing spurious correlations. Furthermore, to counteract
the impact of learned false correlations, especially in out-
of-distribution (OOD) scenarios, we extensively tested our
model using the OODMOSI and OODMOSEI datasets from
Sun et al. [16], confirming its strong debiasing effectiveness.
In addition, we verify that our model is still competitive on
the IID dataset. To summarize, this research has made four
main contributions.
• We introduce an innovative module to minimize super-
fluous details within modalities, maintaining crucial
features and boosting the model’s accuracy in managing
complex multimodal data.

• We employ a Transformer-based parallel structure
enhancing inter-modality interactions and model’s
capacity to learn integrated sentiment. This mechanism
effectively filters out inconsistent subsequences by
adaptively regulating inter-modality interactions.

• We crafted a new debiasing model to a pre-
cisely identify unusual features and bolster model
robustness. We designed two sets of bias extrac-
tors and one robust extractor for each modality,
exploited the intra-modality diversity and inter-
modality complementary information, and combined
the TMAE loss function and IPW-enhanced training
method to effectively boost the model’s generalization
capabilities.

• We perform comprehensive tests on three IID datasets
(MOSI [9], MOSEI [10], and SIMS [11]) and two OOD
datasets [16](OOD MOSI, OOD MOSEI). The results
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FIGURE 1. MOSEI [9], MOSI [10], and SIMS [11] training samples, the distributions of the top 5 most common words in MOSEI, MOSI, and SIMS,
as well as the predictions of Self-MM [12], the MAG-BERT [13] model, and ours for the test samples.

highlight the exceptional generalizability and debiasing
capabilities of BCD-MM.

The rest of this paper is organized as follows. Section II
reviews the related work, and Section III presents a detailed
description of the proposed BCD-MM method. Section IV
provides the experimental details. Section V provides the
results and analysis. Finally, section VI provides the conclu-
sion.

II. RELATED WORK
This study aims to categorize sentiment propensities across
text, audio, and video modalities. It centers on performing
inter-modality interactions and learning to counter biased
correlations between multimodal features and sentiment
labels. In this section, we delve into multimodal sentiment
analysis, Transformer-based multimodal interaction, and
debiased learning. In addition, we focus on the innovation of
our work.

A. MULTIMODAL SENTIMENT ANALYSIS
MSA extends traditional text-based sentiment analysis to
speech and visual features, aiming to determine the overall
sentiment in a discourse. Research in MSA has mainly
focused on representation learning and multimodal fusion.
In representation learning, approaches include: 1) Using
multivariate Gaussian distributions with KL divergence

for temporal distribution similarity [20]. 2) Developing
shared subspace learning models that map modalities to
both modality-invariant and modality-specific representa-
tions [21]. 3) Employing self-supervised models for single-
peak labels and multitask training [12]. Regarding multi-
modal fusion, researchers have applied two strategies based
on the fusion stage: 1) Early fusion. Zadeh et al. [8] designed
a memory fusion network for cross-view interactions.
Tsai et al. [15] proposed a cross-modal Transformer that
enhances the target modality through cross-modal attention.
2) Late fusion. Zadeh et al. [6] applied a tensor fusion
network by computing the outer product between single-peak
representations to obtain a tensor representation. Liu et al.
[7] proposed a low-rank multimodal fusion method designed
to lower the computational complexity of tensor-based
approaches.

Despite the great success of existing studies, they might
ignore inter-modality inconsistencies and spurious correla-
tions between sentiment labels. Our study introduces an
innovative module to promote model consistency, mitigate
intra-modality redundancy, and retain critical information.
Specifically, focus is placed on debiased learning to address
the common problem of spurious correlations in sentiment
analysis. In summary, we propose a robust debiasing model
BCD-MM based on double bias extraction with cross-modal
attention mechanisms.
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B. TRANSFORMER-BASED MULTIMODAL INTERACTION
The widespread adoption of Transformer networks [22] in
natural language processing and computer vision has led
researchers to utilize specific self-attention mechanisms for
exploring correlations between different modalities [23],
[24]. This Transformer-based self-attention mechanism, par-
ticularly when employing queries (Q) and keys (K ), is adept
at processing multimodal data and capturing extensive global
information. In multimodal scenarios, most Transformer-
based methods [24] employ dual modalities (Q and K ) to
create a shared attention graph for exchanging information,
a technique termed intermodal attention. For instance,
Han et al. [25] implemented a symmetric inter-modality
attention structure in their work to equilibrate information
across various modalities. However, traditional Transformer
networks have certain limitations in dealing with data
containing multiple modalities, especially in calculating the
inter-modality correlations between different modalities. For
example, the cross-attention mechanism using Q and K
modalities can usually only compute the correlation between
two modalities, which is insufficient when dealing with
video data containing multiple modalities. As a result, many
studies consider text to be the primary modality [23], [24],
[25] and employ other modalities to augment linguistic
information.

To address these challenges, our research presents a novel
three-branch parallel model to enhance inter-modal data
transfer. Each branch enhances an inter-modality attention
module for deeper multimodal relationship analysis. This
approach overcome the limitations of traditional models in
multimodal processing and enables more in-depth informa-
tion exchange and analysis.

C. DEBIASED LEARNING
Debiasing learning methods are categorized into three main
approaches [26], each targeting different stages of the model
development process. 1) Preprocessing debiasing [27], [28]
focuses on correcting bias and imbalance before model
training through data distribution adjustments or transforma-
tions. 2) Debiasing during training [29], [30], [31] address
biases during the model training phase by incorporating
fairness metrics into the optimization process to balance
accuracy and fairness. 3) Postprocessing debiasing [32], [33]
involves applying adjustments after training to strengthen the
fairness of model predictions for protected variables and their
subgroups.

Despite the great success of existing research, however,
multimodal data still have complex biases that are difficult
to identify. For this reason, the second class is resorted to
for performing debiasing during training. By customizing
novel dual bias extractors and robust extractors for each
modality, combined with the proposed TMAE loss function
and IPW-enhanced training method, our model obviously
develops the generalizability to OOD data, further validating
the debiasing ability of the model.

III. METHODOLOGY
In this study, we treat multimodal sentiment analysis (MSA)
as a regression task, described in Fig.2, comprising threemain
components: 1) Multimodal Feature Representation Module:
This module utilizes a robust feature extractor ERT (m) along
with double bias extractors (traditional EBT (m) and a new
cross-modal EBC (m)) for each of the three modalities, aiming
to enhance both the robust and biased features.Therefore,
this section is divided into two subsections: the Traditional
Biased/Robust Feature Encoder and the Cross-modal bias
extractor. 2) Fusion Module: The module fuses cross-modal
biased features with robust features through simple splicing.
3) Debiased Optimization Module: Utilizes TMAE loss for
bias extractor training and employs an Inverse Probability
Weighting (IPW) augmented Mean Absolute Error (MAE)
loss for the robust extractor. This approach calculates
the absolute differences between multimodal bias feature
predictions and sentiment labels, using these values to
estimate bias weights for each sample. IPW is applied to
adjust sample weights according to their bias, minimizing
the impact of biased samples and fostering debiased learning.
Each module is elaborated further in the sections that follow.

A. TRADITIONAL BIASED/ROBUST FEATURE ENCODER
1) TEXT ROBUST BIAS EXTRACTOR
Our approach adopts a traditional multimodal feature extrac-
tion method. For the text module, a pretrained 12-layer
BERT model is utilized to derive sentence representations.
Consistent with previous studies [12], the first word vector
from the last layer is selected to represent the entire sentence.
Subsequently, a linear layer maps these features into a
lower-dimensional semantic space. Then, the original text ‘t’
is processed by the robust text extractor and biased extractor
to obtain the robust potential text vector FRt and the biased
potential text vector FBt . The comprehensive structure of
these text extractors is outlined as follows:

Fγt = EγT (t) = ReLU (W γ
t
(
BERT γt (t)

)
+ bγt ), (1)

where RuLU is the ReLU activation function [34], γ ∈
{R,B}, Fγt ∈ Rdst , Wγ

t ∈ Rdst×dt , bγt ∈ Rdst , dst , and
dt denote the text potential vector and the output of BERT,
respectively.

2) AUDIO AND VIDEO MODAL ROBUST BIAS EXTRACTOR
In the video and audio modalities, we adopt the method
of Yu et al. [12], with ‘a’ and ‘v’ indicating the extracted
audio and video features, respective. Unidirectional long
short-term memory (sLSTM) is manipulated to capture
temporal features, following previous studies [6], [12], and
the final state vector of sLSTM is chosen as the entire
modality representation as follows:

Fγa = EγT (a) = ReLU (W γ
a
(
sLSTMγ

a (a)
)
+ bγa ), (2)

Fγv = EγT (v) = ReLU (W γ
v
(
sLSTMγ

v (v)
)
+ bγv ), (3)
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FIGURE 2. The overall structure of our proposed model. It includes multimodal feature representation, fusion and debiased optimization. F C
t , F C

a , F C
v are

the cross-modal biased feature output by the Inter-modality Biased Encoder. F B
t , F B

a , and F B
v are traditional bias features that have been output by Biased

Feature Encoder, F R
t , F R

a , and F R
v are robust features that have been output by Robust Feature Encoder, F C

f , F R
f , are multimodal features fused by a simple

splicing of cross-modal bias features and robust features, respectively. ⊕ represents Element wise addition, PE stands for Positional Encoding. Finally, Y
is the human multimodal annotation, Ŷ is the predicted emotional output.

where γ ∈ {R,B}, Fγa ∈ Rdsa , Fγv ∈ Rdsv , Wγ
a ∈ Rdsa×da ,

Wγ
v ∈ Rdsv×dv , bγa ∈ Rdsa , bγv ∈ Rdsv , dsa, da and dsv, dv

denote the potential vector and output dimensions of the audio
and video passing through the sLSTM, respectively.

B. CROSS-MODAL BIAS EXTRACTOR
1) INTRA-MODALITY BIASED ENCODER
In the text module, a traditional robust bias extraction method
is used to select the first word vector from the last layer of
the BERT output to represent the entire sentence. To ensure
that each element in the input sequence adequately captures
its neighboring elements, convolution is very effective in
analyzing the relationships between sequentially adjacent
feature components and integrating global information.
Therefore, the sequence is passed through a one-dimensional
temporal convolutional layer as follows:

Ft = ReLU
(
BN

(
Conv1D((BERT (t), kt )

))
, (4)

where Ft ∈ Rdst×dt , BN is batch normalized to make
predictions more stable [35], Conv1D is the temporal
convolution and kt is the size of the convolution kernel for
the text modality.

In the audio and video modalities, previous studies
have suggested that conventional LSTM may lose key
features in extended sequences [36], thus compromising its

effectiveness in specific applications. Especially in extracting
bias, part of the lost information may be bias information,
leading to a degradation of the debiasing performance.
Therefore, positional embedding [22] is first introduced to
augment the sequences, and intra-modality Transformers
are introduced to model the intra-modality interactions of
audio and video sequences. Subsequently, we employ the
Transformer encoder, which uses the features that have
undergone positional embedding as the query, key, and
value for the extracted features FTm ∈ Rdsm×dm . Finally,
the inter-modality features are extracted from the various
encoders using the temporal convolution operation algorithm
as follows:

F∗m = EBC (m) = ReLU
(
BN

(
Conv1D(FTm , km)

))
, (5)

where, m ∈ {a, v}, F∗m ∈ Rdsm×dm , and km is the size of the
convolution kernel of audio and video modality.

2) TOP ATTENTION EXTRACTOR (TAE) MODULE
To retain the key information while removing the redundant
information within the modality, and at the same time
provide dimensionally consistent features for the subsequent
cross-modal attention mechanism to ensure seamless integra-
tion and interaction between the modalities, the features from
both modalities are mapped into a new feature space, so we
design the TAE (Top Attention Extractor) module, as shown
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in Algorithm 1.The algorithm is described in detail as shown
below.

Algorithm 1 Top Attention Extractor
Input: m-modal redundant features F∗

m, Top dimensions K
Output: Key features of Top K dimensions Fm
1: for Fm in {a, v} do
2: attn_scoresm← Calculate F∗

m using Eqn.(6)
3: attn_weightsm ← Allocation based on attn_scoresm

using Eqn.(7)
4: for i = 1 to K do
5: iK ← top K indices from attn_weightm
6: vK ← iK value corresponding to attn_weightm
7: end for
8: vK ← Quicksort(vK )
9: iK ← Update based on the position of vK
10: Fm← Elements in F∗

m indexed by iK
11: end for

First, the F∗m linear projection of m modes, containing
redundant information, is mapped into a tensor as follows:

attn_scoresm = squeeze(WmF∗m + bm), (6)

where, F∗m ∈ Rdsm×dm , Wm ∈ R1×dsm , bm ∈ Rdm ,
attn_scoresm ∈ Rdm , squeeze() denote the squeezing
operation, i.e. removing dimensions of size 1 from the tensor,
which is as follows:

attn_weightsm = Softmax(attn_scoresm), (7)

where, attn_weigthsm ∈ Rdm , and Softmax is the Softmax
activation function. Then, based on the calculated attention
weights attn_weightsm, we select the top K important
dimensions for indexing and value correspondence. After
that, we apply the quicksort algorithm to sort and update
the indices of these top K important dimensions, thereby
extracting the key features of the m modality Fm.
Finally, after the TAE module, the a, v features contain

the key information Fm ∈ Rdk×dm . Here, dk is a preserved
K-dimensional feature. To simplify the model’s complexity
and streamline the operations of subsequent modules, dk was
chosen with the same dimensions as the textual latent vector
as dst .

3) BIMODAL CROSS ATTENTION GATE INTERACTION
(BCAG) MODULE
To effectively extract useful inter-modality complementary
features and eliminate invalid ambiguities, thus preventing
inter-modality inconsistencies, the BCAGmodule was devel-
oped, as depicted in Fig.3 built upon the Transformer Encoder
framework [22], BCAG features two parallel inter-modalty
attention streams, and our gating mechanism is inspired by
Sun et al. [20] and decomposing bilinear pools [37] (FBP),
which is designed to generate temporal gating signals.

Taking the Fm1m2 side of the BCAGmodule as an example,
the query Qm1 of the m1 modality feature Fm1, the key

Km2 and the value Vm2 of the m2 modality feature Fm2 are
mapped to different tensors using separate linear projections,
in addition to Qm1, Km2 to generate time-gated signals as
follows:

Qm1 = Fm1WQ,

Km2 = Fm2WK ,

Vm2 = Fm2WV ,

Q′m1
= Qm1W

′
Q,

K ′m2
= Km2W

′
K , (8)

where, Fm1 ∈ Rdk×dm1 , Fm2 ∈ Rdk×dm2 , Qm1 ∈

Rdk×dkm1 ,Km2 ∈ Rdk×dkm2 , Vm2 ∈ Rdk×dvm2 , Q′m1
∈ Rdk×dg ,

K ′m2
∈ Rdk×dg ,WQ ∈ Rdm1×dkm1 , WK ∈ Rdm2×dkm2 ,

WV ∈ Rdm2×dvm2 ,WQ′ ∈ Rdkm1×dg , W ′K ∈ Rdkm2×dg , dkm1 ,
dkm2 , and dvm2 are the hidden dimensions of the modality
m1,m2 ∈ {t, a, v}, and dg is the hidden dimension of the FBP
calculation. Then, the stream aiming to augment modality
m1 by modality m2 inputs Qm1, Km2, Vm2 to Cross-Modal
Attention (CMA) and performs the cross-attention operation
to produce the interaction feature Am2→m1 as follows:

Am2→m1 = CMA(Qm1 ,Km2 ,Vm2 )

= softmax(
Qm1K

⊺
m2√

dkm1

)Vm2

= softmax(
Fm1WQW

⊺
KF

⊺
m2√

dkm1

)Fm2WV (9)

FIGURE 3. Overview structure of the bimodal cross attention gate
interaction (BCAG).

Moreover, the gating mechanism utilizes Q′m1
and K ′m2

as
inputs to generate gating signals to control the interaction.
The formula can be expressed as:

Fmpm1,m2
= MaxPool(Q′m1

⊕ K ′m2
, p)

Fnormm1,m2
=

Fmpm1,m2

∥ Fmpm1,m2 ∥2
,
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Sg1 = Fnormm1,m2
Wnorm + bnorm, (10)

where, Fmpm1,m2 ,F
norm
m1,m2 ∈ Rdk×

2dg
p , Sg1 ∈ Rdk , Wnorm ∈

R
2dg
p ×1, bnorm ∈ Rdk , ⊕ represents element-by-element

summation, and MaxPool(, p) denotes maximal pooling
with a pooling window of size p. In summary, the gating
mechanism we construct is able to adaptively determine the
modality strength of the association betweenm1 andm2 while
filtering out irrelevant timestamps. Filtering is performed at
the time level through gating signals, enabling finer, more
precise inter-modality interactions as follows:

Fm1m2 = (Sign(Sg1)Am2→m1 )WA ⊕ Qm1, (11)

where, Sign is the sign function that produces 0 or 1.
Therefore, the modality m2 augmented modality m1 is
generated, using the same process in the other stream to
generate Fm2m1 .

After three pairs of BCAG modules, there are a total of
six outputs (Fta ,Fat ), (Fav , Fva ), and (Fvt , Ftv ). To compute
the enhanced multimodal representation, drawing inspiration
from Sun et al. [20], the mean value of each modality’s
outputs is calculated to derive its representative description
as follows:

FCt = EBC (t) =
1
2

(
Fta + Ftv

)
,

FCa = EBC (a) =
1
2

(
Fat + Fav

)
,

FCv = EBC (v) =
1
2

(
Fva + Fvt

)
, (12)

where, by means of the EBC (m), features that are comple-
mentary between modalities are extracted while filtering out
invalid ambiguities to avoid inconsistent modality features
FCm , m ∈ {t, a, v}, they perceive all the information involving
the modality.

To make the cross-modal feature FCm consistent with the
conventional robust, biased feature (Eqs.(1)(2)(3)), averaging
is applied to compress the first-dimensional dimension as
follows:

FCm =
1
N

N∑
i=1

FCm [i, :], (13)

where, FCm ∈ Rdk , dk denotes the dimension of the potential
vector.

C. FUSION MODULE
To reduce the complexity of the model, a complex fusion
network is employed, generating multimodal embeddings
from the ERT (m) and EBC (m) outputs, which may introduce
redundancy and potentially ignore discriminative unimodal
information [38]. Therefore, we chose the same fusion
approach as in previous studies [12], [15], [38] using simple
concatenation to fuse the multimodal features in the features
extracted by the robust extractor ERT (m) as follows:

FRf = ERT (f ) = [FRt ;F
R
a ;F

R
v ], (14)

where, FRf ∈ Rdf , df = dst + dsa + dsv. In the features of the
output of EBC (m), The F

C
m features obtained after compressing

the first dimension using the mean are concatenated to obtain
the fused cross-modal deviation feature as follow:

FCf = EBC (f ) = WC
f [FCt ;F

C
a ;F

C
v ], (15)

where, Fcf ∈ Rdf , WC
f ∈ Rdf×3dk .

D. DEBIASED OPTIMIZATION MODULE
To perform the debiasing operation accurately, we need to
extract high-quality biased features. The TMAE loss, which
is a loss function for debiasing optimization that amplifies
the model’s learning of biased features and advances
sensitivity to outliers, is proposed. In the multimodal task,
the Uni-modal Dual Unbiased Extraction Robust Removal
Module (Uni-modal DUERD) and Fusion Dual Unbiased
Extraction Robust Removal Module (Fusion DUERD) are
used to further enhance the debiasing effect, and the
TMAE loss is applied to the single-modality and fusion
features, respectively, to achieve effective learning of bias
and debiasing optimization. High-quality bias features are
employed to assess the bias in each modality and calculate
the bias weights for the samples.

1) TMAE LOSS
It is well known that in the early stages of training, models
tend to be more inclined to learn features that are biased and
simple rather than more complex and robust features [39].
By using Generalized Cross Entropy (GCE) loss, researchers
can more effectively construct models that focus on these
biased features to train biased models. However, GCE is
considered more applicable to classification tasks, while
MSA is viewed as a regression task. Inspired by [16], [18],
and [40], the mean absolute error (MAE) is less sensitive to
outliers. This is because it does not square the error as MSE
does, so the error growth is not as sharp for large errors.
This makes the MAE particularly useful in datasets where
outliers are present. However, using only theMAE to give the
same weight to all sizes of errors means that large and small
errors are not distinguished in terms of their impact on model
performance. Since the tanh function has a larger slope as the
input approaches zero, adding tanh to the loss function can
increase the sensitivity of the model to smaller errors. Hence,
the TMAE loss is applied to encourage biased extractors to
acquire high-quality biased features and amplify the bias. The
TMAE loss is defined as follows:

LmTMAE = tanh
((

1
|Yi − ŷi|

)q)
|Yi − ŷi|, (16)

where | | indicates the absolute value, Yi denotes the real label,
and ŷi denotes the sentiment prediction in m ∈ {t, a, v} for
three single modalities.

2) UNI-MODAL DUERD
The traditional bias extractor EBT (m) and cross-modal bias
extractor EBC (m) are trained to amplify the ‘‘bias’’ through
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TMAE loss so that the biased model excels at making
predictions using biased features. To achieve effective
debiasing, a Uni-modal DUERD is introduced. This module
employs a dual bias extractor to better capture potential biases
present in different modalities (text, audio, video), thereby
facilitating within-modality debiasing learning.

The EBT (m) output (F
B
t , F

B
a , F

B
v ) from Eqs.(1)(2)(3) and the

EBC (m) output (F
C
t , F

C
a , F

C
v ) from Eqn.(13) are combined into

a modality pair: (FCt , F
B
t ), (F

C
a , F

B
a ), and (FCv , F

B
v ), which

is then inputted into the Uni-modal DUERD. The designed
Uni-modal DUERD is specified as follows.

In our model, a multimodal loss function LβMAEm is
employed to simultaneously account for the consistency of
textual, audio, and visual modality bias information. The
performance for each modality result is evaluated by the
corresponding MAE loss as follows:

LβMAEm = |Yi − F
β
m|, (17)

where, β ∈ {C,B},Yi denotes the real label, and F
β
m ∈ Rdsm .

These loss values reflect the accuracy of the model’s label
predictions for each individual modality.

The average errors from the robust and deviation extractors
are summed, which can be expressed as follows:

LmMAE = L
C
MAEm + L

B
MAEm , (18)

Subsequently, to amplify the bias, the modality pairs are
also input into theLβTMAEm loss function separately as follows:

LβTMAEm = tan h

((
1

| Yi − F
β
m |

)q)
| Yi − Fβm |, (19)

Finally, the final loss function for this module can be
expressed as follows:

LmTMAE = λm1 L
C
TMAEm + λm2 L

B
TMAEm , (20)

where,λm1 , λ
m
2 were adjusted to weight the TMAE to balance

the difference between the conventional bias extractor and the
cross-modal attention bias extractor.

3) FUSION DUERD
Given the significant advantages of multimodal features in
sentiment analysis tasks, an innovative fusion debiasing mod-
ule for dual unbiased extraction, named ‘‘Fusion DUERD’’,
is designed and implemented to process and optimize fused
multimodal features. The core objective of Fusion DUERD
is to enhance the generalization ability of the model to the
fused features while effectively removing potential biases
from these fused features. First, similar to the Uni-modal
DUERDmodule, the fused robust and biased features FRf and
FCf are evaluated and input to theMAE loss, respectively. The
details are as follows:

LαMAE = |Yi − F
α
f |, (21)

where α ∈ {R,C}, Fαf ∈ Rdf

Subsequently, to amplify the bias of the fused features, the
fused biased features FCf are also input into the LTMAEf loss
function as follows:

LfTMAE = tanh

((
1

| Yi − FCf |

)q)
| Yi − FCf |, (22)

Then, in order to efficiently measure the bias of each
sample, we apply the MAE strategy to each fusion pattern by
taking the minimum of the outputs of {LtMAE ,L

a
MAE ,L

v
MAE }

in Eqn.18 and LCMAE in Eqn.21 and taking the reciprocal of
them to compute the bias weights. The details are as follows:

ψmin(Yi,FRf ) =
1

min(LtMAE ,L
a
MAE ,L

v
MAE ,L

C
MAE )

, (23)

where ψmin() signifies the function for estimating a sample’s
bias weight, the larger the bias weight is, the more significant
the sample’s bias. This approach is applied to determine the
modality with the highest bias, reflecting the overall bias of
the sample.

To learn more robust features in the face of biased
data containing spurious correlations, IPW is employed to
enhance the mean square error loss. The core idea of IPW is
to assign smaller weights to samples with larger biases during
training so that the feature extractor focuses more on robust
features of unbiased samples. This approach improves the
model’s ability to generalize over diverse data. Therefore, our
loss function employs the MAE loss combined with inverse
probability weighting. The details are as follows:

LfIPW = L
R
MAE

1

ψmin
(
Yi,FRf

) , (24)

If sample m ∈ {t, a, v} shows a greater likelihood of
association with its biased features, the loss needs to be
reduced to discourage reliance on such biased samples.

Consequently, the final loss function for this module is
formulated as follows:

Lf = LfIPW + λf LfTMAE , (25)

4) DIVERSIFICATION OF SAMPLES THROUGH SWAPPING
Previous studies have argued that sample diversity is critical
for robust and biased feature unraveling [18]. We follow
the idea [18] that to facilitate robust and biased feature
unraveling of fused features, features are exchanged by
targeting the robust extractor ERT (m) and the cross-modal
bias extractor EBC (m), which were initially solved. First, the
feature outputs from ERT (m) and E

B
C (m) are fused to obtain

FRf (from Eqn.(14)) and FCf (from Eqn.(15)), respectively.
And an exchange batch Se is set up. Second, when the
set Se is reached, the deviation vectors F̂cf are randomly
selected to replace each of the original deviation vectors FCf
to create different combinations of samples. Subsequently,
the robust features FRf are connected with the corresponding
bias potential vectors FCf , and the robust features F

R
f are also

connected with a randomly selected bias potential vector FCf .
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Finally, both connected vectors are inputted to a pair of biased
and robust linear layers. The details are as follows:

Fof = ReLU (WO
k [F

R
f ;F

C
f ]+ b

O
k ),

F̂Of = ReLU (ŴO
k [F

R
f ; F̂

C
f ]+ b̂

O
k ), (26)

where, WO
k , Ŵ

O
k ∈ Rdf×2df , bOk , b̂

O
k ∈ Rdf , FOf , F̂

O
f ∈ Rdf

represent the latent vectors combining both robust latent
vectors and biased latent vectors, with and without swapping.
By this swapping, additional latent vectors F̂Of are generated,
which share the same robust potential vectors but differ in
bias potential vectors compared to FOf . This method yields a
broader range of samples featuring diverse combinations of
robust and bias features.

Consistent with Section III-D3, the bias and robust
connection vectors FOf F̂Of obtained for the exchange are
evaluated by being inputted to the MAE loss, to obtain
LOMAE and L̂OMAE , respectively. The biased connection feature
F̂Of is input to the TAME loss function to obtain L̂fTMAE .
Meanwhile, the MAE loss for the swapped samples was
also computed, combined with inverse probability weighting,
to obtain L̂flPW . Then, the final loss function for that module
can be expressed as follows:

L̂f = L̂flPW + λ̂f L̂fTMAE , (27)

E. OPTIMIZATION OBJECTIVES
Finally, the MAE loss was augmented with the TMAE and
IPW methods as the underlying optimization objective. The
details are as follows:

L = LtTMAE + L
a
TMAE + L

ν
TMAE + L

f
+ λsL̂f , (28)

where λs is a coefficient before the loss of exchange. If the
batch does not reach the exchange batch Se, we set λs = 0.
If Se is reached, λs = 1.

IV. EXPERIMENTS
In this section, we describe the experiments that validate
the effectiveness of our approach, covering implementation,
datasets, and baseline methods, to validate our approach.

A. DATASETS
Drawing on previous research [16], we evaluate the perfor-
mance of our model using three public multimodal sentiment
analysis datasets that serve as independent and identically
distributed (IID) datasets. They are MOSI [9], MOSEI [10],
and SIMS [11]. A brief overview of these datasets is provided
in Table 1. In addition, we used the out-of-distribution (OOD)
test sets developed by Sun et al. [16] based on the MOSI and
MOSEI datasets to evaluate the debiasing ability of BCD-
MM.

1) IID DATASETS
To ensure a fair comparison of our model’s performance with
prior research, we utilized the same IID dataset as employed
in previous studies [6], [8], [12], [15], specifically relying on
the publicly available dataset as follows:

• MOSI. CMU-MOSI was created by Zadeh et al. [9]
and contains 93 vlog-taggedYouTube videos. It includes
89 speakers (41 female, 48 male) and is notable as
the first dataset for multimodal sentiment analysis,
providing annotations for subjectivity and sentiment
intensity on a scale of -3 (strongly negative) to 3
(strongly positive).

• MOSEI. CMU-MOSEIwas created by Zadeh et al. [10],
a prominent resource in sentiment analysis and emotion
recognition for online videos that encompasses over
65 hours of video from more than 1000 speakers
across 250 topics. It features 23,453 sentences from
3,228 videos, each with phoneme-level transcriptions
synchronizedwith the audio. This dataset predominantly
includes product and service reviews (16.2%), debates
(2.9%), and advice (2.9%), and each video is assigned a
sentiment score ranging from -3 to 3.

• SIMS. CH-SIMS was created by Yu et al. [11] and
offers a comprehensive resource for both unimodal and
multimodal sentiment analysis in Chinese. It includes
2,281 finely detailed video clips extracted from 60 orig-
inal videos. Each clip in this dataset was meticulously
annotated by human reviewers with sentiment scores
ranging from -1 for strongly negative emotions to 1 for
strongly positive emotions.

TABLE 1. Dataset statistics for the MOSI, MOSEI, and SIMS.

2) OOD DATASETS
To verify whether the model removes spurious correlations
during training, and if it is able to remove bias, then it
may perform well in the presence of OOD data. Therefore,
we used the provided OOD datasets of Sun et al. [16], who
partitioned the MOSI, MOSEI dataset into four parts, which
include IID training, IID validation, IID testing, and OOD
test set. For dataset segmentation, they applied a simulated
annealing algorithm for each dataset (MOSI, MOSEI). The
modified simulated annealing algorithm operates until the
distributional difference of words across various sentiment
categories between the IID and OOD sets approximates the
pre-set distributional difference φ1. This process involves
800 iterations. The temperature parameter of the algorithm
is initially 0.5, with a decay rate of 0.99. Consequently, the
OOD test set, sourced from MOSI, comprises 12 videos.
To align the OOD and IID test sets in terms of size,
12 videos are randomly chosen from the IID set as its test
set, with the remainder split into two, namely, 59 videos
(85%) for IID training and 10 videos (15%) for IID validation.
Correspondingly, there are 1830 videos in theMOSEI dataset
for IID training, 324 for IID validation, 330 for IID testing,
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and 330 for the OOD test set. After the above processing of
the dataset, the distribution of the IID dataset is significantly
different from that of the OOD dataset. Therefore, by using
this dataset for experiments, the debiasing ability of themodel
can be further demonstrated.

B. BASELINE
To comprehensively assess the performance of BCD-MM,
we conducted a fair comparative analysis against various
baseline and cutting-edge models in multimodal sentiment
analysis.
• TFN. Tensor fusion network [6], utilizes multidimen-
sional tensors, derived from outer products, to effec-
tively capture interactions across unimodal, bimodal,
and trimodal modalities.

• LMF. Low-rank multimodal fusion [24], is an adap-
tation of the TFN approach. It incorporates low-rank
multimodal tensor fusionmethods to enhance efficiency.

• MFN. Memory Fusion Network [8] is a network that
continuously models both view-specific and cross-view
interactions. It efficiently summarizes these interactions
over time through the employ of multi-view gated
memory system.

• MulT. Multimodal Transformer [15] is designed to
enhance the multimodal Transformer model. It achieves
this by employing directed pairwise cross-modal atten-
tion mechanisms, enabling the transformation of infor-
mation from one modality to another.

• MISA. Modal Invariant and Specific Representa-
tion [21] is adept at learning both modality invariance
and modality-specific features. It utilizes a blend of
losses including distributional similarity, orthogonality,
reconstruction, and task prediction to achieve this
nuanced understanding.

• MAG-BERT. Bert Multimodal Adaptation Gate [13],
which represents an enhancement of the RAVEN model
on aligned data. It achieves this by implementing
multimodal adaptation gates at various layers within the
BERT backbone structure.

• Self-MM. Self-MMmodel introduces a label generation
strategy based on a self-supervised approach [12],
specifically focusing on generating single-peak labels.
Furthermore, it incorporates a novel weight self-
adjustment strategy to balance various task loss con-
straints.

• BBFN. This model effectively controls inter-modality
correlation through a bimodal fusion network and a
gating mechanism [25].

• CubeMLP. CubeMLP is an MLP-based modal [41] for
sentiment analysis that effectively blends multimodal
features.

• DEAN. Deep Emotional Arousal Network introduces
multimodal gating blocks to simulate activation mech-
anisms in human emotional arousal models [42].

• PS-Mixer. This method uses a polarity vector (PV) and
an intensity vector (SV) to gauge emotion polarity and

intensity, respectively [43]. These vectors are blended
to obtain a fusion vector that determines the emotional
state.

• EMT-DLFR. This model elevates the efficiency and
robustness of multimodal sentiment analysis in incom-
plete modal environments through two-layer feature
recovery and effective multimodal interaction [13].

• CLUE. This model is a modality independent of specific
models, facilitates multimodal sentiment analysis [16],
which discerns the direct impacts of text modalities
using an auxiliary textual model, and computes the
indirect effects via a multimodal approach.

• GEAR. A model that mitigates bias in multimodal
sentiment analysis, enhances the model’s generaliza-
tion capability by integrating an inverse probability
weightingmodel with a conventional feature segregation
strategy [18].

C. EVALUATION TASKS AND METRIC
Building on the methodology of previous studies [12], [13],
[21], we present our experimental findings in two distinct
categories: classification and regression. For classification,
we report the weighted F1 score (F1-Score) and binary
classification accuracy (Acc2). Specifically, for the MOSI
and MOSEI datasets, we calculate Acc-2 and F1-Score are
computed as negative/non-negative (‘‘/’’ left) [6] and nega-
tive/positive (‘‘/’’ right) [13]. For regression, we report Mean
Absolute Error (MAE) and Pearson correlation (Corr), where
higher values (except MAE) indicate better performance.

D. IMPLEMENTATION DETAILS
Our network is implemented using the PyTorch framework
and an RTX 3090 GPU. The unaligned MOSI and MOSEI
datasets were applied. In our approach, experiments were
executed under two distinct settings: IID and OOD. In the
IID scenario, the test set aligns with the training set in terms
of distribution. Conversely, in the OOD context, the aim is
for the test set’s sample distribution for each word across
sentiment categories to markedly differ from the training set’s
distribution. Therefore, to validate the debiasing ability of our
model, only the IID training set, the IID validation set, and the
OOD test set proposed by Sun et al. [16] are used. Similar
to previous IID studies, Adam is used as the optimizer,
and the grid search method is employed to select the best
hyperparameters, as shown in Table 2. Specifically, the
dimension K in the TAE module is retained, where the
values in K‘‘/’’ represent the K-dimensional features of
retained text/audio/video, respectively. In the TAME loss
(from Eqn.(16)), the parameter number q is chosen as its
index. To amplify the bias from different bias extractors,
the bias amplified by TAME for different bias extractors is
multiplied by different weights λm2 , ‘‘/’’, which represent the
TMAE coefficients before the text/audio/video. To simplify
the parameters, the parameters in the loss function are set
to λm1 = λf = λ̂f = 15. To promote the robustness
of fusion features and bias feature unraveling, different
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exchange batches for different datasets Se are used. Finally,
an early stopping strategy is adopted, which stops training
if the loss does not increase/decrease for 8 consecutive
epochs.

TABLE 2. BCD-MM hyperparameters for multimodal sentiment analysis.

V. RESULTS AND ANALYSIS
In this section, we showcase the experimental outcomes of
our suggested approach, juxtaposed with comparisons to
other leading-edge methods. Following this, we detail our
ablation study, which undergoes further analysis to verify the
efficacy of our proposed model.

A. QUANTITATIVE RESULTS
Our dataset, Similar to previous studies, uses an unaligned
corpus. For a fair comparison, we evaluate our model against
this ‘‘unaligned’’ format. Key findings from Table 3, Table 4,
and Table 5, we obtain the following observations. 1) Elevated
accuracy: On the MOSI dataset, there is a 2.43% increase
in negative/positive accuracy and a 0.78% increase on the
MOSEI. This reveals ourmodel’s (BCD-MM) advantage over
previous methods. 2) Generalization: A 2.23% improvement
in Acc-5 accuracy on the SIMS dataset result in relatively
strong generalizability, even for Chinese data. 3) Debiasing
ability: BCD-MM shows enhanced performance on OOD
tests: 1.30% better on MOSI and 1.88% better on MOSEI
in negative/positive accuracy. In particular, the performance
improvement is very obvious on the MOSEI dataset, where
more bias information exists, as shown in Fig.1, which further
highlights the debiasing ability of our model. Overall, these
results demonstrate the generality, improved generalization
ability, and preferable debiasing performance of our model
in various data scenarios.

B. ABLATION STUDIES
1) TAE MODULE
We first conducted an ablation study on the TAE module,
as shown in Table 6. There is a need to provide dimensionally
consistent features for subsequent cross-modal attention
mechanisms to ensure seamless integration and interaction
between modalities. Therefore, we cannot ignore this mod-
ule, and to verify the effectiveness of the TAE module,
we compare the current mainstream dimensionality reduction
methods. These mainly include the following 1) Average

Pooling. 2) Max Pooling. 3) Downsampling. 4) Linear layer.
5) Convolution.

Table 6 shows the results of the ablation study. Replacing
the TAE module with other dimensionality reduction meth-
ods, the results on the MOSI and OOD MOSI datasets are
degraded, and the linear layer and convolutional methods
have relatively better performance but are still lower than that
of the TAE module. The experimental results demonstrate
that our TAE module can remove redundant information
while retaining critical information and obviously improve
the performance on the dataset.

2) BCAG MODULE
To further explore the contribution of BCD-MM in extracting
effective inter-modality complementary features and filtering
out invalid ambiguities to validate the effectiveness of the pro-
posed cross-modal bias extractor model, our ablation study of
our proposed method is shown in Table 6. First, we replace
the feature extraction part with the traditional method.
w/o-Transformer, i.e. as consistent with Section III-A1,
Eqn.(1) is used for the feature extraction of text, Eqn.(2)
and Eqn.(3) are used for feature extraction of audio and
video, respectively. Second, we verify that BCAG solves the
inconsistency problem of feature representation, w/o-BCAG.
The BCAG module is directly removed, and the remainder is
left unchanged.
• W/o-Transformer’s limitation. Removing the Trans-
former (w/o-Transformer) significantly decreases the
performance on the MOSI and OOD MOSI datasets.
This indicates that conventional LSTM may lose key
features in extended sequences, affecting the ability to
capture long-range dependencies and crucial modality
information, especially in cross-modal bias extraction.

• Importance of intra-modality information. The same
results for w/o-Transformer across both datasets under-
score the necessity of capturing key intra-modality infor-
mation, particularly for cross-modal bias extraction.

• Intra-modality encoding’s effectiveness. Excluding
the inter-modality encoding module (w/o-BCAG) con-
firms its importance in multimodal feature extraction.
Its absence, particularly impacting the OOD MOSI
dataset, emphasizes the need for complementarity in
bias extraction.

3) DURD MODULE
To delve deeper into the debiasing capabilities of BCD-
MM, Table 6 presented an ablation study of our method,
analyzing it through various modifications: 1) w/o-Cmbe.
The Cross-modal bias extractor (Cmbe) is removed, and to
validate the enhanced bias extraction capability of our dual
bias extractor, we use the traditional bias extractor instead.
2) w/o-Tbe. The Traditional bias extractor (Tbe) is removed,
and to validate the enhanced bias extraction of our dual
bias extractor, we use the traditional bias extractor instead.
3) w/o-DbeC. The Cross-modal extractor with the Dual bias
extractor (DbeC) is removed, retaining only a standard robust
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TABLE 3. Performance of models using BERT for text encoding on the CMU-MOSI and CMU-MOSEI datasets. 1 is from the unified framework of Yu et al.
And 2 is from Yu et al. [12]. And other results are from the original paper. The highest results are in bold and the next highest results are underlined.

TABLE 4. Performance of the different models on the SIMS dataset, in which all models use Chinese-BERT [45] as a text encoder, where 1 is from the
unified framework for multimodal sentiment analysis of Yu et al.

TABLE 5. The performance of different models on the MOSI and MOSEI datasets for the OOD test performance of the baseline in the table are taken from
the work of Sun et al. [16].

extractor and a conventional bias extractor. 4) w/o-DbeT.
Similarly, the traditional extractor with theDual bias extractor
(DbeT) is removed, and a conventional robust extractor and
a Cross-Modal Bias Extractor are employed. 5) w/o-Swap.
The swap batch Se is set to a high number, effectively
nullifying the swap operation. 6) w/o-IPW. LIPW and L̂IPW
are replaced with LMAE and L̂MAE , removing the weights
from theMAE losses as specified in Eqn.(24). 7) w/o-TMAE.
To evaluate impact of TMAE loss, we replace the TMAE loss
in Eqn.(16) with the MAE loss. The ablation study of the

DURD module section in Table 6 reveals several aspects of
BCD-MM debiasing performance.
• Dual bias extractor importance. Models with two
conventional (w/o-Cmbe) or two cross-modal (w/o-
Tbe) bias extractors outperformed those with a single
extractor (w/o-DbeC, w/o-DbeT). This underscores
the critical role of dual bias extractors in enhancing
debiasing, particularly in the OOD MOSI dataset. For
instance, the Acc-2 of w/o-Tbe is 1.12%/1.03% higher
than that of w/o-Cmbe, and w/o-DbeC outperforms
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TABLE 6. BCD-MM ablation studies on the MOSI and MOSI OOD test sets.

w/o-DbeT by 0.25%/0.42%. This further validates that
dual bias extractors not only advance bias feature
extraction but also demonstrate the superior debiasing
performance of the cross-modal bias extractor.

• Effectiveness of different bias extractors. Comparing
w/o-Tbe with BCD-MM shows that varying the bias
extractor method enhances bias information extraction
and overall model performance.

• Significance of sample diversity (w/o-Swap). In the
MOSI and OOD MOSI datasets, the w/o-Swap model,
while performing better than the other baselines,
compares poorly with the BCD-MM. This implies the
importance of diverse swapping samples for obtaining
the best results, suggesting that swapping has potential
advantages in the field of debiasing.

• Role of weighted losses (w/o-IPW). The notable
performance drop in the w/o-IPW model highlights the
necessity of assigning smaller weights to highly biased
samples for effective debiasing.

• TMAE loss contribution (w/o-TMAE). The subpar
performance of the w/o-TMAE variant relative to the
original BCD-MM model underscores the value of the
TMAE loss. This specific loss is designed to intensify
bias during training, in contrast to the standard MAE
loss, which might result in only partial learning of robust
features. This partial learning can weaken the overall
effectiveness of debiasing, as it may lead to inaccurate
bias estimation across different modalities.

VI. CONCLUSION
In this work, we propose a novel multimodal learning debi-
asing model, abbreviated as BCD-MM. The model not only
removes intra-modality redundancies while preserving crit-
ical information but also adaptively captures inter-modality

and intra-modality information, filters inter-modality incon-
gruent subsequences, and further enhances the debiasing
performance of the model through a dual bias extractor.
It strengthens generalization by integrating a standard
robust extractor, a typical bias extractor, and an inno-
vative cross-modal bias extractor. This setup effectively
distinguishes between robust and biased elements in text,
audio, and visual data, and it calculates bias weights.
The model employs the IPW enhancement loss during
training. Thorough testing on the MOSI, MOSEI, and SIMS
datasets not only reveals spurious correlations but also
highlights the excellent debiasing performance of BCD-MM,
especially in out-of-domain test scenarios. Furthermore, our
proposed multimodal learning debiasing model, BCD-MM,
holds promise for applications in various machine learning
domains, including healthcare. We are currently evaluating
its effectiveness in mood and depression estimation. The
goal of future research will be to expand the application of
the BCD-MM by focusing on more tasks and exploring the
integration of physiological signals (e.g., heart rate variability
and skin conductance) and other modalities, such as facial
expressions, to further enhance the robustness and depth of
sentiment analysis.
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