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ABSTRACT This paper conducts a thorough examination of the 12th Video Browser Showdown (VBS)
competition, a well-established international benchmarking campaign for interactive video search systems.
The annual VBS competition has witnessed a steep rise in the popularity of multimodal embedding-based
approaches in interactive video retrieval. Most of the thirteen systems participating in VBS 2023 utilized
a CLIP-based cross-modal search model, allowing the specification of free-form text queries to search
visual content. This shared emphasis on joint embedding models contributed to balanced performance
across various teams. However, the distinguishing factors of the top-performing teams included the adept
combination of multiple models and search modes, along with the capabilities of interactive interfaces to
facilitate and refine the search process. Our work provides an overview of the state-of-the-art approaches
employed by the participating systems and conducts a thorough analysis of their search logs, which record
user interactions and results of their queries for each task. Our comprehensive examination of the VBS
competition offers assessments of the effectiveness of the retrieval models, browsing efficiency, and user
query patterns. Additionally, it provides valuable insights into the evolving landscape of interactive video
retrieval and its future challenges.
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INDEX TERMS Content-based retrieval, interactive evaluation campaign, interactive video retrieval, performance
evaluation, video browsing, video content analysis.

I. INTRODUCTION
‘‘A picture is worth a thousand words’’, goes the age-old
adage, yet the challenge is that we do not always have
access to the perfect image to convey our message. The
image itself may be the primary target of our information
need, requiring alternative means of expression. For example,
consider a journalist searching for a specific video within a
vast, unannotated multimedia collection based on a fleeting
memory. If even a single frame of the desired video were
readily available, finding the complete video would become
trivial in the realm of computer vision and video retrieval.
However, in practice, the journalist must rely on alternative
means to describe the content of the target video.While words
serve as the most immediate and utilized tool for conveying
descriptions, visual cues such as similar images or sketches
can also be used fruitfully.

In recent years, significant efforts have been made to
develop high-performance video retrieval systems, allowing
users to employ various search capabilities, including text,
visual, or multimodal queries. These systems may also
actively engage users in the search process, allowing
them to refine queries, explore results, provide feedback,
and iteratively navigate the video content to fulfill their
information needs. However, assessing and comparing these
systems poses a significant challenge due to their interactive
nature and diverse supported query and searchmodes,making
it impractical to conduct a static comparison against a conven-
tional benchmark dataset. To address this, live benchmarking
campaigns, such as the Video Browser Showdown (VBS)
[56], [74] and the Lifelog Search Challenge (LCS) [51],
[109], have emerged as crucial initiatives.

This paper provides an in-depth evaluation of the
2023 iteration of VBS, an international video content search
competition held annually since 2012 at the International
Conference onMultimedia Modeling (MMM). It has become
a well-established benchmark offering comparative insights
into state-of-the-art interactive video search systems. During
VBS, participants face two main tasks: Known-Item Search
(KIS) and Ad-hoc Video Search (AVS), both of which are
to be completed within a predefined time limit. KIS tasks
require participants to locate a specific video clip within
a dataset, with the instance either visually presented or
described textually by a moderator. In AVS tasks, participants
must find as many video clips as possible that match a general
textual description. Scoring considers factors such as search
time, false submissions, and the diversity of instances found
in AVS tasks.

Since VBS search tasks [72] require automatic analysis of
general video content and the ‘‘out-of-the-box’’ effectiveness
of video retrieval models, the competition’s impact extends
beyond evaluation, actively shaping the evolution of interac-
tive video search systems. Winning approaches often set the
tone for the coming years, guiding researchers and developers

towards promising directions. For instance, based on the
winning approaches of the last few years, mirroring trends in
the broader computer vision domain, we observed an indis-
putable shift not only from traditional handcrafted similarity
search models to modern deep learning approaches [50] but
also a move towards the prevalent use of joint embedding
models [67], [86]. These models have played a central role
in current research on interactive video retrieval due to their
capability to integrate information from multiple modalities,
along with enhanced semantic understanding. Moreover, they
exhibit a notable capacity to generalize across domains and
tasks. Training these models on extensive web-scale datasets
enhances their ability to efficiently search for a diverse range
of concepts, as well as whole phrases linking concepts with
additional properties (e.g., ‘‘blue bird on a branch’’, ‘‘white
shirt and blue jeans’’). Consequently, it is not surprising that
in VBS 2023, most of the teams used a CLIP model [60],
[86] or other multimodal embeddings [66], [77], [81] in
their interactive video search systems. Teams integrating
recently introduced versions of the CLIP model trained
on LAION datasets [60], [101] demonstrated impressive
performance, while other teams with the original CLIP [86]
remain competitive. However, our analysis emphasizes that
interactive interfaces designed on top of the corresponding
multimodal ranking models are crucial. Systems that used the
same latest CLIP model did not perform consistently. Factors
differentiating system effectiveness include the browsing
interface, the ability to combine different models, and the
option to reorder results based on temporal searches and
visual similarity.

The main contributions of this paper can be summarized as
follows:

• Providing a valuable comparative analysis of systems
that participated in the 12th VBS competition, outlining
the state-of-the-art approaches adopted and illustrating
the latest trends in interactive video retrieval.

• Offering a comprehensive overview of the competition
settings and outcomes, including overall scores, the
number of correct and incorrect submissions, and
submission times for each team and task.

• Delving into an in-depth analysis of teams’ performance
during KIS tasks, offering assessments of retrieval
model effectiveness, browsing efficiency, and user query
patterns.

• Exploring the outcomes ofAVS tasks, including timeline
statistics, success rates, task difficulty analysis, and
agreement with judges’ assessments.

• Providing a critical analysis of current challenges
and suggesting pathways for future improvements in
upcoming VBS evaluations.

The remainder of this paper is structured as follows:
Section II summarizes the VBS 2023 settings and tasks;
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FIGURE 1. VBS2023 featured a hybrid format. In-person teams gathered
in a room with a large screen where tasks were projected. Meanwhile,
online teams accessed the main DRES overview through their web
browsers, where tasks and scores were displayed.

Section III outlines approaches utilized by the participating
systems; Section IV provides a comprehensive analysis of
system results and queries during the VBS tasks; Section V
delves into current challenges in interactive VBS evaluation
and provides recommendations for future VBS editions;
Section VI discuss our findings, future challenges, and
research directions in interactive video search; Section VII
draws the conclusions.

II. COMPETITION SETUP
VBS is a live competition to evaluate interactive search
tools. Over the last few years, it has employed a subset
of the Vimeo Creative Commons Collection (V3C [93]),
comprising 17,235 video files totaling 2,300 hours of
video content. In 2023, the competition introduced the
use of the Marine Video Kit (MVK [111]), a smaller
but very challenging dataset. The MVK consists of 1,374
videos, amounting to approximately 12 hours, showcasing
underwater scenes.1

VBS 2023 was a hybrid event in which both in-person
and online teams participated (Fig. 1). Each team consisted
of a maximum of two operators authorized to operate the
retrieval system individually. The competition was controlled
by the DRES evaluation server [90], which controlled task
presentation and collection and evaluation of submissions.

Similarly to previous editions, VBS 2023 includedKIS and
AVS tasks. For KIS tasks, there exists a single unique correct
segment in the collection. The query is either presented as
the target video segment (referred to as KIS-V, representing
visual KIS) or as a textual description of the contents of
this segment (referred to as KIS-T, representing textual KIS),
which usually extended during the working time. In contrast,
AVS queries are broader textual queries with an undetermined
number of correct items. The ground truth is thus not a
priori-defined but established during the competition using
live judging. Some KIS-V queries used the MVK dataset

1Note that a snapshot of the dataset from 2022, modified to the needs of
VBS, has been used.

(referred to as KIS-V-M), while all other tasks used the V3C
dataset. Each task has a limited working time (7 minutes
for KIS-T, 5 minutes for others), with penalties for incorrect
submissions. Submissions are assessed against the ground
truth for KIS tasks, whereas for AVS, they are assessed by
live judges. The scoring for the KIS tasks, detailed in [56],
involves rewarding speed in finding the correct item while
penalizing wrong submissions. For AVS, a new scoring
formula was applied to foster a diversity of submissions.
Teams receive scores for the first correct submission of each
video, and a penalty is added for wrong submissions to
prevent the submission of unverified shots. The score ft of
a team t is determined as in [70]:

ft = 1000 · max
( 1
|C|

Vt∑
v

(
cv − ivp

)
, 0

)
,where

C := set of correct videos across all teams’ submissions

Vt := set of videos with a submission for team t

cv := 1 if there is a correct submission for v, 0 else

iv := number of incorrect submissions before the first

correct submission for video v

p := submission penalty constant (set to 0.2) (1)

This score function considers diversity, as submitting mul-
tiple correct items from the same video does not increase
a team’s score. Furthermore, submissions associated with
videos not commonly discovered by other teams can
significantly impact the evaluation, given that each team’s
score is divided by the total number of correct videos from
all teams.

The challenge in the query formulation process is not only
to ensure that the content exists in the collection and – in
the case of KIS queries – there is a unique target that can
be unambiguously identified but also to ensure that queries
are clearly phrased and also understandable by non-native
speakers. This includes, for example, choosing between
terms that would describe an object more precisely vs terms
that are more commonly used and broadly understood.
An additional challenge for AVS queries is to ensure a
common understanding of the judges of how to interpret
the query and how to treat border cases that arise. This is
important to ensure consistent judgment of all submissions.
In 2022, a process for reviewing queries with the team
of judges and performing a dry run for AVS queries has
been introduced and repeated for VBS 2023. Details on the
process and its evaluation can be found in [36]. A survey
among participants confirms that the goals of improving
query quality and judgment consistency are reached with this
process.

III. OVERVIEW OF STATE-OF-THE-ART APPROACHES
USED BY PARTICIPATING SYSTEMS
This section provides a concise overview of the advanced
techniques employed by participating systems in the VBS
2023 (Table 1). It highlights the latest advancements in video
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TABLE 1. List of participating systems and selected approaches used by them. The systems are ranked by their overall score in VBS 2023, with the ‘‘Solved
KIS’’ column indicating the number of tasks completed out of the 19 KIS tasks issued during the competition. In the ‘‘Shot detection’’ columns, the symbol
‘‘∗’’ denotes the utilization of predefined shots from the V3C dataset [93]; when a time value is present, it indicates the application of uniform sampling
with the specified time interval; otherwise, when available, a reference to the method used is provided. The symbol ✓ indicates that a method is used.
A light gray color indicates that the feature is present but was not (or just rarely) used. In the ‘‘Joint Embedding’’ column, the symbols ✓, ✓2, and
✓3 correspond to the usage of one, two, and three multimodal embedding models, respectively. The ASR data for V3C was provided by [92].

search and retrieval, showcasing the progress made by the
research community in improving video exploration and anal-
ysis. It covers important subsections such as Joint text-visual
embedding methods, Concept Search, Query by Example,
Temporal Querying, Relevance Feedback, and Browsing.
The repositories and relevant scientific articles have been
referenced for the open-source approaches utilized. It’s
important to note that among the systems, only VISIONE,
vitrivr, and vitrivr-VR are open source [4], [8], [23],
[25], [26].2 The other systems, although not entirely open-
source, use many models and approaches published in open-
source repositories, which are referred to in the following
sections.

A. JOINT TEXT-VISUAL EMBEDDING METHODS.
The VBS systems have greatly evolved in recent years, offer-
ing innovative approaches to explore and retrieve information
from large video collections efficiently. Almost all these
systems exploit joint text-visual embeddings to enhance the
search experience and provide more accurate results. We can
broadly categorize these systems into groups based on the
number of multimodal embeddingmodels they employ: those
utilizing a single model and those using multiple models.
In Table 1, the symbols✓, ✓2, ✓3 represent the usage of one,
two, and three multimodal embedding models, respectively.
The specific models used by each system are summarized in
Table 2.

2vitrivr, and vitrivr-VR comprise three components: the user
interface [25], [26], the Cineast retrieval and feature extraction engine [4],
and the Cottontail database [8].

TABLE 2. Employed joint text-visual embedding models. The solid line
separates CLIP-based models from other multimodal embedding models.

Several notable implementations stand out in the cate-
gory of VBS systems with a single model. For instance,
vibro [99] employs the OpenCLIP ViT-L/14 [14], [60]
trained on LAION-2B [101] to produce joint text-visual
embeddings. VideoCLIP [82] and v-FIRST [110] uses the
visual transformer CLIP ViT-L@336 [15], [60], [86] trained
on the LAION-2B dataset. In VideoCLIP, the integration
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ofMilvus [113] vector database facilitates seamless matching
between embeddings. v-FIRST [59] presents a revised ver-
sion of their previous interactive video retrieval system [110],
which supports querying by textual descriptions and visual
examples. The joint text-visual feature space is the basis
for many of v-FIRST’s functionalities, such as optimized
vector search, fast neighbor search, and compression of
similar video segments. diveXplore [100] leverages the
OpenCLIP ViT-L/14 model trained on LAION-400m [60] to
extract visual embeddings from keyframes. The embeddings
are indexed in a FAISS [63] index that is used for all free-text
queries by a Python server running in the backend. This
server extracts embeddings from a text query, compares
them with an L2 distance to the visual embeddings of the
keyframes, and returns the ranked results via a WebSocket
connection to the frontend. 4MR [34] also uses a CLIP
model, the ViT-B/32 [12], [60], [86] pre-trained on LAION-
2B. A Python server in the backend transforms the input
to a vector, which is afterward used for similarity search.
QIVISE [103] employs the BLIP [3], [66] model (ViT-B and
CapFilt-L, the one trained on 129M images), an advancement
built on the foundations of the CLIP [5], [86] model.
In QIVISE, the BLIP model is used to extract feature vectors
from both textual queries and images, then computes the
cosine similarity between these vectors. CVHunter used a
CLIP [86] model as well. However, the original version (i.e.,
not trained with LAION data) was used.

On the other hand, VBS systems that utilize multiple joint
embeddings employ a range of sophisticated techniques to
enhance the search process. For instance, VISIONE incorpo-
rates three models: CLIP ViT L/14 [14], [86] trained on the
LAION-2B dataset, CLIP2Video [6], [45], and ALADIN [2],
[81], its own cross-modal model. ALADIN generates
high-quality scores by aligning images and texts using a
pre-trained vision language transformer and then trains a
shared embedding space using a cross-modal alignment head.
The VISIONE system effectively combines the results of
these three models using a late fusion algorithm. The CLIP
and CLIP2Video features are indexed and searched using
FAISS library [63], while ALADIN features are transformed
into a textual format (Surrogate Text Representation [32]) to
be indexed and searched using Apache Lucene.3 Similarly,
other systems like vitrivr and vitrivr-VR [96] rely
on custom visual-text co-embedding [24] techniques (similar
to W2VV++ [67]), along with CLIP and OpenCLIP [60],
[101] models (xlm-roberta-base-ViT-B-32 using
pre-trained laion5b_s13b_b90k weights [13]), provid-
ing multilingual query support and enabling the search
for videos using natural language prompts. One of the
benefits of OpenCLIP is its multi-language model, which
empowers users to formulate queries in a lot of different
languages, such as, but not limited to, English and German.
Verge [84], on the other hand, utilizes three distinct
trained networks, namely ResNet-152 [53], ResNeXt-101

3https://lucene.apache.org/

[80], and the CLIP model ViT-B/32 [60], [86], to perform
text-to-video matching [20], [46]. Converting the intricate
textual query and videos into a shared latent space allows
direct comparison. Subsequently, an attention-based dual
encoding network is utilized. Four extensive video caption
datasets (MSR-VTT [118], TGIF [68], ActivityNet [39], and
Vatex [115]) were used to train the model. VIREO expands
the embedding bank with CLIP4Clip feature [7], [77] based
on the previous system [78] which relies mainly on the
ITV feature [116]. The CLIP4Clip feature is fine-tuned on
the MSR-VTT [118] dataset. In addition, the late fusion of
different features is also used to diversify the search results.

B. CONCEPT SEARCH
Concept search enhances video retrieval by allowing
users to search for videos based on specific concepts or
semantic information. The participating systems in VBS
2023 employed various techniques, such as keyword decom-
position, concept probability estimation, and pixel-wise
concept annotation.

Over the years, vibro has been at the forefront of
incorporating text-based methods for video search, including
OCR, ASR, and automatic annotations of frames. However,
interestingly, none of these text-based methods were utilized
in the VBS 2023 challenge.

In contrast, the VISIONE system, similar to its previous
version [30], focused on object detection using three deep
convolutional neural network models: VarifocalNet [11],
[119], Mask R-CNN [11], [52], and Faster R-CNN [10],
[48]. These models were trained on different datasets, namely
COCO, LVIS, and OpenImages v4. To ensure consistency
and organization of class labels, the VISIONE system
implemented a hierarchical structure based on WordNet.4

VIREO adopted concept search as a complementary
approach to embedding search. Through keyword decom-
position and concept probability estimation [116], VIREO
provided a ranked list of video shots associated with each
concept.
vitrivr employed pixel-based color [47] and concept

search [91] methodologies, like in previous iterations [55].
It leveraged DeepLab pixel-wise concept annotation [40] and
implemented post-processing techniques, such as resolution
reduction and label transformation, to facilitate efficient and
effective spatially localized concept search. Additionally,
vitrivr introduced the concept of Query-by-Semantic-
Sketch, allowing users to search using a concept brush.
diveXplore [100] offered search capabilities for visual

concepts using EfficientNet [108], which was trained on
datasets such as Places365 [120], ImageNet-1K [65], and
GPR1200 [97]. However, the utilization of concept-based
search was limited in the challenge due to the superior
performance of CLIP, which overshadowed other methods.
Verge [84] continued to build upon its previous

version [33] by employing a 3D-CNN architecture for

4Available at https://zenodo.org/records/7194300
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spatio-temporal human activity recognition [1]. The system
followed a three-step pipeline [49] involving object detection,
object tracking, and activity recognition. This allowed
Verge to identify and recognize human-related activities
in videos effectively. Moreover, the system exploits Yolo
v4 [27] for human and face detection, WideResNet and
ResNet50 pretrained models [18] for Places365 concept
detection, and EfficientNetV2-L pretrained model [9], [21]
for ImageNet concept detection, Pretrained Sentence-BERT
model (stsb-mpnet-base-v2) [16] for concept label
similarity inference.
v-FIRST indexes different concepts and allows users

to apply Boolean retrieval for added flexibility [59]. This
combination of concept search and joint embedding is
implemented in their unified database.
VideoCLIP inherited features from its previous ver-

sion [83] and incorporated K-means clustering for dominant
color determination at a pixel level. It also employed the
Yolov5 model [62] for extracting visual concepts from
videos. These features enhanced the search capabilities of
VideoCLIP, enabling users to retrieve videos based on
color and visual concepts.

Finally, Perfect Match utilized various concept detec-
tion models [62], [65], [86] and precomputed results for
efficient frame-level searching. By leveraging different clas-
sification datasets [38], [69], [94], [117], such as ImageNet,
MSCOCO, Food-101, and SUN397.

C. QUERY BY EXAMPLE
Many VBS systems support query-by-example, allowing
users to use an image or video frame as a query to discover
visually or semantically similar content. Similar to cross-
modal search, where a text prompt is used to search for a
video, we observed that the prevailing approaches for visual
similarity search rely on features extracted from the visual
transformer of multimodal models like CLIP.

For example, vibro [99] employs a CLIP ViT-L [15],
[86] network that has been pre-trained on the LAION-
2B dataset and fine-tuned in publicly available image
datasets [98]. This enables the system to extract feature
vectors useful for content-based image retrieval [97]. On the
other hand, VISIONE provides support for visual and
semantic similarity searches. It utilizes GEM features [88]
for visual similarity search and incorporates CLIP2Video [6],
[45] and ALADIN [2], [81] for searching semantically
similar video clips. CVHunter and VideoCLIP utilize
the same CLIP features for image similarity search as they
do for text-to-image search. VIREO measures the similarity
between a shot query and all shot candidates using the fine-
tuned CLIP4Clip [77] feature. diveXplore [100] uses
the CLIP ViT-L/14 model to extract image embeddings
from an example image, which are then sent to the
Python server in the backend to query the FAISS [63] L2-
index for keyframes with similar embeddings. Verge [84]
incorporates a visual similarity search module that facilitates

the retrieval of visually similar content based on a query
image. This module utilizes feature vectors generated from a
fine-tuned GoogleNet architecture [85] and leverages an effi-
cient IVFADC indexing structure [61]. v-FIRST employs
optimized nearest neighbor algorithms in the embedding
subspace [59] to identify targets similar to the example
image or text. Furthermore, in v-FIRST, an image generator
based on MidJourney and Stable Diffusion is integrated to
synthesize images from a text prompt as an additional query
methodology.vitrivr andvitrivr-VR use simple color
and edge features for query-by-example. At any point, while
watching a video, the current frame can be used as a source
image for query-by-example using these features. 4MR [34]
employs the CLIP model ViT-B/32 [12], [86] for query-by-
example. In an offline phase, all keyframes were extracted
beforehand. These CLIP feature vectors are used to retrieve
objects similar to a given example.

D. TEMPORAL QUERYING
Temporal queries are crucial to enhancing VBS systems’
search capabilities, with many incorporating this function-
ality to facilitate users in searching for specific patterns or
relationships within video clips.

For instance, VISIONE enables temporal queries by
describing two scenes from the same video clip. It utilizes
a temporal quantization approach, dividing video time into
intervals and independently processing the results of both
queries to retain representative results for each time interval
and query. Result pairs from the same video with a temporal
distance smaller than a certain threshold are displayed as the
temporal search results.

Similarly, CVHunter and vibro utilize a temporal query
fusion technique, computing two arrays of scores for different
temporal query parts and then fusing them to generate final
results. In vibro, keyframes are extracted at a rate of
2 frames per second, with temporal queries considering only
temporally close keyframes. CVHunter uses a similar frame
extraction approach as VIRET [73].
VIREO supports temporal queries consisting of two suc-

cessive and independent queries. A sliding window approach
is used to aggregate the scores of the two queries and index
the shots between shot pairs that match the two queries.

In Verge [84], temporal queries are restricted to con-
cepts, enabling users to search for two concepts appearing
consecutively within the same video. The system generates
separate shot probability lists for each concept, calculates the
intersection of concepts, and re-ranks shots using an objective
function.

Both vitrivr-VR and vitrivr offer temporal query-
ing capabilities, allowing users to search for specific patterns
or relationships in consecutive video segments. These
systems enable the combination of multiple non-temporal
queries into a single temporal query.
v-FIRST facilitates finding two sequential images in a

video by summing the embeddings of each image to create
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a new representation and then searching within the collection
of embeddings for all possible pairs.

E. RELEVANCE FEEDBACK
In the realm of user relevance feedback [44], [54], [64], [95],
several VBS systems have exploited innovative approaches to
enhance the retrieval process based on user interactions.
CVHunter incorporates the Bayesian relevance feedback

model [43], allowing users to provide feedback on the
relevance of retrieved video clips. In this framework, the
system maintains probability for each image in the database,
estimating its relevance to the user. In each iteration, example
images are provided in addition to a list of selected implicit
negative examples. CVHunter improved this system by
providing a temporal version of the Bayesian feedback.
This model enables feedback for the single and temporal
variant [75], empowering users to refine their queries and
obtain more accurate search results.
QIVISE introduces a novel quantum-inspired interaction

paradigm for modeling user interactions. Building upon
recent studies highlighting the potential of quantum theory’s
mathematical framework for information retrieval [112],
QIVISE integrates state-of-the-art quantum-inspired re-
ranking paradigm [114] along with feedback processing
methodologies [41]. After the initial retrieval phase, users can
select video clips that are highly consistent or inconsistent
with their demands. Within a quantum state space, these
selected clips are then used to estimate the user’s actual
demands, utilizing the space spanned by the chosen clip
vector and its complement subspace. For the final re-ranking
score, unlike the Rocchio Algorithm [42], QIVISE utilizes
the relevance probability from the previous retrieval round
instead of treating the relevance probabilities of all selected
video clips as equal. For a detailed explanation of user
demand estimation and re-ranking score calculation, refer to
the QIVISE paper [103].
In vibro, users have a dedicated application window

for AVS tasks. Any video frame selected and sent to
the evaluation server is considered positive feedback to
the system [99]. The integrated feedback loop computes the
minimum distance of all the previously selected frames and
the remaining frames in the dataset. The results list will be
displayed in the same AVS windows, and the user can repeat
the process as often as desired.
v-FIRST implements an optional query reweighting

using the top retrieved images [59]. This approach helps
mitigate irrelevant factors and emphasizes concepts that are
crucial to the retrieval process.

F. OTHER
In the context of incorporating additional features and
modules into VBS systems, several approaches have been
adopted to enhance the search experience and provide more
comprehensive results.

VISIONE utilizes the Whisper model [19], [87] to
integrate a speech-to-text feature into the system. This
feature allows users to dictate their queries rather than type
them, making the process of issuing textual queries more
convenient. The spoken text is automatically translated into
English and used as a query for the cross-modal search
modules.
CVHunter enhances the result set by augmenting it with

labels assigned through zero-shot CLIP classification. A pre-
selected set of class labels is used to classify the images in
the result set. These labels are displayed below each image
in the main search panel, providing users with additional
information about the content and allowing them to learn
words associated with various images, as assigned by CLIP.
diveXplore [100] incorporates text detection and

recognition features using the CRAFT model [17], [35]. This
model is utilized to detect regions with text in keyframes and
subsequently recognize the text in those regions. Addition-
ally, the YOLOv5 [28], [62] model is employed to detect
COCO objects in the keyframes, enhancing the system’s
understanding of the visual content. Keyframes, extracted as
the middle frames of detected shots using TransNetv2 [22],
[104], are utilized for further analysis. However, due to
certain limitations, such as a lack of specialized features for
AVS tasks and being operated by only one person, the AVS
score achieved by diveXplorewas relatively low. Another
difficulty was the very coarse uniform frame sampling for the
MVK dataset, which made many queries unsolvable.
Verge [84] incorporates a human and face detection

module that accurately detects and counts human and human
faces in the keyframes of each shot. The module uses
the YOLOv4 deep neural network, which uses a DCNN
architecture to extract human silhouettes and faces. The
model is trained on the MS COCO dataset [69] and
fine-tuned using the CrowdHuman dataset [102] to handle
crowd-centered scenes with occlusions. During inference, the
module calculates the total number of humans and human
heads by considering only bounding boxes that surpass
a predefined threshold. This enables users to distinguish
activities involving single or multiple individuals effectively.
v-FIRST is among the first teams to use a prompt

suggestor [59] powered by a Large Language Model (LLM)
to suggest search terms based on the data to guide the retrieval
process and enhance the clarity of the query. v-FIRST
also suggests the adoption of external search engines to
collectively form a system of specialized components.

G. BROWSING
Different VBS systems provide diverse browsing inter-
faces to facilitate the exploration of search results and
enhance the user experience. Here, we summarize only
their main features while directing interested readers
to the official VBS webpage for short videos demon-
strating each system’s search and browsing capabil-
ities (https://videobrowsershowdown.org/teams/vbs-2023-
systems/).

79348 VOLUME 12, 2024



L. Vadicamo et al.: Evaluating Performance and Trends in Interactive Video Retrieval

vibro maintains its longstanding 2D map of visually
arranged images, which has been improved in the 2023 ver-
sion for faster and more accurate performance using Fast
Linear Assignment Sorting (FLAS) [37] for grid layout
arrangement and Dynamic Exploration Graph for internal
graph representation [57]. These maps are mainly used to
find similar images in the entire dataset, the current search
result list, and the selected video. Another addition to vibro
this year is automatic video playback in AVS mode when
hovering over an image to quickly identify the motion of
objects in the frame for more complex tasks.

In VISIONE’s browsing interface, results are grouped by
video, with each row representing one video and displaying
up to 10 results sorted by the retrieval model’s score. Each
result has a menu that provides various options, such as
performing similarity searches, viewing the temporal context,
playing the entire video starting from the selected frame,
or previewing the video in a neighborhood of the selected
frame.
VIREO’s browsing interface comprises three main compo-

nents: a ranked list of video shots returned from the search
engine, shots from the same video arranged chronologically
when a shot is selected, and a pop-up window showing
shots most similar to the selected one during similarity
search.
vitrivr-VR is the only system with a virtual reality

(VR) user interface, offering several result-browsing inter-
faces directly in VR. Query results are displayed cylindrically
around the user, allowing intuitive browsing by turning
the head. Additionally, the cylindrical grid can be rotated
horizontally, hiding higher-ranked, already-viewed results
and revealing unseen results in their place. For temporal
queries, each space in the results grid shows a stack of
previews, one frame for each segment in the matching result
sequence. Results can also be grouped by video, such that
each position in the grid shows the highest-ranked segments
of a single video, ordered by the best-ranked segment. Intra-
video browsing is facilitated by providing users with both a
conventional video player with a timeline and a multimedia
drawer showing keyframes of the video in a virtual box.
By riffling through these keyframes, each can be intuitively
inspected and selected to skip to the relevant part of the video.

The browsing interface of CVHunter consists of a
scrolling grid of top-ranked video frames, with the option
to quickly inspect video sequences (usually four fps) and
apply presentation filters (i.e., select only k top-ranked frames
from each video). From each frame, a video summary with
representative frames is accessible.
vitrivr offers multiple result presentation options.

In the context of VBS, the most relevant option groups
retrieved segments by video and arranged them chronolog-
ically within each video. Each segment is shown using a
static preview image. Clicking on any such preview opens
a video player overlay that starts the playback of the video
from the start of the selected segment. Additional controls,

such as adjusting playback speed and navigating the timeline,
facilitate browsing within the video.
Verge’s user interface offers image size customization,

an undo button for reverting to previous results, and a rerank
button to rerank results based on another query. It offers
several search modules, including free text search, concept
and activity search, late fusion, temporal fusion, color-based
image search, and search based on the number of people or
faces. Recent enhancements in Verge include replacing the
filmstrip of frames with a modal, a button for video playback
directly on each shot, and a button that, when enabled, will
return only the best shot from each video for AVS queries.
QIVISE’s interface is organized into three distinct areas.

After calculating the relevance of video shots, the system
presents a sorted display in the main window. Users can click
on any thumbnail to initiate one of two displays: the Video
Shot Display or the Shot Segmentation Display. The Video
Shot Display presents all shots from the same video as the
selected shot. This is particularly useful for queries that span
multiple shots, where a single shot may not provide sufficient
information for accurate judgment. The Shot Segmentation
Display, on the other hand, shows frames immediately before
and after the chosenmoment within the video, offering amore
granular view of the surrounding frames to assist users in their
evaluation.
VideoCLIP enables search using a variety of modalities,

including rich text, dominant color, OCR, and query-by-
image. The results are displayed in groups based on their
video and video segments to reduce the effort for a user when
locating potentially relevant targets.
v-FIRST supports browsing at different granularity levels

to facilitate quick dataset browsing and discards similar
images to enhance information density.
diveXplore [100] uses a simple 2D grid for browsing

results. For each result, it is possible to inspect the context by
opening the shot list of the corresponding video, which also
provides a video player and displays available meta-data.

In 4MR’s [34] browsing window, results are arranged in
a grid, with the first 500 displayed. Each video segment
is represented by its keyframe. Users can initiate a video
preview by clicking on these keyframes, which opens a video
player for further exploration.

Inspired by dating apps like Tinder,5 Perfect Match’s
browsing interface presents a frame suggestion to the user
based on the search input. The user can quickly decide if the
suggested frame belongs to the desired shot. If it is correct,
the frame can be submitted. Alternatively, the user can view
the next frame suggestion or search for the same or another
video.

IV. ANALYSIS OF VBS RESULTS
This section provides a comprehensive overview of the
competition results and the performance of different systems.

5https://tinder.com
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FIGURE 2. Overall scores per team and task type.

Subsection IV-A offers an overview of the overall results,
while Subsection IV-B delves into the analysis of the
KIS tasks, examining the available result logs for a select
number of systems. Subsection IV-C provides information
on performance in AVS tasks. The code and data required to
replicate all the analyses presented in this section are publicly
available via: https://github.com/sauterl/VBS23-Post-Hoc-
Analysis.

A. OVERALL RESULTS
During the competition, a total of seven AVS, seven KIS-T,
six KIS-V, and six KIS-V-M tasks were performed. The total
normalized scores per task type and team are shown in Fig. 2.
Among the four types of tasks, vibro achieved the best
performance in three of them (AVS, KIS-T, and KIS-V-M),
while VISIONE exhibited the best performance in the KIS-V
task category. Therefore, those performances were awarded
1,000 points in their respective categories, and all other teams
were scored proportionally. The overall score, as shown in
Table 1, is the sum of these four scores per team.
Fig. 3a shows the number of correct and incorrect submis-

sions per team for the three known-item search task types.
vibro was the only team with seven correct submissions in
the KIS-T category, making only two incorrect submissions
along the way. For visual KIS tasks based on the V3C dataset,
VIREOmade the most correct submissions with six, followed
by several other teams with five correct submissions each.
However, VISIONEwas the only team that managed to have
five correct submissions without making an incorrect one.
For the visual KIS tasks using the MVK dataset, vibro,
VISIONE, and vitrivr-VR managed to make six correct
submissions without any incorrect ones each.

The submissions manually judged for the AVS tasks are
shown in Fig. 3b per team and status. VIREO made the most
correct submissions, as well as most of the submissions in
total. vibro made the second highest number of correct
submissions across all tasks in this category but far fewer
incorrect ones than VIREO, resulting in a higher total score.
The scoring function for the three types of KIS tasks

considers not only the number of correct and incorrect

FIGURE 3. Distribution of correct and incorrect submissions for KIS tasks
(a), and correct, incorrect, and undecidable submissions for AVS tasks per
team (b).

submissions per task but also the time in which the correct
submission is made. Fig. 4a shows the time in minutes until
the first correct submission was made, grouped by team
and task type. In comparison, Fig. 4b shows the time until
the first submission, regardless of its correctness. It can be
observed that the teams with a higher total score not only
managed to find the correct result for more tasks but also
did so more quickly than others. This difference in time, for
example, explains the difference in scores between vibro
and VISIONE in the KIS-V-M tasks, despite both teams
having the same number of correct submissions across all
tasks, as can be seen in Fig. 3a.

The progression of the total normalized scores per team can
be seen in Fig. 5a. Significant jumps occur every time a task
from a new category (KIS-T, KIS-V, KIS-V-M, or AVS) is
solved, as the scores are normalized to 1000 points within any
category. The figure illustrates that while there are apparent
differences in performance between certain teams, others
performed very similarly and remained close in terms of total
score throughout the entire evaluation. The evolution of the
system ranks in the competition leaderboard, derived from
these score developments, are shown in Fig. 5b. Interestingly,
while the two highest-scoring teams changed places after the
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FIGURE 4. Distribution of time until the (first) correct submission per team and task type (a), and distribution of time until the first submission per
team and task type (b).

FIGURE 5. Development of total normalized scores per team over time (a), and team ranking over time (b).

9th task and remained stable with respect to their ranking until
the end of the evaluation, this is not the case for the teamswith
ranks 3 to 7.

B. ANALYSIS OF PERFORMACE IN KIS TASKS
In this section, we aim to gain deeper insights into how
each system performed in KIS tasks by conducting an
in-depth analysis of the logs collected by each team during
the competition. These logs, structured in JSON format,
contain essential information such as the team identifier, user
identifier (when available), timestamp, query description, and
a list of retrieved items for that particular query ordered by
rank.

After a preliminary analysis of the available logs, it turned
out that not all the teams had usable logs due to a hetero-
geneous set of problems (e.g., unrecoverable timestamps,
incomplete records due to logging system failures, etc.).
Teams with unrecoverable logs are excluded from the fol-
lowing analysis. Although many of the top systems correctly

logged results for the tasks related to both the V3C and
MVK datasets, the only one that presented dataset-specific
logging problems was Verge, which had unrecoverable
MVK logs. Despite this issue, we opted to include Verge in
the analysis, resulting in a final pool of seven teams: vibro,
VISIONE, VIREO, vitrivr-VR, CVHunter, vitrivr,
and Verge. Notably, these seven systems also correspond to
the top seven best-performing teams, according to the global
competition leaderboard.

1) LOG PRE-PROCESSING
A thoughtful collection and analysis of the logs was
performed to ensure that all the results of the different teams
were comparable despite the strong heterogeneity of the logs.

Logs were retrieved directly from the DRES server for
some systems like Verge, VISIONE, and vitrivr, while
logs for other systemswere obtained directly from the authors
who saved them locally, including CVHunter, vibro,
VIREO, and vitrivr-VR. The first step was to ensure
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FIGURE 6. The table reports for each system with logs (i) the best-achieved rank of a correct item (frame or video shot); (ii) the time tf in seconds
when the best ranked correct item was retrieved; (iii) the best ranking of any frame/shot of the correct video (but not necessarily the correct video
segment); (iv) the time tv in seconds when the best-ranked video frame/shot was retrieved; (v) the time tcs of the system’s correct submission. Red
values are for the best-detected ranks of the target video if the correct segment was not present in the logged result for a task. Green cells and
Yellow cells show the best achieved correct item and video with a rank less than or equal to 10, respectively. Red cells indicates browsing failures

when a correct item was in the first 1,000 results but was not submitted. Orange cells are other browsing failures when the correct video was
present – but no correct frame or shot was present – and no correct submission was made.

that locally collected logs complied with the DRES format
and that timestamps were consistent and synchronized with
DRES local time. Records that did not fall into an active
task were filtered out to ensure that only relevant actions
were considered in the analysis. Due to factors beyond direct

control, such as network problems or logging subsystem
failures, a limited number of logs may be incomplete or not
directly comparable.

It is important to note that different teams logged the
retrieved results up to different maximum ranks. For example,
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VISIONE, vibro, Verge, and CVHunter ranked the first
10K results, vitrivr and vitrivr-VR ranked the first
5K, and VIREO ranked the first 1K only. Moreover, for
specific queries, the maximum rank may be even lower (for
example, when computing the intersection between two result
sets to work out temporal queries). Additionally, the time
units logged vary between teams. In particular, for the V3C
dataset, vibro, CVHunter, and VISIONE logged frames,
while Verge, vitrivr, and VIREO logged segments
(pre-defined shot IDs). For the MVK dataset, VIREO
logged frames instead. To overcome this heterogeneity in
logging units, we convert all temporal information into a
physical-time format (seconds from the start of the video).

Despite these potential sources of errors, we consider that
this level of uncertainty is sufficient to evaluate the team’s
browsing and retrieval capabilities. It is worth noting that
during the competition, a live judge had the discretion to
manually accept submissions from the same shot that fell just
outside (less than 3 seconds) the KIS ground truth segment
boundary. However, since such occurrences were rare, the
original official ground truth was used for the subsequent
analysis.

2) COMPARISON OF SYSTEM’S RETRIEVAL EFFECTIVENESS
The table in Fig. 6 presents the retrieval effectiveness of the
various teams for both the V3C and MVK datasets, focusing
on the best rank and best time at which the correct shot
was found during the search. In particular, it includes the
best-achieved rank of a correct item (either frame or shot)
with the corresponding time indication (in seconds) from the
start of the task, as well as the time of the correct submission.

This analysis was calculated not only at the level of the
whole team but at the level of the specific user who used
the tool since mixing the different users who used the tool
may cause some unfair comparisons. Therefore, we report
the results from the best user only, where the best user was
identified as the one among the two that, for that particular
task, obtained – ordered by decreasing importance – (i) the
best shot rank, (ii) the best video rank, (iii) the shortest time
when the best shot was retrieved, (iv) the shortest time when
the best video was retrieved. Notice that we can distinguish
between the two users from the team logs, but we miss the
information about which user submitted the correct item.
For this reason, we cannot define the best user as the one
who submits the correct result, although it was a reasonable
choice.

Examining the overall table, we observe that the first
two teams, vibro and VISIONE, consistently achieved the
best correct frame/shot within the first ten results in the
majority of tasks (10 out of 19), and vibro achieved the best
result on the challenging MVK dataset (in 5 out of 6 tasks).
Furthermore, we notice a considerable variation among teams
regarding the percentage of tasks for which the correct shot
rank (or even video rank) is less than ten. Interestingly,
this percentage does not always align with the ranking
obtained in the final leaderboard. For example, although

VIREO and vitrivr-VR (ranked 3rd and 4th, respectively)
successfully retrieved the correct video within the first ten
results in almost 40% of tasks, they achieved the correct shot
within the first ten results less frequently than CVHunter or
vitrivr (ranked 5th and 6th). This discrepancy might be
attributed to two factors: (i) users manually searching for the
correct shot within the correct video, allowing these systems
to compensate for possible retrieval failures with effective
browsing abilities, or (ii) interfaces that group results by
video, enabling users to quickly locate the correct itemwithin
the first few videos with minimal scrolling.

The teams that experienced significant browsing failures,
wherein the correct shot was present in the result set, but users
were unable to locate and submit it within the allotted time,
were CVHunter and Verge.

Despite the inherent challenges posed by the novel MVK
dataset, characterized by highly redundant and noisy video
content (involving moving cameras in underwater environ-
ments), all the teams demonstrated good performance, with
a team-wise average percentage of incorrect submissions of
13% (only four incorrect submissions out of a total of 30).

In Fig. 7, we also report the best shot rank in the form of a
scatterplot. Unlike the results reported in Fig. 6, we separated
the two users and used the real user IDs instead of the
calculated best and second best. This plot helps to understand
if some users are noticeably better at querying their system.
Note that Verge is not included in this figure due to
limitations in its logs, which do not allow for an exact
distinction between the two system users. In the V3C data
set, the distributions of the best shot rank among the two
users seem to intersect slightly for all the teams in the Textual
KIS tasks, while more noticeable differences are visible
in the Visual KIS tasks. We emphasize that this is just a
hypothesis provided that the available data are limited by the
VBS evaluation style (see Section V). On the MVK dataset,
it appears that most teams have one user outperforming the
other. This can be a direct consequence of the challenges
introduced with the novel MVK dataset, which probably
requires different searching and browsing strategies that are
still not well established, therefore producing high variance
inside the teams.

3) BROWSING EFFICIENCY
The time elapsed between the correct submission and the
first appearance of a correct video in the logged result
set is depicted in Fig. 8. We report the results for both
V3C and MVK datasets, including the results from both
users. It is important to note that these graphs provide an
estimation of the actual browsing time, considering that a
correct submission may have been made by inspecting the
video rather than the top-ranked frames/shots. Additionally,
the user who first retrieved a correct item may not be the
same person who submitted the final correct answer, as this
information is not always available.

Visual KIS tasks for both V3C and MVK datasets(in
Fig. 8a and Fig. 8b) generally have low variance and a
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FIGURE 7. Best rank of correct items appearing in result logs, for both MVK visual KIS tasks (a), V3C visual KIS tasks (b) and V3C textual KIS tasks (c).

FIGURE 8. Relation between the rank of the first occurrence of a video in the result logs and time delta to correct submission, for visual KIS on MVK
(c), and visual (a) and textual (b) KIS on the V3C dataset. The black dash-dotted line represents the duration of the task. NCS stands for Non-Correct
Submissions and corresponds to all the correct frames found in the result logs that were not submitted correctly (either due to running out of time or
incorrect submissions). The blue line is found by linear regression and is accompanied by the 95% confidence intervals.

FIGURE 9. Browsing storyline for some of the KIS tasks. We report the browsing storyline only for the best user, indicating the correct submission with
big hexagons and the wrong submissions with crosses.

slight slope. The low variance of the fit indicates an effective
positive correlation between the rank of the initial result and
the time of correct submission. Additionally, the slight slope
suggests that for Visual KIS tasks, most of the users were able
to submit the correct result even if the first occurrence of the
shot/frame in the logs had a high rank.

A different scenario occurs with the Textual KIS tasks
in Fig. 8c, where there are cases in which the correct item
is found within the first ten results, but the users cannot
find it within the first 100 seconds, and in a particular case,
vitrivr cannot correctly submit it. This evidences the
intrinsic difficulty in Textual KIS tasks, where the semantic
gap between texts and images makes searching and browsing
more challenging.

In Fig. 9, we also report the temporal evolution of the
video rank for all the teams throughout particular tasks. Note
that these plots show changes in rank only when information
appears in the logs. Therefore, the flat line between two
consecutive changes in rank is a loose representation of

reality. The rank is also changing due to some unreported
browsing actions performed by the team during the ‘‘flat
line’’ zone. Despite these shortages, these graphs provide
valuable insight into the results already reported in Fig. 6. For
example, while there are tasks in which most of the teams
retrieve results after the first query formulation (Fig. 9b),
there exist other more complex tasks (like the KIS-T task in
Fig. 9c) in which the video rank oscillates broadly until some
teams can retrieve the correct video within the first ten results
after more than 250 seconds. At this point, due to lack of
time, most teams fail to submit correctly, with vitrivr and
VISIONE failing after finding the correct video in the 2nd
and 1st positions, respectively. These plots strongly underline
the importance of interactive search for solving the proposed
tasks.

4) ANALYSIS OF USER QUERIES
In this section, we conduct a detailed examination of the
types of search queries formulated during the competition and
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TABLE 3. Percentage of how many queries were text and how many were
other query types. The category ‘‘Text+Temporal’’ indicates when two or
more text queries are used together to perform a temporal search.

assess their level of success. Our specific focus is directed
toward the integration of joint text-image embeddings and
how these embeddings evolve with each reformulation of the
text queries.

For these investigations, it is imperative to have access
to log data that includes both the query type and the
actual formulated query. Among the teams examined, only
the log data from vibro, VISIONE, vitrivr-VR,
CVHunter, and Verge are considered suitable for our
research. Consequently, this section exclusively emphasizes
these five teams. It should be noted that users associated with
the team Verge submitted their data using identical user
IDs, making it unfeasible to distinguish between user 1 and
user 2 in subsequent analyses. Additionally, in our analysis,
we removed duplicate queries from the same team and user
when these duplicates were caused by logging problems or
when a user had submitted the same search query multiple
times.

Table 3 compares the most frequently used query types.
It becomes evident that most teams have primarily employed
text-based searches using joint embeddings. Other queries
that are not text-based are often solely image-to-image
searches, except for a filtering query by Verge. CVHunter
and vibro are the only two teams that utilize content-based
image retrieval more frequently, with vibro achieving an
almost 50:50 ratio. Regarding text queries,VISIONEwas the
team that used themmost often in combination with temporal
searches.

In Table 4, we compare the average performance of text
queries, text queries used in combination with temporal
search, and all other query types per user. The user column
represents the first and second users in each team’s log files.
The Top-k columns indicate the percentage of queries for
which the target shot appeared in the Top-k results. A dash
(‘‘-’’) denotes that no searches of the respective query type
were conducted. The ‘‘query / min’’ column represents the
mean number of queries conducted per minute for a particular
query type and user. Since a task is considered completed for
a team as soon as one of the two team users submits a correct
result, we computed the individual user’s queries per minute
for a given task by dividing the time it took the team to submit
the correct result (or the total duration of the task if unsolved)

by the number of queries made by that individual user within
that time frame. Additionally, the average word count and
character count (query length) are provided for text queries.

When analyzing text-based queries only, there are no
significant differences between team users in terms of
queries per minute. Deviations are mainly due to longer
text queries, more frequent use of temporal queries (2nd
user of VISIONE), or, in the case of CVHunter, the
utilization of other query types. The two users within a system
seem to respond equally quickly, except the second user
from VISIONE, triggering twice as many queries as their
first user. This discrepancy might arise from the possibility
of sending multiple similar queries (such as correcting
spelling or punctuation errors, to which text-to-image-based
embeddings are particularly sensitive). The relatively low
number of queries in vitrivr-VR can be attributed to
the slower process of inputting queries in the virtual reality
user interface, as the system primarily emphasizes browsing
functionality.

Furthermore, there appears to be a slight correlation
between the number of words per query or the query
length and the ranking of the target shot. In each team,
the user with longer search queries achieved better Top-
k rankings. This can be attributed to CLIP’s capability to
process detailed written information, thus enhancing the
search results. The results are not comparable between teams
due to the use of different CLIP models. Nevertheless, a more
in-depth analysis of the relationship between query length
and the ranking of correct results for both users within
a team indicates that there isn’t a clear-cut correlation.
In general, for VISIONE and CVHunter, longer queries
tend to achieve better rankings for correct shots than shorter
queries. However, systems such as vibro, vitrivr-VR,
and Verge exhibit a more balanced distribution in this
regard.

The Top-100 values for the type of text query among
different users in teams vibro and VISIONE are quite
similar, suggesting that their text search abilities are also
fairly comparable. vibro’s slightly superior ranking in the
competition could potentially be attributed to the application
of other query types and browsing functionalities.

For the ‘‘Other’’ query type rows, only vibro and
CVHunter can be considered, as other teams rarely
employed anything other than text queries, and their Top-k
values for other query types might contain outliers. Both
vibro and CVHunter use search-by-example queries.
Although their average results for Top-10, Top-20, and Top-
50 are inferior to their text results, the figures for Top-100
and beyond are relatively similar. Therefore, both systems
demonstrate the ability to perform context-based image
searches that effectively complement text-based queries.
Please note that there is a dependency between the rows
corresponding to different query types, as simple tasks are
usually solved by an initial text query, whereas other query
types are commonly employed in subsequent steps to address
more complex tasks.

VOLUME 12, 2024 79355



L. Vadicamo et al.: Evaluating Performance and Trends in Interactive Video Retrieval

TABLE 4. Query statistics per team member and query type averaged over all KIS tasks. The queries per minute, average number of words, and string
length of textual queries are depicted for each user. Additionally, top-k denotes the percentage of queries for which the target shot was within the first k
results.

In the following, we take a closer look at the joint
text-image embeddings of the text queries used by all five
teams, each employing some form of CLIP embedding.While
the specific type of embedding may vary among the teams
(refer to Section III-A), these embeddings were not stored in
the logs. To facilitate comparison, we uniformly generated
new embeddings using vibro’s feature vector pipeline,
as detailed in Section III-A. Then, we focused on the cosine
distances between embeddings of individual queries provided
for the same task.

Fig. 10 shows the mean pairwise cosine distances sepa-
rately for each task and each team, as well as aggregated
for task types and teams.6 Several interesting observations
can be made from Fig. 10. Firstly, the mean embedding
distances are smaller for textual KIS tasks than for visual
ones, especially V3C datasets. We attribute this difference
to the fact that in textual KIS tasks, the scene description
serves as a central point from which all users start developing

6We only included points where at least two queries per team were
available, and each pair of queries was considered with equal weight when
calculating averages.

their queries. In contrast, in visual tasks, many possible visual
cues are causing higher variance in their respective textual
descriptions. Furthermore, the higher variance within the
searched scenes in V3C compared to MVK could further
explain the difference between the two datasets. Secondly,
there is a difference in the mean query distances per team.
On average, from the least to the most diverse queries, the
ordering is VISIONE (0.47), vibro (0.50), CVHunter
(0.56), Verge (0.64), and vitrivr-VR (0.68).7 The same
order of teams is also achieved if we consider the queries
of individual users separately. Note the correspondence
between decreasing query distances and increasing overall
team scores. We can assume that the longer the task remains
unsolved, the more distant queries are produced by the team
members.

To corroborate this hypothesis, we focused on the
sequences of text queries constructed by individual users

7Note that (i) both vitrivr-VR and Verge had missing data for
some tasks, (ii) both VISIONE and vibro had significantly more compact
queries than CVHunter on average (t-test p-value < 2.4e-6).

79356 VOLUME 12, 2024



L. Vadicamo et al.: Evaluating Performance and Trends in Interactive Video Retrieval

FIGURE 10. Mean pairwise query distances w.r.t. CLIP embedding features and cosine distance for
individual teams and tasks. The average distances for each team and task type are depicted as dotted
lines, while average distances w.r.t. all teams for specific task types are depicted as dashed lines.

TABLE 5. Comparison of mean distances in sequences of text queries. For
both the distance w.r.t. CLIP embeddings (CLIP) and Levenshtein distance.
The first line depicts distances from the first query, while the second line
depicts distances to the previous query.

for each task.8 Table 5 presents the mean distances of the
first text query provided by a user to a given task and
the subsequent ones (i.e., Q1 vs. Q2, Q1 vs. Q3, etc.) as
well as the distance between each query and the previous
one (i.e., Q1 vs. Q2, Q2 vs. Q3, etc.). It is apparent
that while the distances between subsequent queries remain
roughly the same (or slightly decrease), the distance from
the first query gradually increases. To verify these findings,
we also conducted the analysis using the Levenshtein distance
between query strings, yielding similar observations. The
current data show that the distance to the initial query
could converge9 around the fifth query, but additional data
with longer sequences would be necessary to verify this
assumption.

Finally, we focus on what is the source of diversity in
per-team text queries. For this, we compared the mean
differences of queries for the same task within each user,
between queries of both users from the same team, and
between queries of users from different teams. The mean
distance between queries of the same user was 0.46, the

8In the subsequent analysis, we only considered sequences of five or more
queries. We removed the results of the Verge team as we could not reliably
identify individual users in their logs.

9I.e., subsequent queries on average are not more distant from the first one
than the previous ones.

TABLE 6. AVS tasks conducted during VBS 2023.

mean distance between queries of different users of the
same team was 0.61, and the mean distance between queries
of users of different teams was 0.64. We also checked
for differences between individual teams, but no notable
exceptions appeared. We interpret these results as follows.
Individual users tend to be consistent in how they construct
queries throughout the search task, with minimal variation.
While the search tool itself also seems to play some role
in the inter-query differences, users themselves (even those
from the same team) are the primary source of diversity in
query construction. This finding may support the argument
for modifying the VBS competition to ensure more uniform
user sampling.

C. ANALYSIS OF PERFORMANCE IN AVS TASKS
In this section, we delve into the setup, evaluation, and
analysis of the AVS tasks. Unlike the KIS task, the correct

VOLUME 12, 2024 79357



L. Vadicamo et al.: Evaluating Performance and Trends in Interactive Video Retrieval

FIGURE 11. AVS: Ratios of the teams’ first correct submission per task.
When multiple teams submit the same segment, this contributes to each
team’s ratio individually.

answer to an AVS task is not unique. Instead, participants
are tasked with finding as many relevant results as possible
based on a brief textual description (see Table 6). Due to the
massive dataset volume, it is unfeasible to label everything
for ground truth. Therefore, real-time evaluation during the
competition is conducted by experienced judges using the
DRES evaluation server. Since there is heterogeneity in
the submission units used by different teams (e.g., single
frame number, specific time of the video, or a pre-defined
video shot identifier), in DRES each submission is mapped
onto pre-defined reference shots that will be presented to
the judges for their evaluation. As detailed in Section II,
penalties are applied for incorrect submissions to prevent
excessive arbitrary submissions. Additionally, the evaluation
metric accounts for diversity, as submitting different correct
shots of the same video does not increase a team’s score.
Moreover, a video submission that is distinct from other
teams’ submissions can have a greater impact on the
evaluation compared to a video that is commonly found by
most teams. Specifically, as shown in Eq. (1), each team’s
score is divided by the total count of correct videos among all
teams’ submissions.

Fig. 11 compares the share of the first correct submissions
from different teams in each task. We only count the ratio
of the first correct submission, as it contributes the most to
the AVS score (see Eq. (1)). Investigations have shown that
even though the newly introduced scoring function results
in diminishing returns, teams have submitted from the same
video. However, since the scoring respects the diversity of
videos found per team, the submission of the same video
by multiple teams contributes independently to their shares.
Each team did not consistently submit a similar share in
different AVS tasks. For example, although VIREO tends to
have the highest number of videos in most tasks, its number
of submissions is significantly less in task a2. A similar
situation can also be observed for vibro in task a2 and a4.
Conversely, VISIONE dominates the share in task a2, despite

FIGURE 12. Kernel density estimate for AVS submissions. When multiple
teams submit the same segment, this contributes individually.

having a relatively lower quantity of submissions in the other
tasks. This fluctuation in a team’s submission share can be
attributed to various factors such as the features utilized,
methodologies for composing queries, and search strategies
employed. Furthermore, the teams with the highest number
of video submissions in the AVS tasks, namely VIREO and
vibro, achieved the top two highest AVS scores. This
underscores the significance of the number of submissions
in the evaluation process. Furthermore, although VIREO
submits the most videos, its overall score is less than vibro
as they submit more incorrect results, which can be observed
in Fig. 3b.

In addition to the variation in submission density among
different teams, submissions are not evenly distributed across
the time dimension. Fig. 12 shows the estimated submission
density during the competition time. In most tasks, the
submissions reach their peak around 100 seconds, indicating
that participants have typically formulated their queries
and submitted the top-ranked results by this time. As the
competition progresses, while participants continue to find
new results, the density of submissions decreases. After the
peak submission period, participants often need to revise
their query, change their search strategy, and delve deeper
into the ranked list to uncover additional results. In some
cases, the submission peak occurs later in the competition.
For example, in task a5, it takes nearly 200 seconds longer to
achieve the submission peak, reflecting the greater challenge
in formulating effective queries to optimize the ranking of
matched videos.

The difficulty of an AVS task is reflected not only by
the hardness of composing a suitable query but also by the
difficulty of understanding the query and discerning the
results. Fig. 13 presents two metrics to assess task difficulty.
The bar chart shows the ratio of correct and incorrect
submissions in each AVS task, with the x-axis indicating
the tasks sorted in increasing correctness ratio. A lower
correct ratio is mainly attributed to indistinguishable results.
In addition, as is shown in Eq. (1), if all submissions
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FIGURE 13. Ratios of the overall correct and wrong submissions per task
(bar chart, left y-axis) and the time cost to submit the first (correct) result
(scatter chart, right y-axis). Since only the first correct submission from a
video is evaluated, both the correct and wrong submissions were divided
into valid and not-evaluated (NE) submissions. The queries in the x-axis
are in the increasing order of the correct submission ratio.

from a team referring to the same video are incorrect,
they are all evaluated (with a penalty) in the final score,
but if at least one correct submission exists, then only the
submissions before the first correct submission from that
video are evaluated. Therefore, we categorized both correct
and wrong submissions into evaluated and not evaluated (NE)
submissions to showcase the ratio of valid submissions. This
categorization reveals that the majority of submissions come
from distinct videos, while between 17% to 30% of correct
submissions and 5% to 20% of incorrect submissions are
not evaluated across queries. The difficulty in solving task
a2 and task a3 arises from quantity and negative constraints,
as shown in Table 6. The negative constraint ‘‘without other
people visible’’ (a2) and ‘‘no other persons walking or
running’’ (a3), and the quantity constraint, ‘‘only one person’’
(a2), require participants to check the entire video segment
and perform the identification painstakingly. Participants are
likely to submit a video segment solely according to its
keyframe while overlooking the incorrect frames in the rest
of the video segment. On the other hand, the scatter chart
presents the time until the first (correct) submission by the
first and 50% of the teams. This metric reflects the difficulty
in understanding the query, composing a draft query, and
submitting the first (correct) result. The y-axis on the right-
hand side of Fig. 13 indicates the corresponding time in
seconds. The lower the position of a scatter point, the more
time is spent. The trends of difficulty level by the two different
metrics agree with each other. An exception occurs in task
a4, where the longest query length and the most complicated
query structure (in terms of the depth of the dependency
tree) lead to more time for 50% of teams to submit their
first (correct) result, although the results are relatively easy
to distinguish.

FIGURE 14. AVS: Time judges needed to render a verdict.

Fig. 14 presents the distribution of judgment time for
each submission in different tasks. The median time for an
experienced judge to give a verdict is around 10 seconds,
which is apparently longer than the time for a participant to
submit a video segment. Upon filtering outliers, there is no
significant variation in judging time among different tasks.
Nevertheless, we can still find that the trend aligns with the
difficulty observed in Fig. 13 when sorting the time to judge
in increasing order, indicating that the difficulty of submitting
a video correlates with the difficulty of rendering a verdict at
the task level.

Table 7 shows the agreement and disagreement between
the judges and the teams. Each cell in the table represents the
fraction #agreement

#disagreement , where #agreement and #disagreement
represent the number of identical submitted shots judged as
correct and wrong, respectively. For instance, in task a2,
the red cell showing 0/1 indicates that while no shot was
submitted by seven teams and judged as correct, there was
one shot (item 02964, timed from 226 to 230 seconds) that
was submitted by 7 teams and evaluated as incorrect. This
discrepancy may arise because judges assess the entire shot,
while teams may have viewed or submitted only a specific
frame of the shot. For example, in the case of video 02964,
while half of the shot is correct (showing only one person
riding a horse), the other half contains several people riding
horses, rendering it incorrect. Compared to last year [70],
significant disagreement appears in more tasks, i.e., task a2
and a3. In task a2, seven teams disagreed with the judgment
on one video, while four teams disagreed on one video in task
a3. These tasks exhibit greater submission difficulty in Fig.13
and judgment difficulty in Fig.14, which could contribute to
the higher disagreement. Beyond that, the disagreement is
not significant in all other AVS tasks. On the other hand,
we could see that if the description has a very low potential
for misinterpretation (task a7), the majority of submissions
are correct and in agreement with the judges’ evaluation.

Regarding the newly introduced scoring function, its
overall scores’ rank correlation to the ranks obtained using
the old formula is very high (0.929). Our interpretation of this
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TABLE 7. Number of submissions in agreement/disagreement between judges and different number of teams.

value is two-fold: a) there would not have been a significantly
different ranking of the teams using the old formula, and b)
the teams’ search strategy appears unaffected by the scoring.
However, since there is no survey on the strategy, we can
only assume the latter point as the communication of the
organizers during the competition has been for 2022 and
2023 to ‘‘find as many shots as possible’’.

V. CONSIDERATIONS FOR FUTURE EVALUATION SETUP
In this section, we suggest re-evaluating the VBS setting
to address certain inherent limitations in its assessment
methodology, which are detailed and discussed below.
Specifically, we compare three alternative options:

• Collaborative Users in a Single Team (VBS 2023
Setting): In this setup, users of the same system are
treated as a single team allowed to collaborate, and
their cooperation contributes to the evaluation scores.
A KIS task is considered completed for a team when the
fastest user in the team submits a correct result, while
incorrect submissions made by other team members
incur penalties affecting the final score. In AVS,
submissions from all team members are combined
and scored collectively, with only one correct result
evaluated per video if multiple users submit results from
the same video. The winning system is determined by
the team with the highest cooperative score.

• Independent Users Aggregated into a Single Team: In
this configuration, independent users of the same system
are considered a unified team, but direct collaboration
among them is not allowed. Each user independently
attempts to solve tasks, and the final score for a task
is calculated as the average of individual user scores.
The winning system is the team with the highest
score.

• Independent Users as a Distinct Team: In this scenario,
each user of a system is treated as a distinct team, with no
collaboration or score aggregation among independent
users. The VBS competition is won by the system with
the highest-performing independent user.

The primary drawback of the VBS 2023 Setting is that
once one user solves a task, the entire team stops searching,

resulting in the loss of valuable information for analysis.
Moreover, it is unclear if there is an outstanding user within
a team, as individual performances are not discernible.
Additionally, while this setting allows for the evaluation of
cooperative systems, it puts systems that participate with a
single user at a disadvantage.

The second and third options share two main advantages:
Requiring all users to attempt to solve all tasks could enhance
the competition’s entertainment value and provide more com-
prehensive system evaluations. The second option may seem
promising if all teams could send the same number of users
to VBS. However, ensuring equal participation is challenging
and cannot be guaranteed (e.g., financial constraints, staffing
limitations, or other practical considerations). Moreover,
some teams may choose to participate with only their best
user (super-user), potentially limiting the volume of log data
available for analysis. However, there are several compelling
arguments for the third option:

• Any number of users (with a recommended minimum of
2) can participate without notable unfair effects on the
overall system score, allowing for more extensive data
collection for scientific analysis.

• Teams are motivated to have more users, as the
performance of the best user is unaffected by additional
team members. Moreover, it is always advantageous for
a team to participate with as many users as possible as
designating one system user as the ‘‘best’’ before the
competition does not necessarily guarantee that they will
ultimately deliver the best performance.

• Having independent users makes it feasible to examine
whether there is a low or high variance in the per-
formance of different users within the same system,
which might not be possible in the other two scenarios
analyzed, both of which involve aggregated scores.

• Identifying and analyzing super-users is more effective,
as their impact on rankings can be assessed more clearly.

• There is no need to update the current infrastructure
(DRES), though some aggregated visualization could be
added for clarity.

Considering these factors, we recommended adopting the
third option, which has been approved by the VBS organizing
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committee for the 2024 edition of the competition. There
are other aspects, however, that require attention. Improving
the clarity of AVS queries and ensuring consistent logging
practices are essential.

Our evaluation revealed that there is often a lack of
agreement regarding the correctness of AVS submissions.
Teams often seem to disagree with judges, and also judges
sometimes disagree with each other. For example, we could
see that the AVS task a3 was misunderstood by many teams
(four teams submitted the same shot, which was rated as
wrong) because it was probably not entirely clear what
‘‘a sub-urban street’’ is, and whether ‘‘other visible people
where really standing or running’’ (or whether a marathon
participant taking a short break is still ‘‘running’’). This is
very unfortunate for teams because incorrect submissions
have a severe impact on the scoring. Clear task descriptions
with minimal chance of misinterpretation, accompanied by
visual examples, can reduce disagreements between teams
and judges.

Another consideration for future VBS editions is to ensure
that all participants adhere to comprehensive and consistent
logging practices. Participants should be explicitly instructed
to meticulously save logs of their systems, encompassing
snapshots of results of all performed queries (at least top-
k items), including query specifications, a practice already
adopted by some teams. Including browsing actions in logs
could further enhance understanding of users’ interactions.
However, non-trivial open challenges need to be resolved
first [89].

Additionally, future evaluations should consider collecting
specifications of participating systems to highlight the diverse
hardware and computational resources utilized. This data
would offer valuable insights into the performance and
capabilities of these systems, enabling an analysis of the
trade-off between efficiency and effectiveness.

Finally, it is worth noting that before the COVID-19
pandemic, the competition also included evaluation sessions
with novice users. Unfortunately, these sessions have been
omitted in recent years due to logistical constraints from
remote participation. It is of great importance to make sure
that the next editions of VBS include evaluation sessions with
novices to provide amore complete evaluation of the usability
and performance across diverse users.

VI. DISCUSSION AND FUTURE CHALLENGES
Our analysis indicates that teams predominantly relied on
free-text search with joint embeddings, such as those derived
from models like CLIP and OpenCLIP, complemented by
result browsing. This approach proved effective for most KIS
tasks. However, while visual KIS tasks were relatively easy
with this type of search, textual KIS tasks posed greater
challenges. Teams often struggled to formulate text queries
that returned relevant results, with some tasks requiring more
than 250 seconds to find a correct answer – this is clear
evidence that content-based search still suffers from semantic
gap when no visual example is available.

The observed variability in search performance among
teams underscores the need for continued exploration of
diverse search strategies and methodologies. For instance,
the best two teams, vibro and VISIONE were able to find
the search item within the first ten results for 10 out of
19 tasks, while other systems often ranked the correct item
much higher, even though almost all systems shared the use
of the latest CLIP models. This underscored the importance
of complementing CLIP-based cross-modal search features
with other effective search and browsing functionalities.
For example, VISIONE stood out for its frequent use
of temporal queries to complement textual queries, while
vibro often complemented its textual queries with query-
by-visual-examples. A promising direction is to support bi-
modal queries, where visual and textual queries are combined
to give the user fine-grained control over the properties of the
target item. For example, the emerging field of Composed
Image Retrieval [29] addresses the problem of retrieving
target images that are visually similar to a query image but
with modifications indicated by a textual query.

Another finding is that longer text queries often return
more accurate results and that teams try to adapt their
queries until some relevant content is presented in the top-
k results. Interestingly, the diversity of free-text queries
is relatively low within the same user but higher among
different teams or even different users within the same
team. While different understandings and formulations of
the query are primary reasons for this, other factors, such
as cultural differences, may also influence query diversity.
Understanding the dynamics of user interaction with search
systems, particularly the iterative adaptation of queries, can
provide important insights into developing more intuitive
and user-friendly interfaces (e.g., integrating automatic query
suggestions). v-FIRST has been a pioneer in this regard,
being the only VBS system that integrates an LMM-based
suggestion tool to enhance query clarity. Although its
performance did not excel in terms of competition ranking,
the direction taken is promising. Recent advances in the field
of LMMs, with continually improving performance, suggest
that such models have significant potential in enhancing
interactive video search.

There were also significant differences in the number of
issued queries by the team and team members. VR systems
seem to have some drawbacks when it comes to textual
queries [106] (even speech recognition is challenging due to
the noise of other teams), while remote users with a normal
and familiar keyboard (non-laptop), and a high-performance
PC-setting, seem to be able to produce significantly more
queries than mobile team members on site. However,
vitrivr-VR, the sole VR system in the competition
demonstrated promising potential for video browsing in VR.
Despite often lacking the correct search item in the result
set, it successfully located the correct item through browsing
in nearly all KIS tasks, ultimately achieving a fifth-place
ranking. This highlights the potential of VR user interfaces
and underscores the importance of addressing their inherent
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challenges, as this is an emerging and promising area of
research that would enable the creation of more inclusive and
versatile interactive video retrieval platforms.

Notably, teams sometimes failed to find the correct shot,
although the right video (with another shot) was ranked in
their top ten results. This clearly demonstrates the importance
of user interface design. Future developments should focus
not only on refining search engines but also on creating
interfaces that empower users to inspect and filter diverse
types of information efficiently.

VII. CONCLUSION
In this paper, we performed an extensive evaluation of the
Video Browser Showdown 2023 (VBS2023), which took
place in Bergen, Norway in January 2023 at the International
Conference onMultiMediaModeling (MMM2023). 13 teams
from 10 different countries participated in this challenging
large-scale video search competition addressing 7 AVS tasks
and 19 KIS tasks. Our evaluation encompassed an exami-
nation of the participating systems, offering an overview of
their methodologies and delineating both commonalities and
distinctive features. Furthermore, we meticulously analyze
system logs containing all user queries and results during
the competition. This analysis offers a comparison of
the systems’ performance and characteristics from various
perspectives, including submission speed, retrieval success,
and employed query types. Moreover, it provided valuable
insights into the strengths, challenges, and future research
directions of modern video search. Overall, despite all
the progress in semantic content understanding, performing
specific content search tasks in large and diverse datasets
remains challenging. The VBS provides a valuable platform
to evaluate the true practical search performance and will
continue to extend its tasks with different test tasks (e.g.,
question answering) and datasets (e.g., medical video data).
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