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ABSTRACT The availability of low-cost unmanned aerial vehicles (UAVs), or drones, has made their
organisation in fleets more feasible. The required coordination for managing these fleets comes with an
increased complexity. When used for long-durability, autonomous inspection missions, it is necessary to
recharge the drones due to their limited battery capacity. By providing a set of nearby charging stations, the
fleets can autonomously recharge and sustain indefinite missions. In order to reduce congestion at these
charging stations, effective scheduling of charging cycles can have a significant impact on the mission
execution time. In this paper, we propose a novel centralized method for scheduling charging time windows,
taking into account the travel distances and occupation of charging stations. We formulate a mixed-integer
linear program (MILP) model with two extensions to reduce the computational complexity. The solution to
this problem assigns a set of charging windows to each drone, minimizing the mission execution time and
ensuring batteries will not fully deplete. The performance of our proposed method is evaluated through a
series of experiments, based on a discrete-event simulator. Our results reveal a clear benefit over a greedy
approach, reducing the mission execution time by up to 39.8%. Through careful parameter selection, a trade-
off between mission execution time and scheduling time can be found.

INDEX TERMS Charging, discrete-event simulation, drone fleets, MILP, scheduling, time windows.

I. INTRODUCTION
In recent years, the reduction of hardware cost and increase in
computation power has made small unmanned aerial vehicles
(UAVs), or drones, more suitable for new application areas.
When equipped with additional sensors, they have immense
potential to execute tasks that are currently being done by
humans, such as ‘‘last mile’’ parcel delivery [1], search
and rescue operations [2], and safety-critical infrastructure
inspection [3], [4], [5], [6]. The presence of lightweight and
powerful onboard computers allows drones to autonomously
make decisions, removing the reliance on a human operator.
Autonomous missions can benefit from organising multiple
drones in fleets to complete tasks in a coordinated fashion,
which reduces the task completion time and increases
overall resiliency [7]. These benefits come with an increased
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complexity of coordination and involve communication, task
allocation, collision avoidance, and path planning.

The typical battery capacity of a drone lasts for tens of
minutes [8]. Depending on the application, this might not be
sufficient, and recharging or replacement facilities must be
available. This paper considers a specific use case, in which
an ordered set of waypoints, or points in a three-dimensional
space, is allocated to each drone prior to a mission, and a
set of charging stations is positioned near these waypoints.
By interrupting the mission execution (i.e., visiting these
waypoints in sequence) to charge their batteries at one of the
charging stations, each drone can operate indefinitely. In the
presence of a large fleet, a strategy is required to determine
the order in which drones should be served by each of the
stations (i.e., a temporal aspect). Similarly, a spatial strategy
is required to determine which drone should be served at
which charging stations. The spatial strategy determines the
path that a drone takes during its mission, thereby affecting
its energy consumption and arrival time at charging stations.
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As a result, spatial and temporal scheduling are naturally
intertwined.

In this paper, we seek to obtain the optimal time window
scheduling method for a given scenario, composed of
waypoint and charging station locations, taking into account
relevant characteristics of the drones, such as their speed,
minimum required battery level, and charging and depletion
rates. A schedule consists of a set of time windows, each of
which indicates the start time and duration of a particular
charge station visit for a drone, and guarantees that the battery
levels of the drone remain above a minimum threshold. The
optimal schedule is the composition of time windows such
that the maximum mission execution time across drones is
minimized. This particular scheduling problem has not been
addressed by the research community, and yet naturally fits
concrete drone fleet applications, such as disaster relief or
the inspection of infrastructure. We recognize the following
design principles that the optimal schedulemust adhere to and
are particularly relevant to our use case:

• The optimal schedule is continuous in time, as opposed
to the discretization of time into slots.

• The charging duration of a drone is relatively long
to its depletion duration [8]. As a consequence, each
charging window has a variable duration and its
duration directly affects the charged battery level.

• It is not always beneficial for a drone to fully
charge its battery and instead might terminate charging
preemptively.

• Charging stations can only serve a maximum number
of drones simultaneously, and to avoid queuing and
crowding around a charging station, drones should be
able to be routed to other charging stations.

We propose a centralized method for obtaining the
optimal charging schedule by formulating a mixed-integer
linear programming (MILP) model aimed to minimize the
mission execution time, that can be solved by off-the-
shelve commercial tools. The model addresses the four
aforementioned principles and is parameterized by the
positioning of charging stations and waypoints, velocity of
drones, depletion and charging rates, and required battery
levels of the drones. Furthermore, we extend this model to
address the computational complexity and uncertainty of the
operation environment by repeatedly formulating and solving
smaller, less complex models. We evaluate the efficacy of our
proposed methods and the effect of the parameterization by
comparing them to a greedy approach. For this evaluation,
we implement a discrete-event simulator and design a set
of experiments on a bridge inspection use case. We share
the source code of our simulator, experiments, and data
processing.1 Our major simulation findings are as follows:

• Our optimal approach consistently outperforms a
greedy baseline approach for a variety of parameters
and configurations.

1https://github.com/kdhageman/spatiotemporal_charge_scheduling

• This overall optimality is achieved by sacrificing
the mission execution time of faster drones for the
reduction of the execution time of slower drones.

• The parameterization of our MILP problem allows
operators to make a trade-off between the optimality
of the mission execution time and the time used for
scheduling.

The related work is described in Section II. We introduce the
mathematical formulation of the charge scheduling problem
in Section III and introduce the extensions in Section IV.
This is followed by an in-depth evaluation in Section V.
We conclude the paper with a discussion in Section VI and
conclusions in Section VII.

II. RELATED WORK
The state-of-the-art related work differs from our work in
two significant ways: the target use case is different or they
tackle only a subset of the aforementioned principles that are
key to our use case (i.e., continuous time, variable charging
duration, charge interruption, and queuing avoidance at
charging stations). We present an overview of the significant
related works and denote the key differences to our work,
summarizing these findings in Table 1. In cases where the
authors did not explicitly mention a principle, we assume
it is not considered in their design. We acknowledge the
comprehensive literature on optimal electric vehicle charging
addressing related issues. However, this falls outside the
scope of our analysis

As a first remark, the scheduling problem we address
in this paper is orthogonal to combinatorial problems such
as the vehicle routing problem (VRP) [26] and the job-
shop scheduling problem (JSP) [14]. Our proposed approach
assumes ordered sequences of waypoints, differentiating our
work from the VRP. Similar to the JSP, a series of ordered
jobs – in our case a variable number of charging operations
per drone – need to be processed by a set of machines, the
charging stations. However, in our use case, the number and
duration of jobs are variable and dependent on how previous
jobs are scheduled, differentiating our problem definition
from the JSP.

Pasha et al. [27] provide a state-of-the-art overview of
charging-related drone scheduling problems. It coins the term
Drone Scheduling Problem with Recharging Considerations
(DSPRC), an optimization problem formulation originating
from Kim et al. [9]. The use case of this work involves
employing a drone fleet to track the path of an object such
that the object is constantly and perpetually tracked by at least
one drone, charging drones along the tracking operation. This
work is further refined to reduce the scheduling time [10] and
to reduce the complexity of the problem through scheduling
for a short, receding horizon [11], [28]. In contrast to our
work, these MILP formulations assume a fixed charging
time, as opposed to one that depends on the battery state
and varying charging rates of the drones. Kim et al. [14]
propose a centralized path finding and charge scheduling
system for drone fleets, which must navigate from a source

74292 VOLUME 12, 2024



K. Hageman, R. H. Jacobsen: On the Scheduling of Spatio-Temporal Charging Windows for Autonomous Drone Fleets

TABLE 1. Overview of relevant related work.

to a destination. This work considers relevant aspects, such as
continuous time scheduling, avoiding simultaneous charging,
travel time prediction (both waiting, charging, and flying
time) and battery depletion rates. Their shortest path-based
method navigates drones through a network of charging
stations between a source and target location – a different
use case from ours where there is a sequence of target
locations – and drones are assumed to always fully charge.
Similarly, Song et al. [12] propose a MILP formulation for
solving a distance-constrained version of the vehicle routing
problem, combining it with a receding horizon to address the
NP-hardness of the problem. In contrast to our work, they do
not address the potential conflict of multiple drones trying
to charge simultaneously which our approach does resolve.
In [24], the authors addressed the problem of extending the
drones operating range from a network design perspective.
The authors used a mixed-integer optimization model and a
heuristics method to find the optimal number and location
of charging stations with respect to a set of delivery points.
In contrast to our use case, the set of delivery points can
potentially be significantly spread out whereas our use case
considers drone inspection points that are bound to the
infrastructure under inspection. Ribeiro et al. [19] used a
MILP formulation to tackle the routing problem in inspection
and charging planning. In contrast our work the study focused
on optimal route planning and did not consider temporal
aspects. The authored compared different solvers to evaluate
the feasibility of handling the problem complexity.

Auction-based methods allow drones with competing
interests – their desire to charge interferes with the desire

of other drones – to agree on an order in which drones can
charge at a station. Shin et al. [15] propose a centralized and
machine learning-based charge scheduling system, in which a
single charging station collects bids from drones and assigns
charging slots to the winner of an auction. The output of
this proposed method is effectively an ordering of drone
schedules, as only a single charging station is involved.
Alternatively, Hassija et al. [17] propose a decentralized,
blockchain-based strategy, in which drones join and leave a
distributed ledger network with charging stations and agree
on schedules and prices. The concept was further explored
in [20], where UAVs were equipped with tokens to buy
energy from charging points using a tangle data structure.
An improvement of the work in [17] was later presented
by Torky et al. [23]. The improvement resulted from the
combination of the auction based method with particle swarm
optimization (PSO). None of these methods plan in advance
or anticipate future events.

A generic drone swarming scheduling problem is
addressed by Ghazzai et al. [13], in which a drone fleet is
assigned to cover events, taking into account their location,
and starting and end times. The drones can charge at a single
charging station. This work is followed by [16] in which
the placement of charging stations is optimized and multiple
charging stations are introduced. The authors discretize time
into timeslots of different lengths, to align time slots with
the start and end times of the events that must be handled.
In the latter, the authors do not explicitly prohibit drones
from charging at the same station simultaneously. Wang et al.
[25] studied a related problem analyzing cooperative path
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planning algorithms of a UAV swarm for optimally servicing
many spatial locations with dynamically released demands.

Even though our work differs from the VRP, our work
shares similarities with battery-constrained routing planning
methods. Liu et al. [18] introduce a reinforcement learning-
based method for route planning and deciding when to charge
a swarm of drones, focusing on visiting a set of sensing nodes
for data collection. In their approach, congestion at charging
stations is not considered. Similarly, Ahani et al. [21] tackle a
variant of the VRP, in which a UAV must collect information
from sensor nodes to deliver to a base station. The time
since the last collection of data, referred to as the age of
information, acts as an important metric for defining which
nodes to visit per iteration, to optimize the freshness of
the sensor data at the base station. In their graph labeling
approach, time is discretized and partial charging is allowed
but it does not address multiple drones nor multiple charging
stations, thereby not addressing scheduling conflicts. Arafat
and Moh [22] focus on the drone delivery routing problem
(DDRP), proposing a three-phase process (preprocessing,
flight segment construction, delivery route construction).
As such, they consider both the routing problem and the
charge scheduling simultaneously. Their work does not
address the prevention of charge schedule collisions.

In conclusion, none of the state of the art takes the four
design principles into account. They are typically concerned
with slightly different use cases (e.g., routing, covering time-
sensitive events, or congestion avoidance only). Notably, the
long charge duration of a battery is typically not mentioned in
these works, possibly a reason why few works include charge
interruption, and is a significant consideration in our work.

III. PROBLEM FORMULATION
In this section, we introduce the general context in which
we operate. Consider Nd drones D = {D1,D2, . . . ,DNd }.
The drones are equipped with wireless communication
hardware that allows them to communicate with a ground
control station. This station provides each drone Dd with
Nw waypoints (i.e., three-dimensional points as part of
the inspection mission) to visit in a predetermined order
Wd = {Wd,0,Wd,1,Wd,2, . . . ,Wd,Nw}, beginning at a
starting position Wd,0. When a drone is allocated fewer
waypoints in reality, the list of waypoints can be padded to
ensure the presence of Nw waypoints. We omit the dynamics
of the vehicle and assume the drones can change their
direction instantly. In the vicinity of the waypoints, there
are Ns charging stations S = {S1, S2, . . . , SNs} with fixed
positions deployed, which can be used by drones to dock to
and to recharge their batteries [29]. Each charging station can
only serve a single drone at a time. When navigating between
waypoints, drones deplete their battery and this battery level
is not allowed to fall below a minimum threshold in order
to guarantee a successful mission execution. As such, after
each sourcewaypointWd,ws , i.e., a non-terminating waypoint
(0 ≤ ws ≤ Nw − 1), a drone Dd has the option to
visit either of the charging stations or to directly visit the

TABLE 2. List of indices and their ranges.

FIGURE 1. After all non-terminating waypoints (Wd ,0 and Wd ,1), the
drone must visit a path node: any charging station (red nodes) or move
directly to the next waypoint (the dotted nodes).

next waypoint, resulting in the path node options Nd,ws =

S ∪ {Wd,ws+1} = {Nd,1,ws ,Nd,2,ws , . . . ,Nd,Ns+1,ws} (see
Fig. 1). At the charging station, drones optionally wait for
another drone to finish charging, charge until a desired battery
level has been reached, and continue to the next waypoint.
During these activities, the battery percentage of a drone
increases, remains the same, or decreases when charging,
waiting, and flying between nodes respectively. Our goal is
to find an optimal charging schedule such that the mission
execution time is minimized, under the constraints that drone
batteries are never depleted and that charging stations are
never allocated to more than one drone simultaneously.
We formulate a mathematical optimization problem for this
purpose. The indices used so far have been summarized on
Table 2 and will continue to be used throughout the paper in
the mathematical notation.

A. PARAMETERS
Our optimization problem is parameterized by a set of
values that are provided prior to the mission execution.
We convert the three-dimensional positions of the waypoints

and charging stations into two distance matrices
→

1d,n,ws

and
←

1d,n,ws (measured in meters). The former represents
the distance from a waypoint Wd,ws to the next path node
Nd,n,ws , whereas the latter represents the distance from the
path node to the next waypoint. Typically, the Euclidean
distance between these points can be used, but this is not
necessary. For path nodes that indicate moving to the next

waypoint directly (i.e., n = Ns+1) the entries in
←

1 are set to
zero. We assume a linear depletion and charging profile for a
battery [30], and as such the parameters r+d and r−d denote the
battery percentage that is depleted and charged per second for
droneDd respectively. The choice of this linearity allows us to
express the optimization problem as a (more easily solvable)
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TABLE 3. List of parameters, with variables introduced by the extensions
in the bottom section.

linear problem and can be seen as the assumed average
depletion over time. Alternatively, more complex depletion
profiles could be injected in the optimization problem [22],
[31]. In our case, we consider the computational complexity
of the problem more important than the accuracy of the
battery profile. On top, each drone has a speed vd (meters
per second), a starting battery percentage βstartd , a lower
battery percentage threshold βmind,w at a given waypoint Wd,w
and an upper battery percentage threshold βmaxd . Note that
the differentiation of minimum battery levels at different
waypoints is necessary later on in Section IV. For now, this
value can be assumed to be a default constant β

default
d across

waypoints (βmind,w = β
default
d ). Furthermore, we require a

separation window between the charging windows of drones
at the same charging station to give the drones time to
(un)dock. This separation window ϵ is measured in seconds.
An overview of the parameters is provided in Table 3.

B. OBJECTIVE
To schedule the fleet of drones, we introduce the decision
variables P, C and I, which determine the path the drones
take, the time the drones charge and the time the drones wait
(or idle) for another drone to finish charging respectively (see
the top section in Table 4). For each drone, its execution time
(Ed ) consists of the sum of the charging (Cd,ws ), waiting
(Id,ws ), and moving time (td,ws ) across all of its visited
waypoints.

td,ws =
1
vd

∑
n

[
Pd,n,ws (

→

1d,n,ws +
←

1d,n,ws )
]

(1)

TABLE 4. List of variables, with decision variables in the top section and
computed variables in the bottom section.

Ed =
∑
ws

[
Cd,ws + Id,ws + td,ws )

]
(2)

Note that the drone speed vd is assumed to be constant. The
objective is tominimize themaximummission execution time
across all drones:

Minimize max
d

Ed (objective)

C. CONSTRAINTS
We impose several constraints on the objective to ensure
the battery level requirements and non-overlapping property
of the charging windows of the drones. To do so, we must
introduce variables related to the battery state of each drone
(b∗, b−, b+) and the window overlap (

s
τ ,

e
τ , 0, θ) (see the

bottom section in Table 4). The former three capture the
battery level of a drone Dd at all moments of the mission
execution (at arrival at a waypoint, at arrival at a path node,
and after charging at a path node respectively). At each
waypoint Wd,ws , the charging window of a drone Dd is
bounded by a starting (

s
τ d,ws ) and ending (

e
τ d,ws ) timestamp.

The variables 0 and θ are used later on in the constraint
definition to ensure the windows of different drones do not
overlap when charging at the same station.

First, we introduce several constraints that calculate the
state of several variables:

b∗d,0 = βstartd (3)

b−d,ws = b∗d,ws −
r−d
vd

∑
n

[
Pd,n,ws

→

1d,n,ws

]
(4)

b+d,ws = b−d,ws + r
+

d Cd,ws (5)
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b∗d,ws+1 = b+d,ws −
r−d
vd

∑
n

[
Pd,n,ws

←

1d,n,ws

]
(6)

θd,d ′,ws,w′s =
∑
s

Pd,s,wPd ′,s,w′s (7)

s
τ d,ws =

ws−1∑
wp=1

[
Cd,wp + Id,wp + td,wp

]
+

1
vd

∑
n

[
Pd,n,ws

→

1d,n,ws

]
+ Id,ws (8)

e
τ d,ws =

s
τ d,ws + Cd,ws (9)

Equations 3 - 6 express the state of the battery. Equation 7
is used to express whether two drones Dd and Dd ′ overlap
at their respective waypoints Wd,ws and Wd,w′s . Equations 8
and 9 establish the start and end points of the charging
window. We then impose limits on the values of the decision
variables as follows:∑

n

Pd,n,ws = 1 (10)

0 ≤ Cd,ws ≤ (1− Pd,Ns+1,ws )C
max
d (11)

0 ≤ Id,ws ≤ (1− Pd,Ns+1,ws )
∑
d ′ ̸=d

Imaxd ′ (12)

b∗d,wd ≥ βmind,wd (13)

b−d,ws ≥ βmind,ws (14)

b+d,ws ≤ βmaxd (15)
e
τ d,ws ≤

s
τ d ′,w′s − ϵ

+M (1+ 0d,d ′,ws,w′s − θd,d ′,ws,w′s ) (16)
s
τ d ′,w′s ≤

s
τ d,ws − ϵ

+M (2− 0d,d ′,ws,w′s − θd,d ′,ws,w′s ) (17)

Equation 10 forces each drone to visit exactly one path
node after each source waypoint. Equations 11 and 12
prevent drones from waiting or charging whenever they move
directly between consecutive waypoints without a charging
station visit. The values for Cmax and Imax must be higher
than any potential charging and waiting time respectively
(see Appendix for their calculation). Equations 13 - 15
force the lower and upper limits of the battery charge
at any point during the mission. Equations 16 and 17
ensure the charging windows of drones Dd and Dd ′ are not
overlapping at their respective waypoints Wd,w and Wd ′,w′ .
The ϵ serves two purposes: (1) to prevent edge cases in which
two charging windows overlap precisely and (2) to force
an arbitrary distance between charge windows to emulate
docking/undocking behaviour. The term on the second line
of both equations allows for both constraints to become non-
binding whenever the two drones are not charging at the same
time (i.e., when the θ term equals one) or either constraint to
become non-binding through 0. The M must be sufficiently
large to exceed any possible value for

s
τ (see Appendix VII for

their calculation). Note that Equations 16 and 17 are not exact
opposites of one another; instead they impose constraints

on the start of the time window of Dd (
s
τ d,ws and

e
τ d,ws ) in

relation to the time window ofD′d . For each pair of dronesDd
and D′d , there is a symmetrical set of constraints that impose
constraints on the starting of the time window ofD′d , in which
the d and d ′ and waypoint indices ws and w′s indices are
swapped.

The objective function and Equation 7 are non-linear, and
we rely on linearization techniques [32] to retain a Mixed
Integer Linear Problem (MILP).

IV. EXTENSIONS
The number of variables and constraints grows quadratically
with both the number of waypoints and the number of
drones (due to the 0 and θ decision variables). As a result,
solving medium-sized scenarios using conventional off-the-
shelve solvers becomes computationally infeasible and there
is a need to reduce the computational complexity. A second
limitation of the MILP definition is that the full charging
schedule is computed before the mission execution and
can therefore not take into account any uncertainty in the
mission execution environment. Unforeseen events, such as
obstacles or unexpected wind and temperature conditions,
can impact the distance traveled and battery depletion rate of
the drones. We propose two improvements to address these
two limitations.

A. WAYPOINT HORIZON SCHEDULING
Firstly, we take inspiration from receding horizon con-
trol [33]. Instead of solving a problem for all Nw waypoints,
we solve a reduced problem with the first N̂w waypoints,
or the horizon size, for each drone instead, where N̂w ≤
Nw. This resulting schedule will be followed by the drone
fleet for a given number of waypoints, controlled by a
rescheduling frequency parameter π . The first drone that
reaches π waypoints triggers a centralized rescheduling
process, in which a newMILP is constructed given the current
state of the drone fleet (positions and battery statuses). The
current positions of the drones serve as starting positions in
theMILP parameterization. The solution of thisMILP is once
again followed by all drones in the fleet for π waypoints.
We repeat this process until the mission is completed.
Whenever the remaining set of waypoints is smaller than the
horizon size, we add auxiliary waypoints as padding – with
the same position as the last ‘real’ waypoint – to ensure each
drone has an equal number of waypoints.

B. ANCHOR WAYPOINTS
Increasing the waypoint horizon negatively affects the com-
putation time of the scheduling while positively affecting the
overall performance of the generated schedule. To circumvent
this trade-off, we down-sample the waypoints that are eligible
to be followed by a visit to a charging station. A subset of the
waypoints, refered to as anchor waypoints are considered,
whereas the remaining waypoints must be visited without
a charging station visit. This sacrifices optimality of the
calculated schedule, but allows scheduling efficiently with
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FIGURE 2. Collapsing of a scenario: (a) original problem definition, (b) removal of choices at non-anchor
waypoints (Wd ,1 and Wd ,3), (c) collapsed problem, (d) solution for collapsed problem, (e) expansion to
original problem.

a relatively large waypoint horizon. A stride parameter σ

defines at which interval waypoints are marked as anchors.
For example, for σ = 3, the anchor waypoints indices would
be {0, 3, 6, 9, . . .}. This approach is suitable for real-world
scenarios where subsequent waypoints are positioned closely
together, and the optimality of a solution does not affect the
total mission execution time significantly.

By reframing the initial MILP in smaller, easier-to-solve
MILPs, the computational complexity, and by extension the
solving time, is reduced. The selection of the horizon size
and rescheduling frequency impact the complexity and the
number of smaller MILPs to solve respectively. In fact,
our original problem definition is a specific case in which
N̂w = Nw, σ = 1 and π = ∞. Furthermore, since
the receding horizon MILPs are defined online during the
mission execution, they take into account the effect of the
environment up to that point, making the system more
resistant to the dynamic environment.

C. MIXED-INTEGER LINEAR PROGRAM
TheMILP definition from Section III, hereafter referred to as
base model, can be used to express the two extensions with
several modifications. We discuss the changes in the MILP
formulation to accommodate the two extensions separately
below, but these are combinedwith the basemodel in practise.
For additional parameters introduced in this section, we refer
the reader to the bottom section in Table 3 for an overview.

1) WAYPOINT HORIZON SCHEDULING
During the mission execution, it is necessary to keep track
of which waypoints have been visited by which drone.
Whenever a rescheduling is triggered, the positioning and
battery statuses of the drones serve as the starting position
(Wd,0) and the starting battery (βstartd ) for the drone. The
waypoints used for the MILP construction are dependent on
the progress of the drones along their route so far.

In the base model, the objective does not take into account
the remaining route that needs to be traversed by the drones
after the horizon. If not accounted for, an optimal solution
for a given horizon problem may produce suboptimal results
from a mission-wide point of view. The base objective aims

to reduce the maximum execution time (Equation 2), which
may not be relevant when one drone is fully done, whereas
another drone still has many waypoints to go. We redefine
the execution time (and objective) as follows:

Êd = Ed + λmoved + λ
charge
d

Minimize max
d

Êd (Objective) (18)

where λmoved and λ
charge
d are estimations for the time that a

drone d takes for moving and charging for the remainder of
themission.We estimate the remaining distance ρd as the sum
of Euclidean distances of all consecutive waypoints starting
from the last scheduled waypoint up to the last waypoint in
the mission. This distance is considered a constant in solving
the optimization problem. Note that this estimation excludes
any extra distance added by diverging from this path to visit
any charging station. We use this definition to calculate the
expected remaining travel distance:

λmoved = ρd/vd (19)

The remaining estimated charging time is composed of the
estimated depletion amount (erdd ) and the battery level that
the drone has more than is required at the end of this horizon
(ocd ):

erdd = λmoved r−d (20)

ocd = b∗
d,N̂w
− βmin

d,N̂w
(21)

The computation of λ
charge
d is as follows:

λ
charge
d = max{0, erdd − ocd } (22)

The rationale behind including the overcharge component
ocd is that without its occurrence, an optimal solution for
the problem could (erroneously) result in drones ending with
a fully charged battery, at the expense of a longer mission
execution time.

Secondly, the base model does not take the distance to
any charging stations after the last waypoint scheduled in the
horizon into account. In the base model, it is acceptable that
a drone arrives at the last waypoint with a minimal battery
charge. For a limited horizon, this is not the case, since the
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drone must travel further after the horizon. Therefore, the
minimum battery charge that a drone is allowed to carry at
the last waypoint must be enough to reach a charging station
afterward. For drones that do not finish their mission after a
particular horizon, we add the following term to the minimum
battery charge to the (previously) default minimum battery
charge β

default
d for the last scheduled waypoint (βmin

d,N̂w
):

βmin
d,N̂w
= β

default
d +

r−d
vd

min
s

→

1d,w,N̂w
(23)

Thirdly, since rescheduling can interrupt drones at any
point (including during charging), our model should preserve
the imposed buffer between charging windows. As such,
we introduce a parameter ωd,s to define how long a drone
Dd should wait at least at charging station Ss after the first
waypoint (with 0 ≤ ωd,s ≤ ϵ). Cells in this matrix are only
non-zero for drone Dd and charging stations Ss combinations
for which the charging station was occupied by another drone
Dd ′ ̸= Dd at the time of rescheduling. The values of these
non-zero cells are equal to the separation window ϵ minus
the time that the drone Dd ′ had been charging there already.
We introduce the following constraint:

Id,0 +
1
vd

∑
s

[
Pd,s,0 ·

→

1d,s,0

]
≥

∑
s

[
Pd,s,0 · ωd,s

]
(24)

The left side of the inequality represents the time it takes
drone Dd to start charging after the first waypoint and the
right side the time required to wait.

2) ANCHOR WAYPOINTS
To facilitate anchor waypoints, we rely on the conversion of
an existing MILP problem (either the base model or extended
with the horizon changes) to another problem. Since non-
anchor waypoints remove the option to charge from those
waypoints, they can be fully encapsulated in a scenario
with the non-anchor waypoints completely removed, and

adding distances to the distancematrices
→

1d,n,ws and
←

1d,n,ws .
Fig. 2 shows the process of how an original scenario (2a)
is collapsed into a smaller problem (2c). For example, the
distance associated with the arrow between S1 andWd,2 in 2c
represents the cumulative distance of S2 to Wd,1 and Wd,1 to
Wd,2 (red line in 2b). Besides adjusting the distance matrices
(and the reduced number of waypoints due to the removal
of the non-anchor waypoints), no further parameter changes
to the collapsed MILP are necessary. After the collapsed
problem is solved (2d), its solution is expanded back to the
original problem (2e). For non-anchor waypoints, the drone
moves directly to the next waypoints.

D. COMPLEXITY
From Table 4 and Equation 1 to 17 we can infer that
the number of variables and constraints of the base model
grows proportional to O(Nd 2Nw2 + NdNsNw) respectively.
The first component (N 2

dNw
2) comes from the prevention of

charging window overlap, whereas the second component

(NdNsNw) comes from the path decision variable P. The
extensions to this base model turn a single optimization
problem into multiple ones. The combination of horizon N̂w
and stride σ results in a reduction of the complexity as the
variables and constraints do not grow proportional to the
number of waypoint Nw, but rather with constant ⌈ N̂w

σ
⌉. As a

consequence, this turns the complexity into O(Nd 2 + NdNs).

V. EVALUATION
We implemented our MILP model in Pyomo [34] and built a
discrete-event simulator based on SimPy [35] around it for the
evaluation of our proposed approach. A scenario (consisting
of a series of waypoints and the positions of charging stations)
and a set of parameters (i.e., the input for the MILP) serve
as the configuration for the simulator. Based on these inputs,
the behaviour of a centralized scheduler and the drones
are simulated by generating discrete events. A scheduling
strategy determines at which point in the simulation the
scheduler produces a new schedule of charging station visits,
which are distributed among the drones. An example strategy
could be triggering a rescheduling process every time a drone
reaches a waypoint or after a certain amount of simulated
time. We use Gurobi 9.5.1 [36] to solve the individual
optimization problems. The drones follow these schedules
and generate events when (among others) they reach a new
position (i.e., waypoint or charging stations), finish their
waiting for another drone, start charging, etc. The behaviour
of the simulator follows the configuration of the simulation
perfectly; it does not deviate and is fully deterministic.
By monitoring the behaviour of the scheduler, strategy, and
drone, we extract relevant performance metrics from the
simulator, most importantly the mission execution time, the
time each schedule iteration has taken, and the number of
schedule iterations. All simulations were performed on a
12-core i7-6800K CPU with 50 GB of RAM available.

Besides the implementation of our MILP formulation,
we implemented a greedy scheduler (and strategy) as well,
whose behaviour is highly short-term and non-coordinated
(see Algo. 1); each dronewill visit the closest charging station
when it cannot reach a charging station after visiting the next
waypoint. Line 7 results in the drone charging fully during
the mission, except when it is about to reach the end of the
mission (where it charges the minimum required charge to
reach it). This prevents the batteries from ‘overcharging’ and
unnecessarily increasing the mission execution time, thereby
providing a fair comparison between scheduling strategies.

To illustrate the differences between the greedy and
optimal scheduler, Fig. 3 shows a scenario (in 3a) in which
two drones fly along a parallel path of four waypoints each,
with three charging stations located in between them. Figs. 3b
and 3c show the resulting greedy and optimal schedules
respectively. The figure illustrates the precise timestamps
of waypoint visits, charging window sizes, and how long
the drones wait, as well as the development of the battery
over time (the black lines). The greedy scheduler sends both
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Algorithm 1 Greedy Scheduler
1: for ws ∈Wd do
2: if any station reachable from Wd,ws+1 after moving
directly there from Wd,ws then

3: move directly to next waypoint
4: else
5: move to closest station fromWd,ws
6: wait until available
7: charge until end reachable or until battery is full
8: move to next waypoint
9: end if

10: end for

FIGURE 3. For the scenario in (a), the difference in scheduling between
greedy (b) and optimal scheduling (c).

FIGURE 4. Conversion of a point cloud (a) to coarse paths (b) and
fine-grained paths (c) of waypoints.

drones to the red charging station after both their first and
second waypoint visit, resulting in the underutilization of the
green and blue stations and congestion around the red station.
The optimal scheduler instead, allocates the (middle) green
station to one drone, and the red and blue charging station to
the other, preventing any congestion. As a result, the second
drone spends less timewaiting for the drone to finish charging
and reduces the total mission execution time by 3.2 seconds.

Simulation Setting: We use a point cloud obtained from
a bridge segment and rely on prior work by Shi et al. [37]
to extract realistic waypoint sequences. Their approach
produces a series of waypoints from a point cloud by (1)
representing a down-sampled version of the point cloud as
a graph, (2) finding an efficient path in six subgraphs of
the larger graph, and (3 ) optimizing the paths to produce a
smooth trajectory. In order to accommodate a configurable
number of drones (instead of a fixed six), we rely on an
alternative partitioning process. Multilevel k-way hypergraph
partitioning [38] is used to extract an arbitrary number of
subgraphs of approximately equal size. The original point
cloud used for this extraction and an example sequence
of waypoints for three drones is depicted in Fig. 4. The
coarseness of the down-sampling determines the number of
waypoints to be inspected, as illustrated by the difference
between (b) and (c), which contain 99 and 488 waypoints in
total respectively.
Simulator Parameters: In the experiments, we resort to a

set of default parameters that are used, unless the specific
experiment denotes a different value. These values are as
follows:

1) We use three drones for the inspection and have two
charging stations positioned at ground level, at the side
of the bridge, and in the middle of the bridge segment
length-wise.

2) The speed of all drones is 0.15 m/s.
3) The battery levels are enforced between 20% and

100%.
4) The charge and depletion rates of the drones are set

such that a full battery charges in 60 minutes and
depletes in 10 minutes.

5) The separation between consecutive charging windows
is set to 10 seconds.

The speed and minimum battery level are not necessarily
representative of a realistic scenario, but these parameters
force the drones to undergo at least one charging cycle in the
mission execution which results in experiments in which the
charge scheduling is evaluated fairly.

A. EXPERIMENTS
We conduct three sets of experiments to investigate different
aspects of our scheduling approach. Firstly, we conduct a
performance evaluation of our optimal, sub-optimal, and
greedy schedulers. We then assess to what extent the
utilization of charging stations impacts the performance gain
between an optimal and greedy scheduler. Lastly, we turn
to experimenting with different configurations of scheduling
parameters to evaluate how these affect the performance of
our proposed MILP model. The three experiments are geared
towards providing insight into the capabilities and limitations
of our approach for different configurations.
[I] How does an optimal solution compare with a

suboptimal or greedy approach? As a first evaluation
of our model, we assess the trade-off between mission
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execution time (i.e., the optimality of the solution) and the
required computation time. For this evaluation, we conduct a
series of simulations for different complexities of scheduling
problems. The complexity of the scheduling problem is
determined by the number of scheduled waypoints, which
in turn is a result of the coarseness of the down-sampling
process. For each scenario, we run an experiment with four
schedulers:

1) An optimal scheduler (i.e., our initial proposed solu-
tion)

2) A waypoint horizon scheduler (N̂w = 15, π = 13)
3) An anchor scheduler (σ = 2)
4) A greedy scheduler

We vary the number of waypoints between 11 and 29, as the
optimal solution becomes infeasible to calculate within a
reasonable time for higher waypoint values. Fig. 5 illustrates
the performance, measured as the mission execution time (a)
and the corresponding time spent on scheduling (b).
Fig. 5a shows that the optimal scheduler outperforms the

greedy scheduler in all cases, completing missions between
17.8% and 53.6% faster. Since the horizon scheduler uses a
rescheduling frequency of 13, its performance up to Nw =
13 is guaranteed to be identical to the optimal solution.
The horizon and anchor scheduler outperform the greedy
scheduler in most cases, both performing worse in one
experiment each. The occasional poor performance of the
horizon scheduler can be attributed to its inability to take into
account the scenario after the horizon, which may cause it
to produce suboptimal short-term schedules in the context
of the full mission. The anchor scheduler can be negatively
affected in configurations where the exclusion of a particular
waypoint from the charging scheduling process has a large
impact (e.g., cases where this omitted waypoint is located
close to a charging station in relation to other waypoints).

Fig. 5b depicts the scheduling time for the different
schedulers for different complexities of inspection missions.
The figure excludes the greedy scheduler, as the scheduling
time is negligible. It further differentiates between the
total scheduling time and average scheduling time per
optimization problem for the horizon scheduler. Note that
the y-axis is logarithmic. For both the optimal and anchor
scheduler, we observe a general increasing trend of the
scheduling timewhen the number of waypoints increases, and
both hit the scheduling time limit at least once. This is not
the case for the horizon scheduler, whose mean scheduling
time remains fairly constant. For larger horizon sizes, the
performance of both the optimal and horizon scheduler
is expected to increase even more, making both of them
infeasible. The horizon scheduler is expected to retain a low
mean scheduling time, with the total scheduling time growing
linearly over time. Since the scheduling can be performed
online during the mission execution time, an increased total
scheduling time will not affect the operations negatively.
A realistic bridge inspection use casemay consist of hundreds
of waypoints to be visited and our results suggest that a

FIGURE 5. Comparison of different scheduling strategies.

combination of the horizon and anchor scheduler is required
for a well-performing strategy, balancing mission execution
time and scheduling time.
[II] Charging station utilization We further investigate the

impact of the percentage of time that a charging station is
occupied, i.e., their utilization, on the performance gain from
our proposed model compared to a greedy approach. The
rationale behind this experiment is that the gains are expected
to be only marginal whenever the utilization is either very
low or very high. For the former, drones relying on a greedy
approach are less likely to encounter an occupied charging
station that requires them to wait. In the latter case, optimal
scheduling is unlikely to be more effective than a greedy
approach as drones are expected to wait on one another. The
utilization of the charging station can be affected by (1) the
ratio of the number of drones and charging stations, and (2)
the ratio of the depletion and charging rate. We assess the
difference in the mission execution time of our proposed
approach and the greedy approach. We keep the number
of drones and the depletion constant (3 and 1

600 , or a full
depletion in 10 minutes, respectively) and vary the number
of charging stations and charging rates to achieve a variation
in the aforementioned ratios that affect the charging station
utilization. The charging station count varies between one and
three, and the charging rate between 1

5400 (or fully charging
in 1.5 hours) and 1

300 (or fully charging in 5 minutes),
corresponding a charging ratio of 9 and 0.5 respectively. For
this experiment, we use a relatively coarse scenario, with
17 waypoints to be visited per drone, to allow the optimal
solver to find a solution within a reasonable time. We further
adjust the drone speed to 0.13 m/s to enforce at least two
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FIGURE 6. Impact of charge ratio and the number of available charging station on the performance of the optimal and greedy scheduler.
(a)–(c) = execution time, (d)–(f) = average fraction of time spent of optimal scheduler, (g)–(i) = average fraction of time spent of greedy
scheduler. = charging, = waiting, = moving, = idle.

charging cycles for each drone, to evaluate the impact of the
charging station selection.

Fig. 6 shows the results of these experiments, depicting the
execution times (6a–6c) and the average time spent (across
the three drones) on different activities of the optimal (6d–6f)
and greedy (6g–6i) scheduler for the various parameter
combinations. The activities are divided into charging,
waiting, moving, and idling (i.e., waiting for the mission
to be completed by another drone). The first row shows
that the optimal scheduler outperforms the greedy approach
in all cases, ranging from a 5.8% to a 39.8% performance
gain. Generally, a larger gain is achieved at higher charge
ratios. For either scheduler, the behaviour of the drone with
the longest individual execution time seems to be relatively
unaffected by changes in the charge ratio, besides the duration
of its activity. The optimal scheduler adapts the behaviour of
the other drones instead to facilitate the slower drone at higher
charge ratios, whereas the greedy scheduler does not.

The most significant gains are generated by the results for
two charging stations. In these cases, the optimal scheduler
takes advantage of leveraging both charging stations, whereas
the greedy scheduler utilizes primarily one station only. The
activity distribution differences (between the second and third
row) reveal that the optimal scheduler results in far less
time spent on idling than the greedy scheduler. By routing
drones to charging stations that are farther away, the optimal
scheduler avoids congestion at charging stations. As a result,
it sacrifices the mission execution time of drones that finish
earlier for the benefit of drones with a longer execution
time, equalizing their individual execution time and thereby

shortening the total mission execution time. This advantage
diminishes with three charging stations, where the simple
rules for the greedy scheduler end up distributing the three
drones across three charging stations.
[III] What are ‘good’ scheduling parameters? So far,

we have seen that a suboptimal solution has a larger
potential of approximating the optimal solution than a
greedy approach, but the effectiveness depends on the initial
conditions of the problem configuration and the parameters.
In this experiment, we evaluate a scheduler that combines
both proposed extensions (waypoint and anchor scheduling).
We run several simulations to identify how the optimality
of the solution is sacrificed in favor of a faster scheduling
time, for a variety of parameter combinations that affect the
scheduling time. For these simulations, we use three drones
and two charging stations where each drone is allocated
75 waypoints to follow. Given this configuration, we use the
following sets of parameters, and run the experiment for each
unique combination:

• σ ∈ {1, 2, 3, 4}
• N̂w ∈ {15, 30, 45, 60, 75}.
• π ∈ {8, 16, 31, 46, 61,∞}

We excluded experiments with (1) an impossible combination
of parameters i.e., where the rescheduling frequency π

is larger than the horizon size N̂w (except non-horizon
schedulers with N̂w = 75, π = ∞) and (2) parameter
combinations that result in too computationally expensive
schedulers. We limit the stride σ to four as larger values
end up with infeasible optimization problems, where at
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TABLE 5. Performance metrics for different combinations of N̂w , σ and π . The upper section denotes the relative execution time compared to the best
seen value (in %), the middle section the total scheduling time (in seconds) and the bottom section the average rescheduling time (in seconds).

least one drone ends up with two consecutive anchor
waypoints whose distance is too large to cover with the
given battery constraints. The range of horizon sizes covers
short to mission-wide scheduling scenarios. The rescheduling
frequencies cover a similar path, in most cases being one
higher than the values of the horizon size to ensure the
horizon size and rescheduling frequency are not too close
to one another. For each of the parameter combinations,
we collect the execution time and the scheduling time (total
across the full mission and the average for each rescheduling
after the initial) for the simulation. Table 5 shows the result
of the simulations. The columns denote the combination of
the horizon size N̂w and stride σ parameters and the rows
show the different rescheduling frequencies π and the three
metrics. Excluded experiments have empty fields in the table.
For each section in the table – corresponding to the three
metrics – we denote the three worst and best-performing
parameter configurations in red and green respectively.

The upper part of the table shows the percentual difference
compared to the fastest-seen execution time. The best value
is found for N̂w = 45, σ = 2, and π = 31, and the worst
configuration is 33.7% slower. For stride values of 3 or 4 it
appears that an optimum (for the given stride value) has been
found with several of the configurations (which are 7.0%
and 9.9% slower than the fastest execution time respectively).
It suggests that a small stride value of 2 gives the scheduler
access to better-positioned waypoints to follow up with a
charging station visit. Varying the scheduling frequency π or
horizon N̂w can have an unpredictable impact. For σ = 2 and
N̂w = 45, changing the frequency from the best performing
π = 31 to π = 16 results in an execution time increase
of 19.2%, whereas going down to π = 8 results only in
a 0.2% slower execution time. In the MILP formulation
of the horizon scheduling extension, an estimated depletion

is taken into account, which cannot take into account
future charging station visits. Configurations with different
rescheduling policies or horizon size values will - throughout
a mission - have access to a different view of the mission
after their horizon and over time their generated schedules
can diverge over time.

Themiddle section of the table denotes the total scheduling
time in seconds. A lower total scheduling time can be
achieved by either lowering the horizon (i.e., decreasing N̂w),
increasing the stride σ or reducing the number of reschedule
instances (i.e., increasing π ). An alternative perspective is
the time that is required for rescheduling during a mission,
or all optimization problems except the initial one. These are
namely the schedules that must be generated ad hoc during
the mission and are time-critical. We report the average
time for these values in the bottom section of the table. For
π = ∞, no rescheduling is performed, so these fields in
the table are denoted by ‘–’. These numbers reveal that the
lowest execution time comes at the cost of one of the slowest
rescheduling times. A trade-off of a low computation time
and a decent execution time can be found, for example where
σ = 4, N̂w = 45, and π = 31. In that situation, the
rescheduling time on average is 5 seconds, while still having
a 9.9% slower execution time.

VI. DISCUSSION
Our three experiments have shown the potential of our
approach over a greedy approach. By tweaking the relevant
scheduling parameters of the model, one can find a balance
between optimality and scheduling time. The performance
is highly dependent on the initial configuration of the
parameters and charging station positions and parameters.
Moderately large problems take tens of seconds to schedule,
making it non-practical to run the scheduling on the drone
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hardware itself and therefore there is a need for scheduling
on a more powerful ground control station. We relied on the
stride parameter to select waypoints that served as anchors
in the scheduling. Alternatively, other methods could be
far more effective, for example prioritizing waypoints close
to a charging station as anchor waypoints. Although we
compensate in the redefined objective (Equation 18) for the
remainder of the mission, our current approach might not be
sufficient. It does not take into account any extra moving time
(and its associated charging time) which can be substantial
when charging stations are not readily available. In our
experiments, we provided a comparison of the scheduling
time between our base model and the extensions. One
supposed benefit of our proposed horizon extension is that
it handles a dynamic environment that deviates from the
configuration and parameters of the MILP model, but this
benefit remains unexplored.

We consider this work as one important step in drone fleet
design, one that allows drones to operate indefinitely and
significantly contributes to future fully autonomous systems.
Even though we present our results through the lens of a
bridge inspection use case, there are other promising use
cases. Our proposed method can be translated to other types
of structures, such as railways or building inspection. For
each structure, the positioning of waypoints and charging
stations will be unique, so we recommend the research
community assess the efficacy of our method for other use
cases. Our method can be adapted to other similar scheduling
problems, such as the allocation of a charging network across
a fleet of electric vehicles in a country. Furthermore, repeated
experiments under different parameter configurations can be
used to find appropriate values for the number of drones to use
or the number and positioning of charging stations. However,
more efficient solving techniquesmay be necessary to combat
the computational complexity that a fleet of even ten vehicles
would impose.

For future work, we intend to resort to alternative
methods for solving optimization problems, such as genetic
algorithms [39], particle swarm optimization [40], or rein-
forcement learning [41], as they have been demonstrated to
efficiently solve optimization problems in similar application
areas. Furthermore, we plan to implement our method in
drone hardware and evaluate its feasibility and performance
in the much more dynamic and volatile real world. We also
intend to address the unreliable nature of a communication
network that allows the drone and mission control to
communicate.

VII. CONCLUSION
The organisation of multiple drones into autonomous fleets
comes with an increased complexity and challenges. One
of these challenges is the charging strategy for the battery-
limited drones, when provided with a limited number of
battery recharging station. In this paper, we propose a
mathematical formulation for a centralized charge scheduling
optimization problem. Solving the model produces a set

of allocated charging windows that specify when a given
drone is supposed to charge at a given charging station.
We tackle the computational complexity by proposing two
extensions to the problem. Through experimentation with a
discrete-event simulator on a real-world bridge inspection
example, we show that our proposed method significantly
outperforms a greedy scheduler for a variety of parameter
configurations. Our efforts to combat the computational
complexity of solving the model result in two extensions,
which prove to provide a balance between scheduling time
and minimizing the mission execution time. We believe
that our model has more far-reaching use cases than the
evaluated bridge inspection mission, including other drone
swarming application but also scheduling problems for fleets
of electrical vehicles.

APPENDIX
PARAMETER DEFINITIONS
We define Cmax

d in Equation 11 as:

Cmax
d =

βmaxd − βmind,w

vd
(25)

We define Imaxd in Equation 12 as:

Imaxd =

∑
d ′ ̸=d

[

1
vd

∑
ws

(
max
s

[
→

1d ′,s,ws +
←

1d ′,s,ws

])
+

(Nw − 1)(Cmax
d ′ + ϵ)

]
(26)

The first and second term in Equation 26 represent the longest
possible travel time and longest charging duration for all
drones for each of their waypoints respectively. We define the
‘sufficiently large’M (used in Equations 16 and 17) as:

M =
∑
d

Imaxd (27)
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