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ABSTRACT This paper presents a scheme that is designed for the effective implementation of lattice
reduction for polynomial matrices within the list-decoding algorithm that is applied to the binary Goppa
codes. The reduced form of a polynomial matrix is obtained by transforming the given polynomial matrix
into a matrix in the weak Popov form. To achieve efficient lattice reduction within the list-decoding
algorithm, the proposed scheme reorganizes the polynomial matrix by leveraging its inherent properties
and converts it into the weak Popov form. When using the proposed implementation technique to convert
the reorganized polynomial matrix into the weak Popov form, the number of simple transformations of the
first kind that had to be performed was reduced by about 15% compared to the technique used to convert
the original matrix to the weak Popov form. As a result, the execution time of lattice reduction was also
decreased.

INDEX TERMS Binary Goppa codes, McEliece cryptosystem, list-decoding algorithm, weak Popov form,
polynomial matrix, lattice reduction.

I. INTRODUCTION
The McEliece cryptosystem was introduced in 1978 as
a code-based public-key cryptosystem [1]. In 1986, the
Niederreiter cryptosystem was developed as a variation of
the McEliece cryptosystem. In contrast to the McEliece
cryptosystem, the Niederreiter cryptosystem employs a
parity matrix of a code as its public key rather than
a generation matrix of the code, while still achieving
security levels equivalent to those of the McEliece cryp-
tosystem [2]. The Classical McEliece, which is a finalist in
the Key Encapsulation Mechanism (KEM) category of the
NIST Post-Quantum Cryptography Standardization project,
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currently also employs a parity matrix as its public key, like
the Niederreiter cryptosystem [3].

The principle of the McEliece cryptosystem is to select a
linear code of length n and dimension k that can correct t
errors [4]. In the McEliece cryptosystem, errors are added
to a codeword to generate the ciphertext. Then, during
the decoding process, errors are found using the decoding
algorithm of the linear code. Increasing the number of errors
has been shown to enhance the security and resistance of the
McEliece cryptosystem [5].

In [6], a McEliece-type cryptosystem was introduced,
and it was shown that an elevated security level was
achieved by reducing the key size by using large minimum
distance error-correcting codes derived from self-dual codes.
Several variants of McEliece cryptosystems have also been
proposed with the aim of enhancing security levels while
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minimizing key size through the application of diverse error
correction codes [4], [7], [8], [9]. However, their security
is no longer guaranteed, as effective attack techniques have
been disclosed against most variants. On the other hand, the
McEliece cryptosystem based on the binary Goppa codes is
still considered secure, as efficient attack techniques against
it have yet to be disclosed [10].

The decoding algorithms for the binary Goppa codes
include the Patterson algorithm, the Berlekamp-Massey
algorithm, the EEA algorithm, the list-decoding algorithm,
and others [5], [11], [12]. While other decoding algorithms
can correct up to t errors in the received ciphertext,
the list-decoding algorithm has the ability to correct up
to t + u errors [5]. Therefore, when the list-decoding
algorithm is used in the binary Goppa codes based on
the McEliece cryptosystem, the probability of no errors
in randomly selected k bits out of n bits with t errors
becomes (n−t−uCk/nCk ) [14], which results in an increased
security level. However, this cryptosystem faces challenges
such as increased decryption time due to the need for an
increased number of operations like lattice reduction and
factorization.

The current paper proposes an implementation scheme that
can be used to reduce lattice reduction operation time, thus
addressing the issue of increased execution time with the
list-decoding algorithm in the McEliece cryptosystem.

II. PRELIMINARIES
A. THE LIST-DECODING OF THE BINARY GOPPA CODES
The binary Goppa codes 0 is defined by the Goppa
polynomial g(x) ∈ F2m [x] which is a monic degree-t
irreducible polynomial and a subset {α1, α2, · · · , αn} ⊆ F2m
[5].

0 = 0(α1, α2, · · · , αn, g(x))

=

{
c ∈ Fn2 :

∑
i

ci
h

x − αi
(mod g(x)) ≡ 0

}
(1)

where a codeword c = (c1, c2, . . . , cn) and a polynomial h =∏
i(x − αi) ∈ F2m [x]. 0 has a minimum distance of at least

2t+1, hence the binary Goppa codes can correct t errors [23].
Thus, the maximum degree of the error location polynomial
ϵ(x) =

∏
i:ri ̸=ci (x − αi) ∈ F2m [x] calculated by the Patterson

algorithm to decode the original codeword c of the input word
r is t .
On the other hand, the list-decoding algorithm is an

extension of the Patterson algorithm [13], and it can correct
u errors in addition to t errors [5]. Here, the parameter
u takes a value in the range from 0 ≤ u ≤ n − t −
√
n(n− 2t − 2) [5]. Algorithm 1 shows how the list-decoding

algorithm computes the error location polynomial [5]. The
maximum degree of the calculated error location polynomial
is t + u.

Algorithm 1 The List-Decoding Algorihtm
Input : A word r = (r1, r2, . . . , rn)
Output: The error location polynomial ϵ(x)
1: Compute s(x) =

√
(1/

∑
i ri/(x − αi)) − x ∈ F2m [x].

2: Find (a0(x), b0(x)) and (a1(x), b1(x)).
1) Construct a lattice 4 ⊆ F2m [x]2 with basis (s(x), 1)

and (g(x), 0).
2) Perform a lattice basis reduction on 4 and obtain the

minimum-length nonzero vector (a0(x), b0(x)) and the
minimum-length independent vector (a1(x), b1(x)).

3: Set ϵ0(x) = a20(x) + xb20(x) and
ϵ1(x) = a21(x) + xb21(x) + γ ϵ0(x).
1) Set γ ∈ F2m .
2) Set ϵ1(x) = a21(x) + xb21(x) + γ ϵ0(x).
3) If gcd{ϵ1(x), h(x)} = 1, set

ϵ1(x) = a21(x) + xb21(x) + γ ϵ0(x) otherwise
recalculate.

4: Compute the polynomial
δ(x) = ϵ0(x)/ϵ1(x) (mod h(x)) ∈ F2m [x].

5: Define the l-dimensional lattice 4 ⊂ F2m (x)[z].
1) Calculate the integer θ :

• t0 = degϵ0(x);
• g0 = 2⌊(u+ t − t0)/2⌋;
• g1 = 2⌊(u+ t0 − t − 1)/2⌋;
• θ = g1 − g0.

2) Select the integers l and d that satisfy the following
conditions:
• (g0 + g1)(l − 1)/2d + n(d + 1)/2l < (t + u);
• l > d > 0.

3) Define the l-dimensional lattice 4 ⊂ F2m (x)[z]
generated with the following polynomials:

1,
xθ z+ δ(x)

h(x)
,

(
xθ z+ δ(x)

h(x)

)2
, · · · ,

(
xθ z+ δ(x)

h(x)

)d
,

xθ z

(
xθ z+ δ(x)

h(x)

)d
, (xθ z)2

(
xθ z+ δ(x)

h(x)

)d
,

· · · , (xθ z)l−d−1
(
xθ z+ δ(x)

h(x)

)d
.

6: Generate a polynomial matrix M using the coefficients of
1, z, z2, · · · , zl−1 in 4.

7: Convert the polynomial matrix to the weak Popov form.
8: Find the minimum-length nonzero vector

φ(z) = φ0(x) + φ1(x)z+ . . . ∈ 4.
1) The norm of a polynomial φi(x) ∈ F2m [x] is

defined as |φi(x)| = 2degφi(x).
2) The length of a vector is defined as

|φ(z)| = max{|φ0(x)|, |φ1(x)|, · · · }.
9: Find the root of φ(z) that satisfies the form q21(x)/x

θq20(x).
10: Set the error locator polynomial

ϵ(x) = q20(x)ϵ0(x) + q21(x)ϵ1(x). The error vector
e = (e1, e2, . . . , en) is defined as follows:

ei =

{
0, ci = ri
1, ci ̸= ri.

The roots of ϵ(x) indicate the error location with ei = 1.

B. LATTICE REDUCTION FOR POLYNOMIAL MATRICES
As illustrated in Algorithm 1, the list-decoding algorithm
computes the minimum-length nonzero vector φ(z) of the
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l-dimensional lattice to find q0(x) and q1(x) [5]. The l-
dimensional lattice denoted as 4 ⊂ F2m (x)[z] is shown as
follows:

40(z)
41(z)
42(z)

...

4l−1(z)

=


M0,0(x) M0,1(x) · · · M0,l−1(x)
M1,0(x) M1,1(x) · · · M1,l−1(x)
M2,0(x) M2,1(x) · · · M2,l−1(x)

...
...

. . .
...

Ml−1,0(x) Ml−1,1(x) · · · Ml−1,l−1(x)



×


1
z
z2
...

zl−1

 (2)

Here, the generators 4i(z) are as follows:

4i(z)=Mi,0 +Mi,1 + . . . +Mi,l−1(x)zl−1

=


(
xθ z+ δ(x)

h(x)

)i
, 0 ≤ i ≤ d,

(
xθ z
)i−d (xθ z+ δ(x)

h(x)

)d
, d + 1 ≤ i ≤ l − 1.

(3)

φ(z) can be obtained through lattice reduction to a
polynomial matrix M = (Mi,j(x)) ∈ F2m [x]l×l composed
of coefficients of 4i(z). Lattice reduction for a polynomial
matrix M over F2m [x] comprises the task of finding the
basis with the smallest row degree for a lattice generated
by a linear combination of the rows of M [15]. The
given polynomial matrix can be transformed into either
the weak Popov form or the Popov form to obtain a
reduced matrix [16], [17]. The matrix transformed into the
weak Popov form or the Popov form generates the same
subspace as the given polynomial matrix. Algorithms that
can be used to convert a polynomial matrix into the weak
Popov form include the Lee-O’Sullivan algorithm [18], the
Alekhnovich algorithm [19], and the Puchinger-Nielsen-Li-
Sidorenko algorithm [21], among others [20], [22].

C. THE WEAK POPOV FORM
Mulders and Storjohann described an algorithm achieving
the lattice reduction of polynomial matrices in [16]. In that
algorithm, a polynomial matrix M = (Mi,j(x)) ∈ F[x]v×w

is considered to be in the weak Popov form if a pivot index
IMi of i-th row vectorMi = (Mi,0(x),Mi,1(x), . . . ,Mi,w−1(x))
satisfies IMi ̸= IMj whenever i ̸= j, and when both Mi and
Mj are nonzero. Here, the pivot index IMi of Mi is defined as
follows [16]:

IMi =

{
max{j|max{degMi,j(x)}, 0 ≤ j < w} for Mi ̸=0
−1 for Mi=0.

A given polynomial matrix can be transformed into
the weak Popov form by applying unimodular row-
transformations [16]. For i ̸= j, if IMi ̸= −1, IMj ̸= −1, and

degMi,IMj
(x) ≥ degMj,IMj

(x), and there exists unique ζ ∈ F
and π ∈ N such that

deg
(
Mi,IMj

(x) − ζxπMj,IMj
(x)
)

< degMi,IMj
(x).

In [16], this operation—where ζxπ times row j is sub-
tracted from row i—is termed as the simple transformation of
row j on row i. If IMi = IMj , the operation is termed the simple
transformation of the first kind; otherwise, it is termed the
simple transformation of the second kind [16]. In this paper,
the simple transformation of the first kind is hereafter denoted
as ST.

Algorithm 2 The Weak Popov Form

Input : Polynomial matrixM ∈ F2m [x]l×l

Output: Reduced polynomial matrix N in the weak
Popov form

1 begin
2 N = copy(M );
3 for i to l do
4 INi = find_pivot_index(Ni);
5 if INi = 0 then
6 continue
7 end
8 for j to i-1 do
9 if INj = INi then
10 π = degNj,INj (x) − degNi,INi (x);
11 if π > 0 then
12 swap(Nj,Ni);
13 end

/* LC() returns the
leading coefficient of
a polynomial. */

14 ζ = LC(Ni,INi (x)) × LC(Nj,INj (x))
−1

/* abs() returns the
absolute value of a
number. */

15 Ni = Ni − ζxabs(π)Nj;
16 i = i− 1;
17 break
18 end
19 end
20 end
21 return N ;
22 end

Algorithm 2 is the pseudocode proposed by [16] to
transform a polynomial matrix into the weak Popov form
using the ST operation. Algorithm 2 sequentially compares
vectors, and if there are vectors with the same pivot index,
it performs an ST operation. This process of comparing
vectors and performing ST operations is repeated until
obtaining a reduced matrix N that conforms to the weak
Popov form.
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D. THE POPOV FORM
In [17], a matrixM = (Mi,j(x)) ∈ F[x]v×w is said to be in the
Popov form if it satisfies the following conditions:

1) M is in the weak Popov form.
2) Mi,IMi

(x) is monic for all IMi ̸= −1.
3) degMi,IMi

(x) < degMj,IMj
(x) for all i < j.

Reference [22] proposed amethod to reduce computational
complexity by utilizing the saturation of M to efficiently
find the pivot support of M and then use this information to
calculate the Popov form of M . When this method is used,
the complexity bound is reduced Õ(vwRank(M )(degM )2) to
Õ(vω−1w(degM )). where the value of ω is typically between
2 and 3 and (degM ) is defined as the maximum of the degree
of M entries.

We can transform a matrix that is in the weak Popov form
into the Popov form through operations such as swapping the
positions of the rows, the simple transformation of the second
kind, and multiplying rows by scalars [16].
In this paper, we propose an implementation scheme that

efficiently transforms a polynomial matrix into the weak
Popov form by leveraging the features of the polynomial
matrix that are generated during the list-decoding algorithm.

III. AN EFFICIENT IMPLEMENTATION SCHEME OF
LATTICE REDUCTION IN THE LIST-DECODING
ALGORITHM
This paper proposes an efficient scheme for transforming
a polynomial matrix that generated in the list-decoding

algorithm—specifically when the integer parameter d of the
l-dimensional lattice 4 ⊂ F2m (x)[z] is 2β—into the weak
Popov form.

In the finite field F2m , raising a polynomial to the power of
2β is equivalent to raising each term of the polynomial to the
power of 2β . Therefore, when d is 2β , among the polynomials
that generate 4, ((xθ z + δ(x))/h(x))d is a polynomial
consisting of two terms ((xθ z)/h(x)) and (δ(x)/h(x)) raised
to the power of 2β , respectively. Similarly, the polynomials
resulting frommultiplying ((xθ z+δ(x))/h(x))d by (xθ z)i, 1 ≤

i ≤ l − d − 1 also consist of two terms. Therefore, the
polynomial matrix generated based on the coefficients of
the above polynomials contains a significant number of zero
elements. This allows us to predict which other row vectors
are likely to share the same pivot index as the index of the
modified pivot when the pivot of a row vector in a polynomial
matrix changes. The matrix T shows the polynomial matrix
M ∈ F2m [x]l×l , where the coefficients of 1, z, z2, . . . , zl−1

are represented as row vectors. Here, the element Ti,j is
displayed as follows:

Ti,j =

{
0, Mi,j(x) = 0
1, Mi,j(x) ̸= 0.

The value of u lies within the range of 0 ≤ u ≤ n − t −
√
n(n− 2t − 2). However, in the case where u = 0, other

decoding algorithms can also decrypt ciphertexts efficiently.
Hence, this paper assumes that u is greater than zero.
Since t0 ≤ t , in cases where u > 0 and t0 = t , then

g0 = u− u%2 and g1 = (u− 1)− (u− 1)%2. Consequently,

1,
xθ z+ δ(x)

h(x)
,

(
x2θ z2 + δ2(x)

h2(x)

)
,

(
x3θ z3 + δ(x)x2θ z2 + δ2(x)xθ z+ δ3(x)

h3

)
, · · · ,

(
xdθ zd + δd (x)

hd (x)

)
,(

x(d+1)θ zd+1
+ δd (x)xθ z

hd (x)

)
,

(
x(d+2)θ zd+2

+ δd (x)x2θ z2

hd (x)

)
, · · · ,

(
x(l−1)θ zl−1

+ δd (x)x(l−d−1)θ zl−d−1

hd (x)

)
. (4)

T =



1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0 0 0
1 0 1 0 0 . . . 0 0 0 . . . 0 0 . . . 0 . . . 0 . . . 0
1 1 1 1 0 0 0 0 0 0 0 0 0
1 0 0 0 1 0 0 0 0 0 0 0 0

...
. . .

...
. . .

...
...

. . .
...

. . .
...

. . .
...

1 0 0 0 0 1 0 0 0 0 0 0 0
0 1 0 0 0 . . . 0 1 0 . . . 0 0 . . . 0 . . . 0 . . . 0
0 0 1 0 0 0 0 1 0 0 0 0 0

...
. . .

...
. . .

...
...

. . .
...

. . .
...

. . .
...

0 0 0 0 0 . . . 1 0 0 . . . 0 1 . . . 0 . . . 0 . . . 0
...

. . .
...

. . .
...

...
. . .

...
. . .

...
. . .

...

0 0 0 0 0 . . . 0 0 0 . . . 0 0 . . . 1 . . . 1 . . . 0
...

. . .
...

. . .
...

...
. . .

...
. . .

...
. . .

...

0 0 0 0 0 . . . 0 0 0 . . . 0 0 . . . 0 . . . 1 . . . 1



0
1
2
3
4
...

d
d + 1
d + 2

...

2d
...

l − d − 1
...

l − 1

(5)
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when u is even, g0 > g1, while when u is odd, g0 = g1. If
u > 0, t0 < t , then t0 − t − 1 < t − t0, which always means
that g1 ≤ g0. Consequently, θ = g1 − g0 ≤ 0. Therefore,
M is scaled by multiplying x(−θ )(l−1)hd (x). At this point,
by converting the scaled M to the weak Popov form, we can
avoid the complexities associated with fractional arithmetic.

As before scaling, the elements ofM corresponding to the
constant terms in the polynomials generating 4 become the
pivot elementsMi,IMi

(x) of the i-th row vectorMi. Therefore,
the pivot indices from Md+1 to Ml−1 of M are different
whereas the pivot indices fromM0 toMd are the same. Hence,
the conditions for the weak Popov form cannot be satisfied.
However, we can transform M into the weak Popov form,
denoted as N , by applying ST operation to its row vectors.
According to [16], the maximum number of ST operations

that can be applied during the process of convertingM into N
is given by SM ,N

= SM − SN . Here, SM is defined as SM =∑
i∈CM (degMi,IMi

(x) rank(M ) + IMi ), where CM
= {i|IMi ̸=

−1, 0 ≤ i < l}. The number of ST operations performed is
affected by the particularly sequence in which the row vectors
are utilized in ST operations.
Definition 1: The degree difference of a polynomial

p(x) = p0 + p1x + p2x2 + . . . + pτ xτ is defined as:

Dp(x)poly = min(i− j)

where i, j ∈ {i, j|pi ̸= 0, pj ̸= 0, 0 ≤ j < i ≤ τ }. If a
polynomial is a monomial, its degree difference is considered
to be infinite.
Definition 2: The degree difference of a row vector P =

(p0(x), p1(x), p2(x), . . .) with polynomials as components is
defined as:

DPvec = min(Dpi(x)poly )

where P ̸= 0 and pi(x) ̸= 0.
In a scenario where multiple row vectors are provided, let

us assume that their pivot indices are identical. To modify
the pivot of a specific row vector, ST operation is employed
by selecting a row vector from various other row vectors
with matching pivot indices. The number of ST operation
executions needed to modify the pivot depends on the chosen
row vector.

In the example of (6), as shown at the bottom of the
page, the row vectors share the same pivot index. The degree
difference of the 0th-row vector is considered to be infinite,
the degree difference of the 1st-row vector is 1, and the degree
difference of the 2nd-row vector is 4. To change the pivot
index of the 0th-row vector by using the 1st-row vector, 4
ST operations are required. Conversely, if the 2nd-row vector

is chosen, the pivot index of the 0th-vector can be altered
by performing only 1 ST operation. The degree difference
among row vectors significantly influences the number of ST
operations required, as illustrated in the example.
M is formed based on the coefficients of 4i(z); in this

paper, it is specified that d = 2β . Consequently, the
elements of M consist of polynomials with degree differ-
ences of approximately Dδ(x)

poly, 2D
δ(x)
poly, 2

2Dδ(x)
poly, · · · , 2βDδ(x)

poly.
Therefore, the row vectors of M can be divided according to
these degree differences.

During pivot alterations, consideration is given to the fact
that it is advantageous to use row vectors with large degree
differences for pivot changes. So, we initially distinguish
between the row vectors whose pivot indices overlap and
the row vectors whose pivot indices do not overlap. The row
vectors with overlapping pivot indices are organized into sets
according to their degree differences. Subsequently, when
the pivot of row vectors within a set undergoes modification
due to ST operation, row vectors with the potential to share
the same pivot index as the pivot index of the modified
pivot are discerned from the non-overlapping row vectors and
included as elements. The degree difference of the added row
vectors is guaranteed to be greater than or equal to the degree
differences of the row vectors forming the set. By separating
row vectors in this manner, it is feasible to initially execute the
ST operation on the row vectors with large degree differences.
As a result, the ST operation can be sequentially applied to
row vectors with small degree differences.

The row vectors from the 0th to the d-th positions in M
share the same pivot index, while the pivot indices for the
row vectors from the (d + 1)-th to the (l − 1)-th positions
are distinct. Further, the degree difference for the row vectors
from the (d+1)-th to the (l−1)-th positions is greater than or
equal to 2βDδ(x)

vec . To generate sets of row indices based on the
degree differences of the row vectors in M , the row vectors
from 0th to (d − 1)-th are classified as follows:

• 9β = {i | 2βDδ(x)
poly ≤ DMi

vec, 0 ≤ i ≤ d − 1},

• 9β−1 = {i | 2β−1Dδ(x)
poly ≤ DMi

vec < 2βDδ(x)
poly, 0 ≤ i ≤

d − 1},
• · · · ,
• 90 = {i | Dδ(x)

poly ≤ DMi
vec < 2Dδ(x)

poly, 0 ≤ i ≤ d − 1}.

If a set contains more than two elements, they are listed in
ascending order.

Following this, when the pivots of the previously classified
row vectors change, a search is conducted to identify
row vectors that may share overlapping pivot indices with
the pivot indices of the changed pivots. Here, the row

 α39x16 0 0
α31

+α11x+α24x2+α40x3+α12x4+α55x5+α34x6+α19x7+α36x8 α36
+α52x+α16x2+α31x3+α30x4 0

α36
+α17x4+α50x8 0 α8

+α16x4


(6)
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Algorithm 3 The Proposed Row-Reordering Method

Input : d, l,M ,Dδ(x)
poly

Output: Reordered sequence IDX
1 begin
2 for i to d-1 do
3 for j = β to 0 do
4 if DMi

vec ≥ 2jDδ(x)
poly then

5 9j∪ = {i};
6 break
7 end
8 end
9 end
10 ρ = 0;
11 for j = β to 0 do
12 for i to |9j| do
13 λ = 0;
14 repeat
15 idxρ = 9 i

j + d × λ ; // 9 i
j ∈ 9j

16 λ = λ + 1;
17 ρ = ρ + 1;
18 until 9 i

j + d × λ < l;
19 end
20 end
21 return IDX ;
22 end

vectors are not redundantly selected, as they are selected
as follows:

• 9β∪ = {i+ d × λ | i ∈ 9β , 1 ≤ λ, (i+ d × λ) < l},
• 9β−1∪ = {i+d×λ | i ∈ 9β−1, 1 ≤ λ, (i+d×λ) < l},
• · · · ,
• 90∪ = {i+ d × λ | i ∈ 90, 1 ≤ λ, (i+ d × λ) < l}.

The row vectors of M are rearranged using the β +

1 sets generated in this way. When a row vector with a
small degree difference is used to change the pivots of
other row vectors, it affects the degree difference of the
other row vectors. Therefore, the row vectors of M are
rearranged by referring to the order of 9β , 9β−1, · · · , 90.
The polynomial matrix whose rows are rearranged is denoted
asM ′. Algorithm 3 generates sets as described previously and
returns the information IDX that can then be used to rearrange
the row vectors ofM . In the process of generating the lattice,
if the parameters (d, l) and Dδ(x)

poly remain consistent with the
previously computed values, IDX will also be the same as
before. Therefore, when (d, l) and Dδ(x)

poly are identical to the
previous values, precomputed IDX can be utilized.
Algorithm 4 demonstrates the procedure for transforming

the converted matrix M ′ into the weak Popov form by
reordering the rows ofM according to IDX . By transforming
M ′ into the weak Popov form, the number of ST operations
can be reduced.

The number of ST operations executed during the
transformation of M into the weak Popov form is

Algorithm 4 The Proposed scheme

Input : d, l,M ,Dδ(x)
poly

Output: Reduced polynomial matrix N in the weak
Popov form

1 begin
/* Use Algorithm 3 to obtain IDX.

*/
2 IDX = row_reordering(d, l,M ,Dδ(x)

poly);
/* Rearrange the rows of M

according to IDX to convert it
to M ′. */

3 for i to l do
4 tmp =Mi;
5 Mi = MIDXi ;
6 MIDXi = tmp;
7 end
8 N = weak_Popov_form(M ′);
9 return N ;
10 end

TABLE 1. The test environment.

expressed as follows:

STM =

l−1∑
i=1

(ηi − ηi−1) (7)

where ηi denotes the number of ST operations performed
until the row vectors from the 0th to the i-th row vector
possess distinct pivot indices. Therefore, η0 = 0.
Meanwhile, Algorithm 2 sequentially compares the row

vectors and applies ST operation. As a consequence, when
transforming the given matrix M into the weak Popov
form, the row vectors with small degree differences are
the first ones used in ST operation. This in turn affects
the degree differences of the other row vectors, ultimately
leading to an increase in the number of ST operations.
On the other hand, when converting M ′, the ST operation
is applied in the order from Mi, where i ∈ 9β , to Mi,
where i ∈ 90. Consequently, during ST operations on Mi,
where i ∈ 9j, the degree differences are maintained at 2j.
Thus, during the process of transforming M ′ into the weak
Popov form, the number of ST operations between the row
vectors corresponding to 9β , 9β−1, · · · , 90 is reduced by
approximately 1/2β , 1/2β−1, · · · , 1.

The number of ST operations performed in the process of
convertingM ′ to weak Popov form is defined as follows:

STM
′

= STMβ + STMβ−1 + · · · + STM0 . (8)
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TABLE 2. The number of ST operations.

TABLE 3. The execution time for conversion.

TABLE 4. Theoretical and experimental values of ST operation numbers.

Here, STMi can be expressed as follows:

STMi =

(
η∑β

j=i |9j|−1 − η∑β
j=i+1 |9j|−1

)
×

1
2i

. (9)

In this section, we have proposed a method that can
be used to rearrange the row vectors based on the degree
differences of the row vectors to efficiently reduce the
polynomial matrix in the list-decoding algorithm. We have
also demonstrated that the number of ST operations decreases
when transforming the modified polynomial matrix into the
weak Popov form according to the proposed technique.

IV. PERFORMANCE EVALUATION
We have introduced an efficient technique for transforming
polynomial matrices generated in the list-decoding algorithm
to the weak Popov form when the parameter d is 2β . The
proposed technique involves reordering row vectors within
a specified polynomial matrix while considering their degree
differences. The process for evaluating the performance of the
proposed technique is as follows:

1) During the encoding process of the binary Goppa
codes, an error vector with a Hamming weight of t + u
is randomly generated and added to a codeword.

2) The matrixM generated in the decoding process based
on the list-decoding algorithm as well as the modified
matrix M ′ using the proposed method are separately
transformed into the weak Popov form.

3) In line 9 of Algorithm 2, the given row vector is
compared with previous row vectors, and the number
of ST operations is recorded if there is a row vector
with the same pivot index.

4) To validate whetherM andM ′ have each been correctly
converted to the weak Popov form, we find the roots of

φ(z) of M and φ(z) of M ′ obtained from the reduction
outcomes. Subsequently, we verify that both possess an
equal root of the desired form q21(x)/x

θq20(x).

The test environment is described in Table 1.
Table 2 provides a comparison of the number of ST

operations performed for each parameter. In line 9 of
Algorithm 2, the count was recorded whenever row vectors
with the same pivot index were encountered. After the
polynomial matrix was converted using the proposed scheme,
a reduction of around 15% in the count of ST operations could
be observed during the conversion process to the weak Popov
form.

Table 3 presents the time taken to convertM andM ′ to the
weak Popov form by each parameter. The time was measured
at lines 3 and 20 of Algorithm 2 to calculate the execution
time.

If the parameters (d, l) and Dδ(x)
poly remain consistent

with their previously computed values, we can utilize
the previously calculated IDX . Hence, in Table 3, the
computation time for IDX is omitted from the execution time
of transforming M ′ into the weak Popov form, and only the
time to reference IDX and transformM intoM ′ is additionally
included. The execution time of Algorithm 2 decreased when
transforming M ′ into the weak Popov form compared to
the corresponding time when transforming M into the weak
Popov form.

Table 4 presents a comparison between theoretical and
experimental values of the count of ST operations during the
process of convertingM ′ to theweak Popov form.While there
are slight differences for each parameter, the maximum error
rate observed in the experiments is 5.2%.

Upon convertingM ′ into the weak Popov form, the number
of ST operations decreases, which leads to a reduction in
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the overall execution time required for polynomial matrix
reduction.

It is not necessary to execute Algorithm 3 every time during
decryption. However, to store the precomputed IDX , it is
necessary to have additional memory of l × 4 bytes. Further,
as pointers are employed to generate M ′, extra memory of
another l × 4 bytes is also required.

V. CONCLUSION
The fact that the McEliece cryptosystem utilizes the
list-decoding algorithm enhances security by using u addi-
tional errors alongside t errors to create ciphertexts. However,
an issue arises that decoding time increases, as lattice
reduction and factorization operations become necessary due
to these additional errors.

In this paper, to address the issue of increasing exe-
cution time caused by lattice reduction, we proposed a
scheme that efficiently reduces the polynomial matrix of
the l-dimensional lattice generated from the list-decoding
algorithm. The proposed scheme is designed to decrease
the execution time of lattice reduction by reducing the
number of ST operations required when transforming a given
polynomial matrix into the weak Popov form.

In cases where d = 2β , we reorganize the row
vectors within the given polynomial matrix in accordance
with its properties, thereby reducing the number of ST
operations. Although this process necessitates additional
memory of 2l × 4 bytes to rearrange the row vectors,
through this experimentation, we have verified a reduction
of approximately 15% in the number of ST operations when
transforming the reordered polynomial matrix into the weak
Popov form.

While there are variations among the parameters, com-
pared to the transformation of the original polynomial matrix
into the weak Popov form, the execution time of transforming
the polynomial matrix with rearranged row vectors into the
weak Popov form decreased by approximately 16% to 23%
when using the proposed scheme.

When the proposed scheme is applied to a polynomial
matrix containing numerous zero elements and row vectors
with large degree differences, the frequency of ST operations
is significantly diminished. Conversely, when this scheme is
applied to a polynomial matrix lacking these properties, the
reduction in the number of ST operations is not substantial.
However, even if d is not a power of 2, q0 and q1 are
obtained by expanding d to a power of 2, creating a lattice,
and converting it to the weak Popov form. Accordingly,
if necessary, the proposed algorithm can be applied by
converting d to a power of 2.

APPENDIX A
EXAMPLES OF THE LIST-DECODING ALGORITHM
Let 0(L, g(x)) be the binary Goppa codes over a finite field
F26 . The code has a monic degree-10 irreducible polynomial
g(x) = α56

+ α29x + α55x2 + α23x3 + α49x4 + α11x5 +

α59x6 + α55x7 + α12x8 + α22x9 + x10 and a subset L =

{α1, α2, α3, · · · , α64} = {0, 1, α, · · · , α62
}. Suppose we

have r = (1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1,
1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1,
1, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 1) with 11
errors. We will use Algorithm 1 to find the error location
polynomial ϵ(x).
First, h(x) is defined as follows:

h(x) =

∏
i

(x − αi) = x + x64

1) First we compute the polynomial s(x).

s(x) =

√
(1/

∑
i

ri/(x − αi)) − x

= α50
+ α34x2 + α36x3 + α13x4 + α59x5 + α3x6

+ α23x7 + α37x8 + αx9.

2) Then we find the minimum-length nonzero vector
(a0(x), b0(x)) and the minimum-length independent
vector (a1(x), b1(x)).[

g(x) 0
s(x) 1

]
→

[
α29

+ . . . + α29x5 α13
+ . . . + α20x4

α51x + . . . + α34x4 α27
+ . . . + α34x5

]
Thus we have

a0(x) = α29
+α35x+α47x2+α49x3+α17x4+α29x5

b0(x) = α13
+ α34x + α30x2 + α47x3 + α20x4

a1(x) = α51x + α26x2 + α33x3 + α34x4

b1(x) = α27
+α48x+α46x2+α53x3+α37x4+α34x5.

3) We calculate ϵ0(x) such that

ϵ0(x) = a20(x) + xb20(x)

= a58 + a26x + a7x2 + a5x3 + a31x4 + a60x5

+ a35x6 + a31x7 + a34x8 + a40x9 + a58x10.

So we can find ϵ1 by following the next three steps:
• We choose γ = 1.
• We compute gcd{a21(x) + xb21(x) + γ ϵ0(x), h(x)}.
• Since the result of the previous step is 1, we thus
put

ϵ1(x) = a21(x) + xb21(x) + γ ϵ0(x)

= a58+a58x+a35x2+. . .+a58x10+a5x11.

4) We compute the polynomial δ(x) such that

δ(x) =
ϵ0(x)
ϵ1(x)

(mod h(x))

= 1 + α35x + α10x2 + . . . + α44x62 + α21x63.

5) We define an l-deimensional lattice 4 by following the
next three steps:

• Calculate the integer θ .
– t0 = degϵ0(x) = 10
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FIGURE 1. Convert M to the weak Popov form.

FIGURE 2. Convert M′ to the weak Popov form.

– g0 = 2⌊(u+ t − t0)/2⌋ = 0
– g1 = 2⌊(u+ t0 − t − 1)/2⌋ = 0
– θ = g1 − g0 = 0

• We choose d = 4, and l = 15.
• The polynomials that generate a
15-dimensional lattice are as

follows:

1,
z+δ(x)
h(x)

,
z2+δ2(x)
h2(x)

,
z3+δ(x)z2+δ2(x)z+δ3(x)

h3(x)
,

z4+δ4(x)
h4(x)

,
z5+δ4(x)z
h4(x)

,
z6+δ4(x)z2

h4(x)
, · · · ,

VOLUME 12, 2024 79527



K.-S. Yu, D.-W. Lim: Efficient Implementation Scheme for Lattice Reduction

z12 + δ4(x)z8

h4(x)
,
z13 + δ4(x)z9

h4(x)
,
z14 + δ4(x)z10

h4(x)
.

6) We generate the polynomial matrix M using coeffi-
cients of 1, z, z2, · · · , z14 in the generators.
And then we scale the entireM such that

M = h4(x) ×M .

7) Figure 1 shows the conversion ofM to the weak Popov
form.

8) We find the minimum-length nonzero vector φ(z) =

φ0 + φ1z+ . . . + φ14z14. There are several row vectors
that can be φ(z). We chose the 2nd-row vector as φ(z),
so

φ(z) = (α38
+ . . . + α23x34) + (α41

+ . . .

+ α3x34)z+ . . . + (α59
+ . . . + x36)z14.

9) Since φ(α61) = 0 and φ((α53
+ . . . + α53x10)/(α53

+

. . .+x11)) = 0, the root that satisfies the q21(x)/x
θq20(x)

form is α61. Therefore, it is{
q20(x) = 1
q21(x) = α61.

10) Finally, we find the error locator polynomial ϵ(x) with

ϵ(x) = q20(x)ϵ0(x) + q21(x)ϵ1(x)

= (α58
+ α26x + . . . + α58x10)

+ α61(α58
+ α58x + . . . + α5x11)

= α42
+ α31x + . . . + α42x10 + α3x11.

The roots of ϵ(x) are

(α3, α8, α11, α14, α21, α25, α28, α34, α38, α51, α58)

= (α4, α9, α12, α15, α22, α26, α29, α35, α39, α52, α59).

Thus, the error positions of r are

{4, 9, 12, 15, 22, 26, 29, 35, 39, 52, 59}.

APPENDIX B
EXAMPLE OF IDX GENERATION AND ROW VECTOR
REARRANGEMENT
Let us new rearrange M in the example in Appendix A and
convert it to the weak Popov form. First, we use Algorithm 3
to generate IDX to be used as a reference for row vector
rearrangement.

1) We classify the row vectors from 0th to 3rd as follows:

92 = {0},

91 = {2},

90 = {1, 3}.

2) We identify row vectors that could potentially share the
same pivot indices as the pivot indices of the modified
pivots of the previously classified row vectors.

92 = {0, 4, 8, 12},

91 = {2, 6, 10, 14},

90 = {1, 5, 9, 13, 3, 7, 11}.

We generate IDX based on the created 9i.

IDX = (idx0, idx1, · · · , idxl−1)

= (0, 4, 8, 12, 2, 6, 10, 14, 1, 5, 9, 13, 3, 7, 11).

We rearrange the row vectors of M according to the
generated IDX . The rearrangedM is denoted asM ′. We then
convert M ′ to the weak Popov form.

M =



1 0 0 0 0 0 · · · 0
δ(x)
h(x)

1
h(x)

0 0 0 0 · · · 0

δ2(x)
h2(x)

0
1

h2(x)
0 0 0 · · · 0

δ3(x)
h3(x)

δ2(x)
h3(x)

δ(x)
h3(x)

1
h3(x)

0 0 · · · 0

δ4(x)
h4(x)

0 0 0
1

h4(x)
0 · · · 0

0
δ4(x)
h4(x)

0 0 0
1

h4(x)
· · · 0

0 0
δ4(x)
h4(x)

0 0 0 · · · 0

0 0 0
δ4(x)
h4(x)

0 0 · · · 0

0 0 0 0
δ4(x)
h4(x)

0 · · · 0

...
...

...
...

...
...

. . .
...

0 0 0 0 0 0 · · ·
1

h4(x)


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We calculate the degree difference of each row vector to
find the minimum length non-zero vector φ(z). Among the
several row vectors that can be φ(z), the first-row vector was
selected as φ(z).

φ(z) = (α14
+ . . . + α18x34) + (α2

+ . . . + α52x34)z

+ . . . + (α56
+ . . . + α43x35)z14.

It can be observed that the roots of φ(z) coincide with the
findings presented in Appendix A, as follows:{

φ(α61) = 0
φ((α53

+ . . . + α53x10)/(α53
+ . . . + x11)) = 0.

Therefore, this also holds:{
q20(x) = 1
q21(x) = α61.
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