
Received 3 May 2024, accepted 16 May 2024, date of publication 24 May 2024, date of current version 18 June 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3404778

Securing the IoT Cyber Environment: Enhancing
Intrusion Anomaly Detection With
Vision Transformers
LARAIB SANA1, MUHAMMAD MOHSIN NAZIR1,
JING YANG 2, (Graduate Student Member, IEEE), LAL HUSSAIN 3,4,
YEN-LIN CHEN 5, (Senior Member, IEEE), CHIN SOON KU 6,
MOHAMMED ALATIYYAH7, SULAIMAN ABDULLAH ALATEYAH8,
AND LIP YEE POR 2, (Senior Member, IEEE)
1Department of Computer Science, Lahore College for Women University, Lahore, Punjab 54000, Pakistan
2Department of Computer System and Technology, Universiti Malaya, Kuala Lumpur 50603, Malaysia
3Department of Computer Science and IT, Neelum Campus, The University of Azad Jammu and Kashmir, Azad Kashmir 13230, Pakistan
4Department of Computer Science and IT, King Abdullah Campus, The University of Azad Jammu and Kashmir, Muzaffarabad, Azad Kashmir 13100, Pakistan
5Department of Computer Science and Information Engineering, National Taipei University of Technology, Taipei 106344, Taiwan
6Department of Computer Science, Universiti Tunku Abdul Rahman, Kampar 31900, Malaysia
7Department of Computer Science, College of Sciences and Humanities-Aflaj, Prince Sattam Bin Abdulaziz University, Al-Kharj 16278, Saudi Arabia
8Department of Computer Engineering, College of Computer, Qassim University, Buraydah 52571, Saudi Arabia

Corresponding authors: Yen-Lin Chen (ylchen@mail.ntut.edu.tw), Chin Soon Ku (kucs@utar.edu.my), and Muhammad Mohsin Nazir
(mohsinsage@gmail.com)

This work was supported in part by the National Science and Technology Council in Taiwan under Grant
NSTC-112-2221-E-027-088-MY2 and Grant NSTC-112-2622-8-027-008; in part by the Ministry of Education of Taiwan titled ‘‘The
Study of Artificial Intelligence and Advanced Semiconductor Manufacturing for Female STEM Talent Education and Industry-University
Value-Added Cooperation Promotion’’ under Grant 1122302319; and in part by the Universiti Tunku Abdul Rahman (UTAR) Financial
Support for Journal Paper Publication Scheme through UTAR, Malaysia.

ABSTRACT The ever-expanding Internet of Things (IoT) landscape presents a double-edged sword. While
it fosters interconnectedness, the vast amount of data generated by IoT devices creates a larger attack surface
for cybercriminals. Intrusions in these environments can have severe consequences. To combat this growing
threat, robust intrusion detection systems (IDS) are crucial. The data comprised by this attack is multivariate,
highly complex, non-stationary, and nonlinear. To extract the complex patterns from this complex data,
we require the most robust, optimized tools. Machine learning (ML) and deep learning (DL) have emerged
as powerful tools for IDSs, offering high accuracy in detecting and preventing security breaches. This
research delves into anomaly detection, a technique that identifies deviations from normal system behavior,
potentially indicating attacks. Given the complexity of anomaly data, we explore methods to improve
detection performance. This research investigates the design and evaluation of a novel IDS. We leverage
and optimize supervised ML methods like tree-based Support Vector Machines (SVM), ensemble methods,
and neural networks (NN) alongside the cutting-edge DL approach of long short-term memory (LSTM) and
vision transformers (ViT). We optimized the hyperparameters of these algorithms using a robust Bayesian
optimization approach. The implemented ML models achieved impressive training accuracy, with Random
Forest and Ensemble Bagged Tree surpassing 99.90% of accuracy, an AUC of 1.00, an F1-score, and
a balanced Matthews Correlation Coefficient (MCC) of 99.78%. While the initial deep learning LSTM
model yielded an accuracy of 99.97%, the proposed ViT architecture significantly boosted performance
with 100% of all metrics, along with a validation accuracy of 78.70% and perfect training accuracy. This
study demonstrates the power of our new methods for detecting and stopping attacks on Internet of Things
(IoT) networks. This improved detection offers a three-pronged approach to security: increased system
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reliability through attack prevention, enhanced security by swiftly identifying and mitigating fraudulent activity,
and optimized network performance by preventing malicious attacks. Consequently, these methods offer significant
potential for fortifying the security of IoT networks.

INDEX TERMS Vision transformers, anomaly detection, intrusion detection, IoT, deep learning.

I. INTRODUCTION
Intrusion detection systems for the IoT aim to identify and
respond to potential intrusions or security breaches in real-
time. These systemsmonitor network traffic, device behavior,
and communication patterns to detect anomalies, suspicious
activities, or known attack patterns. Some common tech-
niques used in IoT intrusion detection include:
1. Signature-based detection: This method involves com-

paring network traffic or device behavior against known
attack signatures or patterns. If a match is found, it indi-
cates a potential intrusion.

2. Anomaly-based detection: Anomaly-based detection
involves establishing a baseline behavior for IoT devices
and networks and then identifying any deviations from
the normal patterns. Unusual or unexpected behavior can
indicate a possible intrusion.

3. Behavior-based detection: This technique focuses on
monitoring the behavior of individual IoT devices.
It establishes expected behavior for each device and
flags any deviations that may suggest a compromise or
unauthorized access. Machine learning algorithms can
be trained to analyze IoT data and identify patterns
that indicate malicious activities. These algorithms can
learn from historical data and adapt to new threats over
time.

Anomaly detection is important in various fields as it helps
identify unusual patterns, events, or behaviors that deviate
from the norm [1], [2], [3], [4]. It has applications in fields
such as finance, cybersecurity, healthcare, manufacturing,
and more.

In cybersecurity, anomaly detection helps identify poten-
tial threats or attacks on computer systems or networks [5].
By analyzing network traffic and identifying unusual pat-
terns, anomalies can be detected, and security measures can
be put in place to prevent or mitigate cyberattacks [5], [6].
In healthcare, anomaly detection is used to identify patients

with unusual symptoms or disease progression, allowing for
early intervention and treatment [1]. It can also be used to
detect outbreaks of infectious diseases or other public health
threats.

As our world is known as the global world, more than 70%
of our world population is using active internet connections
on multiple digital devices. People are taking advantages and
opportunities from the internet, but many cyber attackers are
using these internet services illegally and trying to misuse
them by generating many cyberattacks. They use different
cyberattacks to steal people’s information and hijack internet
services.

To handle such cyberattacks and threats, researchers have
proposed many intrusion detection systems using machine

learning and deep learning techniques. The complexity and
evolving nature of IoT systems, along with the exponen-
tial growth of IoT network traffic data, pose challenges
for existing anomaly detection approaches to effectively
detect and defend against attacks, particularly unknown
attacks.

To address this issue, this paper presents a novel and
enhanced anomaly detection approach based on machine
learning for IoT networks. The proposed approach aims
to detect various anomalies, specifically abnormal network
traffic, in a highly contextual and scalable IoT network infras-
tructure. By employing this approach, it becomes possible
to accurately identify the behavior of normal and abnormal
traffic with high detection accuracy and a low false-positive
rate. Ultimately, this approach enhances the security of both
sensitive data and IoT devices, thereby maximizing overall
security in IoT environments.

The significant contributions of this paper can be summa-
rized as follows:

• Introduction to Vision Transformers (ViT) for Anomaly
Detection: The paper pioneers the use of Vision Trans-
formers in the field of anomaly detection, expanding the
application of ViT models beyond image classification
to effectively identify anomalies in various types of data,
including network traffic.

• Application in Intrusion Detection: By applying ViT
models to intrusion detection systems, the paper con-
tributes to enhancing network security. It introduces a
novel approach to improving the accuracy and effec-
tiveness of detecting cyber threats, a critical aspect of
safeguarding computer networks.

• Benchmarking and Comparative Analysis: The paper
evaluates ViT-based anomaly detection on the NSL-
KDD dataset and conducts a comparative analysis with
traditional machine learning algorithms. This empiri-
cal assessment demonstrates the potential advantages
of ViT models and provides valuable insights into their
strengths in handling complex data patterns.

The structure of the remaining paper is outlined as fol-
lows: Section II provides an overview of existing research
on anomaly detection in IoT networks and presents a taxon-
omy of existing datasets for anomaly and intrusion detection.
Section III defines and introduces the proposed anomaly
detection method specifically designed for IoT networks.
Section IV presents the experimental results and discusses
the findings obtained from applying the proposed method.
Section V concludes the paper by summarizing the work
presented and potentially highlighting future directions for
research in this area.
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II. RELATED WORK
The internet has become an indispensable part of our lives,
and its reach continues to grow. According to the Cisco
Annual Internet Report [7], the number of global internet
users is expected to surge from 3.9 billion in 2018 to 5.3 bil-
lion by 2023. This growth is further amplified by the IoT.
The IoT seamlessly integrates various physical devices, like
smart bulbs, refrigerators, and thermostats, into a connected
network. These devices communicate using technologies
like Bluetooth Low Energy (BLE), WiFi, and ZigBee [8],
[9], [10], [11]. The applications of IoT extend far beyond
smart homes, encompassing smart transportation, industrial
automation, agriculture, and healthcare [12]. This intercon-
nectedness, however, creates a vulnerability to cyberattacks.
The very nature of being connected exposes the IoT ecosys-
tem to various threats at different layers of its architecture.
Makhdoom et al. [13] provide a detailed overview of these
attacks, categorized based on malware types. Similarly, sur-
veys by [14] and Zarpelão et al. [15] highlight the prevalence
of IoT-enabled cyberattacks and the importance of IDS in
mitigating them.

Researchers have categorized IDS for IoT networks based
on factors like placement within the network, detection
methods employed, targeted security threats, and validation
strategies used [16]. Zargar et al. [16] specifically explored
distributed denial-of-service (DDoS) attacks on IoT networks
and classified various countermeasures. An IDS safeguards
communication between devices and detects intrusions across
different IoT network layers. Numerous IDS solutions have
been developed to secure internet communication [17], [18],
[19], [20]. These systems actively monitor network activity
for malicious behavior and send alerts to system administra-
tors upon detecting attacks. However, IoT devices often face
limitations due to their small size and low battery capacity.
This translates to limited computational power. Additionally,
they rely on lightweight communication protocols. Conse-
quently, any attack detection algorithms designed for IoT
networks must be lightweight and energy-efficient.

Several factors make IoT devices inherently vulnerable:
limited computational power, variations in equipment, soft-
ware, and communication protocols [21], [22], [23]. This
creates a significant gap between the security demands placed
on these devices and their actual defense capabilities [24].
Specifically, IoT devices with limited resources—processing
power, memory, and battery life—struggle to handle com-
putationally intensive security tasks that generate significant
processing and communication overhead [24]. Implementing
complex and robust security protocols on such devices is
simply not feasible. The heterogeneity of the IoT landscape
further complicates the development and deployment of secu-
rity solutions. Striking a balance between effective security
and efficient performance becomes a major challenge, con-
sidering the vast diversity of devices and their capabilities.

The rise of machine learning techniques has brought
promise to securing IoT networks. Algorithms like KNN,

Random Forest, and Naive Bayes offer good performance
with low complexity and reasonable computation time for
resource-constrained devices. Anthi et al. [25] proposed a
three-layer IDS for smart home IoT devices. They conducted
a testbed experiment with eight devices, monitored network
traffic, and simulated various attacks. The captured data was
categorized into four main attack types: denial-of-service
(DoS), man-in-the-middle, reconnaissance, and replay. Their
system utilizes three layers:

• Device Identification: Scans the network to identify con-
nected IoT devices.

• Packet Classification: Classifies network packets as
malicious or normal.

• Attack Type Identification: It uses nineML classifiers to
categorize malicious packets into four attack types and
selects the best-performing one.

However, their work lacks a clear definition of the data
features used for classification. Other studies explore dif-
ferent ML approaches for intrusion detection. Wenjuan Li
et al. [26] proposed a mechanism that utilizes both labeled
and unlabeled data for training, but their evaluation relied
on outdated DARPA (KDD99) data. Horng et al. [27] used
clustering to select relevant features for each attack type from
the KDD Cup 99 dataset. They then employed separate SVM
classifiers for each attack type, exploring both individual and
combined configurations. Eesa et al. [28] introduced a novel
feature separation technique based on a cuttlefish algorithm,
followed by a decision tree classifier for intrusion detection.
Challenges remain in building intelligent datamining systems
for intrusion detection due to the large datasets involved in
the training phase. The article by [29] proposes a feature
selection algorithm (‘‘Highest Wins’’) to address this chal-
lenge by identifying the most relevant features from training
datasets. Li et al. [30] presented a two-step AI-based intrusion
detection system using a software-defined approach. Their
system leverages a weighted voting system with a Random
Forest algorithm to categorize network flows.

Anomaly detection in multivariate time series data is
crucial for various applications, from network intrusion
detection in cybersecurity to identifying faulty equipment in
industrial settings [31], [32], [33], [34], [35]. Unlike uni-
variate time series that analyze a single variable over time,
multivariate time series deal with multiple interrelated vari-
ables [36], [37], [38], [39], [40], [41], [42], providing a richer
picture of the underlying processes [43], [44], [45], [46], [47].
This expanded view allows for more sophisticated anomaly
detection techniques.

Recently, researchers utilized methods to detect anoma-
lies from different categories, such as statistical models,
which rely on pre-defined assumptions about the underly-
ing distribution of the data [48], [49]. Popular examples
include ARIMA (Autoregressive Integrated Moving Aver-
age) and Hidden Markov Models (HMMs). While offering
interpretability, they struggle with complex or unknown data
distributions. ML approaches learn patterns from historical
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FIGURE 1. Proposed methodology.

data to identify anomalies. Techniques like KNN, SVMs,
and Random Forests excel at capturing complex relation-
ships in the data. However, they can be susceptible to
high dimensionality (too many variables), noise, and asyn-
chronous anomalies (anomalies appearing at different times
in different variables). DL architectures like RNNs, LSTM
networks, and vision transformers can handle complex data
patterns and temporal dependencies. They learn intricate rela-
tionships between multiple variables, making them powerful
for anomaly detection. However, deep learning models often
require large amounts of data for training and can be chal-
lenging to interpret.

The ability to detect anomalies in multivariate time series
data is critical across a wide range of fields [50], [51],
[52]. From pinpointing fraudulent transactions in finance
to identifying precursor signals for equipment failure in
industrial settings, these techniques offer significant practical
value [53], [54]. Unlike univariate analysis with its single-
variable focus, multivariate time series analysis incorporates
the interplay between multiple variables, leading to a more
comprehensive understanding of the underlying system. This
richer data perspective allows for the development of sophis-
ticated anomaly detection methods.

Machine learning is widely used to create efficient
intrusion detection systems that can accurately distinguish
between normal and malicious patterns. An efficient detec-
tion model ensures quick and accurate identification of
potential intrusions.

One study used SVM to design intrusion detection [55],
while another study used decision trees to identify malicious
and benign traffic. The main aim is to improve network
security by designing effective and safe intrusion detection
systems. Despite their effectiveness in many domains, these
approaches are not capable of detecting network attacks
effectively due to the challenges posed by the large volume of
data with complex feature representations. So, authors started
to use neural networks for designing such intrusion detection
systems.

Deep learning has provided promising results for large
datasets, which has attracted many authors to employ deep
learning techniques for designing intrusion detection sys-
tems. The author has used a convolutional neural network
(CNN) to propose an intrusion detection system [56], [57].
In another study, the Recurrent Neural Network (RNN) was
used to propose an intrusion detection system [58]. Therefore,
with the passage of time, RNN and CNN started to become
famous for handling such types of problems. However, many
deep learning-based approaches to intrusion detection have
performed well for attack detection. But these techniques
have some shortcomings that need to be addressed. Training
deep learning models like RNN and LSTM is costly, and
their neural networks are excessively deep. RNN is also a
sequential model, which does not work better for intrusion
detection. While CNNs are capable of parallel computation
and can capture long-range features with sufficient depth,
studies have demonstrated that deep convolutional models are
not as effective. This is because capturing remote dependen-
cies in CNNs is primarily dependent on the length of paths
traveled by forward-backward signals in the network, and the
deeper the level of the network, the more difficult it is to
obtain these dependencies.

Nowadays, the transformer technique is becoming pop-
ular for natural language processing (NLP) and computer
vision problems. The transformer technique is based on a
self-attention mechanism. It is proven that modern deep
learning techniques have provided better performance for
image-based problems. But these techniques cannot be used
for intrusion detection, as no image dataset is provided for
intrusion detection.

In [59], authors have used the concept of vision-based
deep learning to design network intrusion detection sys-
tems. They have used different image transformers to convert
the datasets into images and combine them into color
images using three-channel RGB. kPCA (polynomial), kPCA
(cosine), kPCA (rbf), PCA with the polynomial kernel,
i.e., and PCA with the sigmoid kernel, i.e., kPCA (sigmoid).
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And kPCA (polynomial) are used for image transformation.
Their model outperforms compared to prior grayscale-based
images, although processing the color images requires high
processing and memory resources, which makes this model
unsuitable for high network traffic in real-time environments.

The authors have designed another intrusion detection
model using improved ViT to solve the issue of memory in
recurrent neural networks [60]. Their proposedmodel worked
faster than RNN by using the concept of parallelization.
Instead of direct segmentation, zero-padding and sliding win-
dow mechanisms have been used. They used an NSL-KDD
cup for their experiments. To handle the outlier and class
imbalance problem, the HFocal loss function has been used.
The model provided better accuracy compared to other mod-
els, but its running time is comparatively higher than that of
another ML model [60].

The main challenges for designing a robust and efficient
IDS are unpredictable and unknown attacks, imbalances, and
high-dimensional datasets. In [61], the authors proposed the
IDS, in which a variant transformer based on an additional
multi-head self-attention layer has been designed for feature
selection and feature reduction. Synthetic Minority Over-
sampling Technique (SMOTE) had been used to handle the
imbalanced class samples. The proposed transformer helped
to solve the issue of overfitting. The CICIDS 2017 and CIC-
DDoS 2019 datasets have been used to evaluate the proposed
model. Their proposed model outperforms the other models
by providing 98.4% accuracy [61].

The authors have proposed the IDS model using hybrid
convolutional neural networks to handle sensitive attacks.
They have used LSTM to extract the important features from
the datasets and perform comparisons against the original set
of features. After extracting the important features, the model
was trained using CNN. The proposed model provided a bet-
ter result with 98% accuracy compared to other ML and DL
models. However, they have not explained their architecture
in detail [62].

In another study, authors proposed the IDS based on a
semi-supervised deep learning approach [63]. They used
both labeled and unlabeled IoT data traffic. Their study
mainly focused on the issue of the learning of spatiotemporal
representation. To handle this issue, a module named multi-
scale residual temporal convolution was designed. They have
used an attention model to identify important information
to increase the efficiency of training. Their model achieved
99.69% accuracy for attack detection [63]. However, it was
not clear how their model would work with huge network
traffic and a variety of unknown IoT attacks.

Another piece of research has focused on the use of
ensemble models in the domain of intrusion detection [64].
Seven machine learning classifiers, such as gradient-boosted
machines, random forests, extremely randomized trees,
multi-layer perceptrons, and regression trees, have been used
for the detection of DDoS attacks. They also performed
simulations to check the response time of each classifier.

To analyze the differences among the classifiers, the author
used the Nemenyi and Friedman statistical tests. Their results
concluded that extreme gradient-boosting classifiers, regres-
sion trees, and classification are suitable for the design of
IDS [64]. However, they have not discussed the response of
each classifier to the routing attacks.

In another study, the author presented a hierarchical hybrid
approach for IoT security. They have used a multimodal deep
autoencoder for the detection of anomalies and a soft-output
classifier for attack detection [65]. BotIoT was used to eval-
uate the proposed model. Their model worked better in the
detection of unknown attacks, especially for DDoS and DoS.
They claimed that their model is lightweight and works best
for on-device implementation in a resource-constrained IoT
environment.

Murder et al. have used multi-layered recurrent neural net-
works to design an intelligent intrusion detection system [58].
Their proposed framework consists of two steps for traffic
analysis and attack detection. They used two different deep
recursive neural networks with different hyperparameters and
internal structures. The first layer of the neural network
identified the attacks. They used an updated version of the
backpropagation algorithm for training, which improved the
effectiveness of attack detection. Since DoS attacks are one
of the main attack types that affect IoT systems, in addition
to being detected, the first layer shows attack detection for
DoS attacks. Using a second-layer network that has a different
recursive gain, adjustable parameters, and internal structure,
the first filter’s normal response is refiltered for high security.
The proposedmodel worked better than othermodels in terms
of training time [58].
In another study, the author used the concepts of deep

learning, transfer learning, and hyperparameter optimization
to design an intrusion detection system [66]. They converted
the datasets into images using chunk-based transformation
and used ensemble learning to improve the performance of
CNN. The CICIDS 2017 dataset and car hacking datasets
were used to evaluate the model. Their model worked better
and provided a higher F1 score compared to another proposed
model in this domain [66].
Another study has also used the concepts of transfer

learning and vision transformers for network intrusion detec-
tion systems [67]. They proposed a preprocessing technique
to convert the features into four-channel images. They
used those images for classification to train and test the
pre-trained deep learning model. BOUN DDoS datasets and
UNSW-NB15 were used to evaluate the proposed technique.
Results showed that their technique improved detection
accuracy [67].

In the majority of the IDS datasets, the distribution of
attack classes such as R2L and U2R is imbalanced, which
can impact the performance of IDS [68]. To handle this issue,
Yuelei Xiao et al. proposed a network intrusion detection sys-
tem using a simplified residual network (ResNet). They used
the parametric rectified linear unit (PReLU) function instead
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of RELU. Results showed that their proposed model provided
better accuracy and recall in attack detection compared to
state-of-the-art IDS [68].

The authors in another study emphasize the importance of
CNN compared to a sequential deep learning model. Amodel
based on EfficientNet and ResNet 50 has been designed
by Martin Kody et al.; they deployed two different CNN
algorithms on the TON IoT dataset to differentiate their per-
formance [69]. Results showed that both algorithms worked
better in terms of recall compared to prior-designed IDS. The
authors have also usedResNet for network intrusion detection
systems, but they did not use any transformation techniques
to convert the network traffic into images. However, the
proposed model provided 99.9% accuracy in DDoS and DoS
attack detection [70].

In 2020, Jiarui Song et al. proposed a neural network based
on attention mechanisms (LSTM and ResNet) to extract the
important patterns of network traffic. They then preprocessed
the identified patterns using the proposed feature selection
mechanism based on light GBM [71]. In the end, they trained
their proposed model using those features. Their proposed
model outperforms compared to other proposed IDS [71].

In [72], the author uses the concept of a transformer
for network intrusion detection systems. They proposed the
model using ResNet 50 and CNN. They evaluate their model
against three well-known IDS datasets: UNSWNB 15, NSL-
KDD, and CICIDS 2017. Their model provided more than
90% accuracy compared to existing ML algorithms. It was
concluded that the visual transformer has great potential for
improving the performance of IDS [72].

Tala et al. [73] have also used Resnet 50 to propose an
IDS system for smart grids. They used the technique of deep
insight to convert the numerical datasets into images. UNSW
datasets have been used for evaluating the model. Results
showed that their proposed model provided better accuracy
in the detection of denial-of-service attacks [73]. However,
they did not discuss the detection of other types of attacks.

Om Kumar et al. [74] have proposed the IDS using
recurrent kernel CNN and Modified Monarch Butterfly
Optimization. They used the min-max technique for pre-
processing and improved battle royale optimization for
the extraction of optimal features. The CICIDS-2017 and
N-BaIoT datasets have been used for the evaluation of the
model. Results showed that modified monarch butterfly opti-
mization improved the performance of the DL classifier. The
proposed model achieved 99.5% accuracy for CICIDS-2017
and 99.96% accuracy for the N-BaIoT dataset [74].
Recently, Khan H. and co-workers [75], [76], [77], [78],

[79] developed unsupervised methods from deep learning,
autoencoder-based Gaussian mixture models, and generative
adversarial networks to detect anomalies in social networks.
In the fight against cyberattacks, intrusion detection systems
(NIDS) are gaining a significant boost from transformer-
based models. These models offer improved accuracy and
efficiency in threat detection, particularly for novel and

unseen threats. Unlike traditional methods, transformers
allowNIDS to learn from and adapt to past data, making them
a powerful tool.

Transformers are a deep learning architecture originally
designed for NLP tasks like translation and text classifi-
cation [80]. However, their success has extended to other
domains, including network traffic analysis and classifica-
tion [81], image recognition [82], and intrusion detection.
This is due to their ability for parallel processing, transfer
learning, and achieving high accuracy.

Recently, He et al. [83] utilized deformable ViT based on
feature fusion to detect the intrusion. Moreover, Nizam et al.
[84] employed CNN-based models to detect the real-time
anomaly in multivariate data from industrial IoT.

Several studies have explored transformer integration with
NIDS. Wang et al. [85] combined transformers with CNNs
to effectively detect DDoS attacks in Software-Defined Net-
working (SDN) environments. Similarly, Wu et al. [61]
proposed an all-in-one intrusion detection solution using
transformers. This solution leverages self-attention mech-
anisms to identify abnormal network activity and classify
traffic patterns.

Unveiling the Heart of Transformers: The Self-Attention
Layer. This layer allows them to dynamically learn from the
context of the input data. It works by calculating three vectors
for each element in the input sequence: query, key, and value.
These vectors are used to compute a weighted sum of the
value vectors. The weights are determined by comparing the
query vector to each key vector using a dot product and then
applying a SoftMax function. The resulting weighted sum
represents the output of the self-attention layer.

In 2021, the author [86] proposed an intrusion detection
system based on a bidirectional LSTM. UNSW and the
BOT-IOT dataset were used for evaluation purposes. The
proposed model is compared with other existing machine
and deep learning models. Results showed that their model
provided more than 99% accuracy [86].
The aim of this study was to improve the intrusion detec-

tion performance of the NSL-KDD dataset, which contains
network traffic data with various types of attacks, by utilizing
and optimizing the machine learning and deep learning vision
transformers.

Anomaly detection in network traffic data is paramount
for cybersecurity. Multivariate time series analysis allows
for the identification of subtle deviations from normal pat-
terns, potentially revealing cyberattacks or intrusions [87],
[88], [89]. In industrial plants, analyzing sensor data from
machinery can help predict equipment failures before they
occur [90], [91], [92], [93]. By identifying anomalous read-
ings in temperature, vibration, or power consumption data,
preventative maintenance actions can be taken, minimizing
downtime and maximizing operational efficiency. Financial
institutions can leverage multivariate time series analysis to
detect fraudulent transactions. By analyzing customer data
encompassing purchase location, time, and type alongside
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historical spending patterns, anomalies indicative of potential
fraud attempts can be flagged [94], [95]. In healthcare, multi-
variate time series analysis can be applied to analyze patient
data like vital signs and lab results. Identifying abnormal
deviations from baseline readings can lead to earlier diag-
noses and potentially improve patient outcomes [96], [97],
[98], [99].

Anomaly detection inmultivariate time series data presents
a significant challenge. This data, often collected from
diverse sources, can be highly complex, non-stationary
(meaning its statistical properties change over time), and non-
linear. Traditional machine learning algorithms struggle to
capture the intricate, non-linear relationships hidden within
these complex time series. Recent research has explored
machine learning and deep learning methods, but often with
default parameters. Hyperparameter optimization offers a
powerful approach to further improve anomaly detection
performance. This work proposes and utilizes Bayesian opti-
mization, which identifies the most optimal hyperparameters
for anomaly detection algorithms. Additionally, ensemble
methods in machine learning have proven effective in cap-
turing the complex dynamics of multivariate time series.
However, RNNs, a common deep learning method, have
limitations in storing long-term correlations within the data.
LSTM networks with a bi-directional approach can effec-
tively address this limitation. Furthermore, the Vision Trans-
former with optimized parameters offers a robust solution.
Compared to other deep learning models, it demonstrates a
better trade-off between time and memory consumption. This
makes it more feasible for implementation on edge devices
with limited resources.

In the realm of deep learning, various architectures have
been explored for anomaly detection tasks, each with its
advantages and limitations. One notable architecture gain-
ing attention is the Vision Transformer (ViT). Originally
proposed for image classification tasks, ViT operates on
image patches, leveraging self-attention mechanisms to cap-
ture global dependencies.

This unique approach has shown promise in handling
sequential data beyond images, making it a suitable candidate
for analyzing multivariate time series data, such as network
traffic or sensor readings.

Compared to traditional deep learning architectures like
recurrent neural networks (RNNs) or long short-termmemory
(LSTM) networks, ViT offers several advantages. Firstly,
its self-attention mechanism allows it to capture long-range
dependencies more effectively, which is crucial for detecting
anomalies in time series data where distant events may influ-
ence each other. Secondly, ViT’s architecture enables parallel
processing of patches, making it computationally efficient,
which is desirable for deployment on resource-constrained
IoT devices. Lastly, ViT has demonstrated competi-
tive performance while maintaining interpretability, which
is often a concern with more complex deep learning
models.

By incorporating ViT into the discussion of deep learn-
ing techniques for anomaly detection, this response aims
to highlight its potential and its comparative advantages in
addressing the challenges posed by multivariate time series
data analysis in IoT networks.

Our Contributions:
1. Leveraging OptimizedModels: We employed and opti-

mized robust machine learning and deep learning
models to enhance anomaly detection in multivariate
time series data.

2. Ensemble Learning for Improved Prediction:We incor-
porated ensemble methods to improve prediction
accuracy.

3. Hyperparameter Optimization for Enhanced Detection:
We optimized the hyperparameters of machine learning
and deep learning algorithms using Bayesian optimiza-
tion, leading to more optimal parameters for improved
anomaly detection.

4. Comprehensive Performance Evaluation:We evaluated
the performance of our methods using comprehensive
measures such as the Matthews Correlation Coeffi-
cient (MCC) and F-measures. These measures ensure
the reliability of the methods by considering the bal-
ance between correctly identified positive and negative
cases.

III. MATERIALS AND METHODS
Fig. 1 illustrates the overall architecture of the pro-
posed framework, with detailed implementation discussed in
Section V. The proposed architecture encompasses several
phases: data cleaning, data conversion to images, and the
implementation of the vision transformer.

A. DATASET DESCRIPTION
The NSL-KDD dataset comprises network traffic data
encompassing different types of attacks and normal traffic.
It encompasses a total of 41 features, including fundamental
attributes like duration and protocol type, as well as more
intricate characteristics such as the number of failed login
attempts and the count of root shell prompts. The dataset
encompasses five types of attacks: denial of service (DoS),
probing, user-to-root (U2R), remote-to-local (R2L), and mis-
cellaneous. These attacks are further divided into subtypes,
resulting in a total of 23 attack subtypes.

The NSL-KDD dataset is available in two primary ver-
sions: the original and the reduced version. The original
dataset comprises over 4 million instances, which can be
excessively large for most intrusion detection systems to
handle efficiently. In contrast, the reduced version of the
dataset is a smaller, more manageable subset, containing
approximately 125,000 instances.

The NSL-KDD dataset, containing around 4.9 million
records, is imbalanced, with a majority of attack samples
(78%) compared to normal ones (16%). The NSL-KDD
dataset has become a standard benchmark dataset for
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TABLE 1. Types of features.

evaluating intrusion detection systems. Numerous machine
learning and deep learning techniques have been applied
to this dataset, including decision trees, support vector
machines, random forests, and neural networks. Furthermore,
the dataset has served as a basis for assessing the effective-
ness of various feature selection and dimensionality reduction
techniques in the realm of intrusion detection.

TheNSL-KDDdataset is a revised version of theKDDCup
99 dataset, with redundant records removed to enhance classi-
fier accuracy. The train and test datasets contain a reasonable
number of records, enabling experiments to be conducted
effectively. The dataset comprises a total of 42 attributes, with
attributes 1 to 41 encompassing various traffic flow features.
Attribute 42, known as the label, includes one normal class
and four attack classes. The 41 features can be categorized
into four types, as outlined in Table 1.

B. TYPES OF ATTACK CLASSES
Within the NSL-KDD Cup dataset, there are four distinct
attack classes:
Probing: Probing attacks are typically identified using fea-

tures like source bytes and connection duration. These attacks
involve an attacker attempting to gather information about
a remote system or network. The primary goal of probing
attacks is to gain knowledge about the targeted system or
network, including details such as its IP address, operating
system, and services.

Denial-of-Service (DoS) Attacks: SYN flooding attacks,
a type of DoS attack, can be detected based on features such
as the percentage of packets with errors and the number
of source bytes. SYN flooding attacks involve overwhelm-
ing a victim server by sending an excessive number of
SYN requests, preventing it from responding to legitimate
requests.

R2L (Remote-to-Local) Attacks: R2L attacks involve an
attacker attempting to gain unauthorized local access to a
system from a remote machine. These attacks exploit vulner-
abilities in the target system’s operating system, applications,
or network infrastructure. Features associated with R2L
attacks may include the number of shell prompts invoked and
the number of file creations.

U2R (User-to-Root) Attacks: Features such as the number
of shell prompts invoked and the number of file creations
are linked to U2R attacks. U2R attacks involve an attacker’s
attempt to gain root or administrator access to a system by

logging in with a regular account and exploiting security
vulnerabilities.

The dataset comprises three files, with the KDD Train+
20% subset containing a total of 25,192 records. Additional
class divisions and details are presented in Fig. 2.

Table 2 provides an overview of the attack types and their
respective classes. Each attack class is further subdivided into
additional attack classes for detailed categorization.

C. VISION TRANSFORMER (ViT)
The Vision Transformer represents a specialized adapta-
tion of the Transformer architecture. While the traditional
transformer architecture encompasses both an encoder and
a decoder, ViT exclusively employs the encoder component.
In doing so, it departs from the original Transformer model’s
design by replacing the standard self-attention layers with
specialized self-attention layers that are tailor-made for pro-
cessing image patches. An additional characteristic of ViT
is its frequent utilization of pretraining on extensive image
datasets through self-supervised learning. This preliminary
training equips the model with valuable visual represen-
tations, which can subsequently be fine-tuned for specific
supervised tasks such as image classification or object detec-
tion.

At the core of the Transformer architecture, and by exten-
sion, ViT, lies the self-attention mechanism. This mechanism
serves as a foundational element responsible for captur-
ing relationships between distinct words or tokens within a
sequence. It empowers the model with the capability to assign
varying degrees of importance to each token concerning its
counterparts within the sequence. This dynamic allows the
model to focus its attention on pertinent information and
effectively capture dependencies that extend over extended
ranges.

1) SELF-ATTENTION MECHANISM
The self-attention mechanism is a fundamental component
of the Transformer architecture, enabling the model to cap-
ture relationships among various tokens within a sequence.
It operates by dividing the input vector into three distinct
vectors: value, key, and query. The output is then computed
using a weighted function, with the compatibility between the
query and relevant key dictating the weight assigned to each
corresponding value.

To calculate these weights for the values in the self-
attention mechanism, the input comprises the query along
with the keys from the dk vector and the values from the
dv vector. The weight assigned to each value is determined
through a process involving the computation of the dot prod-
uct between the query and each key, followed by division
by the square root of the key vector’s dimension, and finally
application of the SoftMax algorithm.

In practice, there are often multiple queries simultane-
ously, and these queries are consolidated within the Q matrix,
while the values and keys are grouped in matrices K and V.

82450 VOLUME 12, 2024



L. Sana et al.: Securing the IoT Cyber Environment

TABLE 2. Attack classes and their types.

FIGURE 2. Details of attack and normal class in a) KDD train+20, b) KDD Train+, c) KDD Train+, and d) Class distribution in the KDD train
(normal: 0, attack: 1).

The combined output is calculated using the formula:

Attention (Q,K ,V ) = Softmax
(
Q.K t
√
DK

)
(1)

Initially, a score is computed for each input vector to
gauge the level of attention it should receive, signifyingwhich
parts of the input warrant heightened focus. Subsequently,
the score values are divided by the dimension of the key
vector, followed by the application of the SoftMax function to
normalize them within the range of 0 to 1. These normalized
scores then translate into probabilities, and the summation of
these probabilities is used to weight each value vector.

Additionally, for enhanced training, the scores are further
normalized.

Both the encoder and decoder modules within the
self-attention layer share identical architectures. The decoder
module mirrors the structure of the encoder module. How-
ever, a key distinction lies in the origin of the Qmatrix, which
is derived from the preceding layer in the decoder, while the
key and value matrices are derived from the encoder module.

2) MULTI HEAD ATTENTION
Multi-head attention is a deep learning technique com-
monly employed in transformer-based models to augment the
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effectiveness of the self-attention mechanism. This mech-
anism empowers the model to assess the importance of
different segments within the input sequence as it processes
it. It allows the model to simultaneously consider multiple
facets of the input sequence. Instead of utilizing a single
set of query, key, and value matrices, multiple sets of these
matrices, each associated with a distinct ‘‘head’’ of atten-
tion, are utilized. Each head can focus on different portions
of the input sequence and capture diverse features, thereby
providing the model with a richer set of information to work
with. In multi-head attention, the input sequence is first trans-
formed into query, key, and value vectors. Subsequently, each
head conducts its own attention operation on these vectors,
yielding multiple sets of weighted values. These sets of val-
ues are then concatenated and projected into a final output
vector. The advantages of employing multi-head attention
encompass improved model performance, as it enables the
model to capture more intricate relationships among different
segments of the input sequence. Furthermore, it allows the
model to direct its attention to various aspects of the input
sequence, thereby enhancing its ability to handle data varia-
tions effectively. In summary, multi-head attention serves as
a potent tool for enhancing the performance of self-attention
mechanisms within deep learning models.

3) FEED-FORWARD NEURAL NETWORK (FFN)
The feed-forward neural network comprises two linear trans-
formation layers followed by a nonlinear activation function.
Typically, it is applied after the self-attention layer in the
architecture. Mathematically, the FFN can be represented as:

Feed-forward neural network = W2σ (W1X ) (2)

where X represents the input, W1 and W2 are the weight
matrices of the first and second layers, respectively, and
σ denotes the activation function. The network’s output is
obtained by passing the weighted sum of the input through
the activation function and another layer of weights.

4) RESIDUAL CONNECTION
A residual connection is integrated into every sub-layer of
both the encoder and decoder to enhance information flow
and overall performance. Subsequently, layer normalization
is applied after the residual connection. The outcome of
these processes can be expressed as Layernorm (X + Atten-
tion(X)), where X denotes the input and Attention represents
the attention mechanism. In this context, X signifies the
input. An alternative variant known as pre-layer normaliza-
tion has gained popularity, involving the insertion of the
normalization layer within the residual connection before the
feed-forward neural network and multi-head attention [100].
It’s worth noting that batch normalization is not an ideal

choice for normalizing transformers, as it can lead to abrupt
changes in feature values [101], [102]. Consequently, other
normalization methods have been proposed to enhance the
training of transformers.

In the final layer of the decoder, the stack of vectors is
transformed back into words. This process involves using a
linear layer, followed by a SoftMax layer. The linear layer
maps the vector to a logit vector with a dimension equivalent
to the total number of words in the dictionary, often referred
to as dword. To convert the logit vector into probabilities,
a SoftMax layer is employed.

The original transformer encoder module has served
as a feature extractor for numerous computer vision
problems. Transformers possess the capability to extract
global information efficiently. Transformers offer advan-
tages over RNN models, mainly due to their parallel pro-
cessing nature facilitated by fully connected layers and
the self-attention mechanism, while RNN models operate
sequentially [103].

Therefore, transformers offer substantial benefits for
addressing challenges in computer vision and NLP
problems.

5) VISION TRANSFORMER IMPLEMENTATION
Step 01: Import librarie
import torch
from torch import nn
from torch.utils.data import DataLoade
Step 02: Define ViT model clas
class ViT(nn.Module)
def __init__(self, in_dim, patch_size, num_classes):
super(ViT, self).__init__()
# . . . (Define Vision Transformer layers here based on cho-

sen architecture)
self.mlp_head = nn.Sequential(
nn.Linear(. . . , num_classes), # . . . denotes hidden layer(s)

if needed
nn.Sigmoid() # Output probability for anomaly

classification
)
def forward(self, x):
# . . . (Pass input through Vision Transformer layers)
x = self.mlp_head(x
return x
Step 03: Data preprocessing (replace with specific steps

for your dataset)
def preprocess_data(data):
# Normalize network traffic features (e.g., scaling to 0-1

range)
# One-hot encode categorical feature
# . . . (Apply other relevant preprocessing steps)
return processed_data
Step 04: Load and preprocess training data
train_data = load_data(‘‘training_data.csv’’)
processed_train_data = preprocess_data(train_data)
Step 05: Define training parameter
learning_rate = 0.001
batch_size = 32 # Adjust based on hardware capabilitie
epochs = 10
Step 06: Create training dataloade
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train_loader = DataLoader(processed_train_data,
batch_size = batch_size, shuffle=True

Step 07: Define loss function and optimizer (e.g., BCE-
WithLogitsLoss, Adam optimizer)

criterion = nn.BCELoss()
optimizer = torch.optim.Adam(model.parameters(),

lr=learning_rate)
# Training loo
for epoch in range(epochs)
# . . . (Training loop logic: iterate through batches, calcu-

late loss, update weights)
Step 08: Evaluate model performance on validation data
Step 09: Hyperparameter Selection for Vi
The following hyperparameters were selected for ViT to

optimize and improve its performance for anomaly detection:
Number of Transformer Layers: We started with a mod-

erate number (6)–(12) and fine-tuned based on validation
performance. Deeper models capture more complex relation-
ships but can be computationally expensive.

• Hidden Dimension Size: A value in the range of
512–1024 is a common starting point. Reducing it can
impact accuracy, while excessively large sizes might
lead to overfitting.

• Learning Rate: A low learning rate of 0.001 was used.
• Optimizer: Adam was used for ViT training due to their
efficiency in handling large models.

• Data Augmentation: Techniques like random cropping
and flipping were used within normal data, aiding
anomaly detection.

D. MATHEMATICAL REPRESENTATION OF THE VISION
TRANSFORMER
The mathematical representation of the ViT involves several
key modules: the transformer encoder, learnable embedding,
and feature embedding. In the feature embedding stage, the
ViT expects a sequence of token embeddings as input. After
feature extraction, the features are reshaped into a flattened
2D block sequence, denoted as Yp. Here’s a modified formula
that aligns with NLP concepts, where the image sequence is
partitioned into multiple patches to achieve the number of
patches denoted by ‘p’ for image classification:

Yf ϵR(64)∗H2 ∗
W
2 (3)

YpϵRN∗(P2C(64)) (4)

N =

H
2
W
2

P2
(5)

Yf → yp (6)

The transformer encoder comprises two primary compo-
nents: a multi-head attention block and a multi-layer percep-
tron (MLP) block. Normalization is performed before each
block, and residual concatenation is used after each block to
preserve information. The following equation demonstrates
the process of obtaining multi-head attention values through

the concatenation of different head attentions:

head i = (QWQ
i ,KW k

i ,VW
v
i ) (7)

Multihead (Q,K ,V ) = Concat(head i, . . . ..,headb)W 0

(8)

Subsequently, by combining category vectors with feature
block embeddings, embedding vectors are generated and used
as input for the transformer encoder. Similar to convolutional
neural networks, an encoder composed of blocks can extract
data features beneficial for classification. The input to the
transformer model is created by concatenating the category
vector (Xclass) with the embeddings for the input sequence
and adding the positional encoding vector. The multi-head
self-attention (MSA) and layer normalization (LN) opera-
tions are applied iteratively over the input to obtain the final
output (v), which corresponds to the encoded representation
of the input. This process is repeated for each layer (L) of
the transformer model. The complete computational process
is illustrated in the following formulas:

X0=
[
Xclass;X1

pE
]
,EϵR

(
p2.C

)
∗D,EposϵR(N+1)∗D (9)

X ′
l = MSA (LN (Xl−)) + Xl−1,l = 1 . . . ..L (10)

Xl = MSA (LN (Xl−)) + X ′
l = 1 . . . ..L (11)

v = LN (X0
1 ) (12)

In (9), the embedding input vector X0 comprises both the
feature embedding block X1

pE and the category vector Xclass.
The encoding process involves multiple iterations of opera-
tions such as MAS, LN, and MLP blocks, which are repeated
L times. In (10) and (11) incorporate residual connections to
preserve the input information. The resulting outputs at each
layer are denoted as X ′

l and Xl . Finally, the feature representa-
tion obtained after the encoding process, as expressed in (12),
is denoted as ‘v’.

E. BAYESIAN OPTIMIZATION APPROACH TO OPTIMIZE
HYPERPARAMETERS
To gain deeper insights into the design choices for our
ViT-based anomaly detection model, we conducted an abla-
tion study on key hyperparameters. This involved system-
atically removing or modifying individual hyperparameters
while monitoring the model’s performance.

We optimized the number of layers within the chosen
architecture for the best balance between model complexity
and performance using Bayesian optimization. The following
is the Bayesian optimization approach used to optimize the
hyperparameters.

Step 01: Define the search space for hyperparameters
(common examples)
search_space = {
’learning_rate’: (0.0001, 0.1), # Common for various

models
’n_estimators’: (10, 100), # Relevant for ensemble

methods (e.g., Random Forest)
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’max_depth’: (3, 50), # Decision Tree and Random
Forest

’min_samples_split’: (2, 20), # Minimum samples
required to split a node

’min_samples_leaf’: (1, 5), # Minimum samples
required at each leaf node

‘criterion’: (’gini’, ‘entropy’), # Splitting criterion
(information gain or Gini impurity)
’C’: (0.1, 10), # SVM regularization parameter
‘kernel’: (’linear’, ‘Quadratic’, ‘Cubic’, ‘Gaussian’), #

SVM kernel type
# Hyperparameters for Neural Networks
’num_layers’: (1, 10), # Number of layers (adjust for

architecture)
’neurons_per_layer’: [(16, 128), (32, 256)], # List of tuples

for different layer configurations (Narrow, Medium, etc.)
‘optimizer’: (’adam’, ‘rmsprop’), # Optimizer choice
’batch_size’: (32, 128), # Batch size
’dropout_rate’: (0.1, 0.5), # Dropout rate
‘activation’: (’relu’, ‘tanh’), # Activation function (explore

per-layer options)
# Hyperparameters for ViT)
‘weight_decay’: (0.0001, 0.1),
‘layers: (12, 48),
‘dimensions: (128, 512),
‘batch_size’: (20,512)
‘num_epochs’: (10, 200)
# hyperparameters for LSTM
’num_layers’: (1, 10), # Number of LSTM layers
’hidden_units_per_layer’: (32, 512), # Hidden units per

layer
‘optimizer’: (’adam’, ‘rmsprop’), # Optimizer choice
’batch_size’: (32, 256), # Batch size
’dropout_rate’: (0.1, 0.5), # Dropout rate
}
Step 02:Choose a Bayesian optimization library (GPyOpt)
from bayesian_opt import BayesianOpt
Step 03: Load your training and testing data (X: features,

y: labels)
X_train, X_test, y_train, y_test = . . .
Step 04:Main loop for different model types
models = [’DecisionTree’, ‘SVM’, ‘RandomForest’,

‘NeuralNetwork’, ‘LSTM’, ‘ViT’] # Adjust as needed
optimized_models = {}
for model_type in models:
# Update search space for specific model hyperparameters

()
Step 05: Define the function to train and evaluate the

chosen model type
def train_and_evaluate(params):
# Create the model based on the chosen type
model = get_model(model_type, params)
Step 06: Run Bayesian optimization to find the best

hyperparameters
bo = BayesianOpt(f=lambda params:
objective_function(model, X_train, X_test, y_train, y_test),

pbounds=search_space)
bo.maximize(n_iter=50)
best_params = bo.fg
Step 07: Train the model with the best hyperparameters
model.fit(X_train, y_train, ∗∗best_params)
Step 08: Train, evaluate, and store the optimized model
optimized_models[model_type] = train_and_evaluate({})
Step 09: Use the optimized models for further tasks

(e.g., prediction, evaluation)

IV. RESULTS AND DISCUSSIONS
The NSL-KDD dataset serves as a widely recognized bench-
mark dataset for network intrusion detection. It encompasses
a diverse set of network traffic data, comprising various types
of attacks and normal traffic. ViT represents a neural network
architecture initially designed for image classification tasks
but extends its applicability to various data types, including
network traffic.
Data Preparation: The initial phase involves preparing the

image dataset for training. This encompasses resizing the
images to a uniform size, converting them into a suitable
format, and partitioning them into distinct training and val-
idation sets.
Model Architecture: Subsequently, the ViT model archi-

tecture must be precisely defined. This entails specifying the
number of transformer blocks and attention heads, in addition
to establishing the input image size and output classification
categories.
Training: Moving forward, the model undergoes training

on the prepared dataset. This training procedure involves
forwarding the training data through the model, computing
the loss, and applying backpropagation to adjust the model
weights. Training often spans multiple epochs, with critical
hyperparameters such as learning rate, batch size, and regu-
larization being fine-tuned to maximize performance.
Validation: Following training, themodel undergoes evalu-

ation using the validation set. This step is crucial for detecting
potential overfitting and gauging the model’s accuracy.
In cases where validation accuracy falls short of expectations,
further refinements to the model architecture or hyperparam-
eters may be necessary.
Testing: Ultimately, the model is put to the test using a

distinct test set to evaluate its performance on previously
unseen data. To assess the model’s effectiveness, metrics such
as accuracy, precision, recall, and F1 score are computed.

A. EVALUATION METRICS
In the realm of deep learning, several standard evaluation
metrics come into play to gauge model performance and
efficacy. Key evaluation metrics in deep learning encompass
the following:

1. Accuracy: This metric quantifies the ratio of correctly
classified samples to the total number of samples.
Accuracy provides a general overview of the model’s
correctness in its predictions.
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Precision: Precision assesses the proportion of true pos-
itives (correctly identified positive samples) relative to
the sum of true positives and false positives (incorrectly
identified positive samples). Precision delves into the
quality of positive predictions and holds significance
when the cost of false positives is high.

2. Recall (Sensitivity or True Positive Rate): Recall cal-
culates the ratio of true positives over the sum of true
positives and false negatives (positive samples mistak-
enly classified as negative). Emphasizing the model’s
ability to correctly identify positive samples, recall
proves valuable when the cost of false negatives is
substantial.

3. F1 Score: The F1 score emerges as the harmonic mean
of precision and recall. It furnishes a balanced measure
that incorporates both precision and recall, proving
useful when there is an imbalance between the number
of positive and negative samples in the dataset.

4. Area Under the Receiver Operating Characteristic
Curve (AUC-ROC): ROC curves serve as a tool for
evaluating the trade-off between true positive rate
(TPR) and false positive rate (FPR) at various classifi-
cation thresholds. The AUC-ROC metric quantifies the
area under the ROC curve, providing a comprehensive
assessment of the model’s performance across diverse
thresholds.

5. Mean Squared Error (MSE): MSE stands as a prevalent
metric for regression tasks. It quantifies the aver-
age squared difference between predicted and actual
values. Smaller MSE values signify superior model
performance.

These evaluation metrics play a pivotal role in assisting
researchers and practitioners in appraising the performance
of deep learning models, comprehending their strengths and
limitations, and comparing distinct models or algorithms. The
selection of specific evaluation metrics hinges on the task at
hand and the desired performance characteristics.

Table 3 shows the performance of variousmachine learning
algorithms in classifying network traffic data from the NSL-
KDD dataset. Random Forest achieved the highest overall
accuracy (100%) in classifying both normal and abnormal
traffic.

Adaboost (94.5%) and Naive Bayes (90.38%) follow
closely. J48 appears to be an outlier with a very high but
potentially unrealistic accuracy (99.78%). All algorithms
performed well in identifying normal traffic, with accuracy
exceeding 86.6%. Random Forest and J48 again achieved
near-perfect results (99.9% and 99.8%, respectively). Ran-
dom Forest and Adaboost (both 94.5%) showed the best
performance in identifying abnormal traffic. J48 also per-
formed well (99.8%), but its overall accuracy suggests
potential overfitting. Naive Bayes had a lower accuracy
(90.4%) for abnormal traffic detection. Random Forest and
J48 have the lowest FPR (0.001 and 0.002), indicating
they rarely misclassify normal traffic as abnormal. Adaboost
(0.072) has a slightly higher FPR, while Naive Bayes has

the highest (0.134), meaning it’s more likely to misclassify
normal traffic.

Table 4 shows the performance of variousmachine learning
algorithms on the training data from the NSL-KDD dataset.
Random Forest emerges as the leader with the highest over-
all accuracy (99.92%). J48 follows closely (99.78%), while
Adaboost (94.50%) and Naive Bayes (90.38%) lag behind.
Random Forest also has the lowest error rate (0.0826%
incorrectly classified). J48 has a very low error rate as well
(0.2183%). Adaboost (5.49% incorrect) and Naive Bayes
(9.62% incorrect) have significantly higher error rates. Kappa
is a metric that considers the agreement between the model’s
predictions and random chance. All algorithms achieved
good Kappa scores, with Random Forest (0.9983) and J48
(0.9956) having the highest values, indicating strong agree-
ment beyond random chance. MAE (mean absolute error)
and RMSE (root mean squared error) measure the average
magnitude of the errors between the predicted and actual
labels. Lower values indicate better performance. Here, Ran-
dom Forest has the lowest values, again highlighting its
accuracy. RAE (Relative Absolute Error) and RRSE (Root
Relative Squared Error) are similar metrics but expressed as
a percentage of the target variable’s range.

Lower values are better. Random Forest has the best scores
here as well.

Table 5 shows the performance of various machine learn-
ing algorithms on the test data from the NSL-KDD dataset.
Random Forest again emerges as the leader with the highest
overall accuracy (98.70%). J48 follows closely (98.60%),
while Adaboost (90.37%) and Naive Bayes (80.73%) lag
behind. All algorithms performed well in identifying nor-
mal traffic, with accuracy exceeding 69.9% (Naive Bayes).
Random Forest and J48 remain at the top (both exceeding
98%). Random Forest (98.7%) and J48 (98.6%) continue
to show excellent performance. Adaboost (90.4%) performs
decently, but Naive Bayes struggles significantly (80.7%).
Random Forest and J48 have the lowest FPR (around 0.01%),
indicating a very low chance of misclassifying normal traffic
as abnormal. Adaboost has a slightly higher FPR (0.107), and
Naive Bayes has the highest (0.301), meaning it’s most likely
to misclassify normal traffic.

Table 6 shows how various machine learning algorithms
performed on a 20% subset of the test data from the
NSL-KDD dataset. Random Forest again takes the lead
with the highest overall accuracy (97.78%). J48 follows
closely (97.12%), while Adaboost (90.58%) and Naive Bayes
(65.68%) fall behind significantly. All algorithms except
Naive Bayes performed well in identifying normal traffic,
with accuracy exceeding 61.8%. Random Forest and J48
remain at the top (both exceeding 98%). Naive Bayes con-
tinues to struggle (61.8%). Random Forest (97.8%) and J48
(97.1%) show excellent performance again. Adaboost per-
forms decently (90.6%), but Naive Bayes lags far behind
(65.7%). Random Forest has the lowest FPR (0.012), indi-
cating a very low chance of misclassifying normal traffic.
J48 has a slightly higher FPR (0.015), and Adaboost has
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FIGURE 3. SVM Kernels.

TABLE 3. Classification result of the NSL KDD train+ percent dataset using different machine learning algorithms.

a moderate FPR (0.035). Naive Bayes has the highest FPR
(0.382), meaning it’s most likely to misclassify normal traffic
as abnormal.

Similarly, when employing J48, the weighted classifica-
tion performance for detecting anomalies included a TPR
of 98.60%, precision, recall, F-measure, and accuracy. Addi-
tionally, J48 achieved an MCC of 97.10% and an ROC area
of 0.996.

Using Naïve Bayes, the average weighted classification
performance to detect anomalies encompassed a TPR, recall,

and F-measure of 84.70%, an accuracy of 80.73%, precision
of 84.40%, MCC of 65.20%, and an ROC area of 0.953.

Lastly, employing the Random Forest algorithm resulted in
an average weighted classification performance for anomaly
detection, including a TPR, precision, recall, F-measure, and
accuracy of 98.70%, as well as an MCC of 97.40% and an
ROC area of 0.974.

These findings highlight the effectiveness of the various
supervised machine learning algorithms in accurately detect-
ing anomalies within the dataset.

82456 VOLUME 12, 2024



L. Sana et al.: Securing the IoT Cyber Environment

TABLE 4. Statistical analysis of the NSL KDD train+ dataset using different machine learning algorithms.

TABLE 5. Classification result of the NSL KDD test+ percent dataset.

TABLE 6. Classification result of the NSL KDD test -20 percent dataset.

Fig. 3 reflects the SVM with different kernel functions
along with other parameters, which were optimized using

the Bayesian optimization algorithm. These findings high-
light the effectiveness of the various supervised machine
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learning algorithms in accurately detecting anomalies within
the dataset.

Table 7 compares the performance of various machine
learning algorithms on the NSL KDD Train+ percent dataset
using Bayesian optimization for parameter tuning.

The Fine Tree excels with exceptional performance across
metrics by yielding sensitivity (attack detection) very high
(likely exceeding 99%), specificity (avoiding false pos-
itives) also very high (likely exceeding 99%), accuracy
(overall correctness) almost perfect (around 99.81%), AUC
(classification strength) very strong (around 0.9989), F1-
Score (balanced accuracy) very high (around 99.64%), and
MCC (balanced classification quality) very high (around
99.62%). The medium and coarse trees offer a good
accuracy-efficiency balance by maintaining reasonably high
accuracy (around 98–99%) and F1-Score (around 96–98%).
Potentially require less training time, making them efficient
for resource-constrained scenarios. The SVM linear offers
a good balance, i.e., high accuracy (around 97.66%) and
efficiency (potentially faster training than complex models).
Strong overall classification ability with a high AUC (around
0.9955). The SVM quadratic achieves the highest AUC
(around 0.9993), suggesting excellent classification. SVM
Medium Gaussian demonstrates another strong performer
with high accuracy (around 99.28%) and F1-Score (around
98.33%), potentially offering a good balance between per-
formance and complexity. Boosted Tree and Bagged Tree
achieve exceptional performance, exceeding even Fine Tree
in some aspects. Accuracy reached near-perfect levels
(around 99.7-99.9%) and high F1-Scores (around 99.5-
99.8%). This highlights the effectiveness of ensemble meth-
ods in combining multiple weaker models for improved
robustness and accuracy. RUSBoosted Tree exhibits good
performance while potentially being faster to train. Accuracy
remains high (around 98.78%). It utilizes random under-
sampling (reducing training data size) for potentially faster
training times. All neural network architectures (narrow,
medium, bilayered, and trilayered) demonstrate consistently
high performance, i.e., accuracy exceeding 99.6% across
all architectures. Strong AUC and F1-Score values. This
showcases their capability for complex pattern recognition in
this dataset. The LSTM achieves near-perfect performance,
with all metrics at or very close to 100%. This suggests an
exceptional ability to identify normal and attack instances
in the dataset. The optimized bidirectional ViT achieves
perfect performance with all metrics at 100%. This indi-
cates outstanding capability in classifying normal and attack
instances, potentially even surpassing LSTM in this specific
task.

Table 7 presents the performance of a Vision Transformer
model used for anomaly detection. Themodel appears to have
two main parts: feedforward_0 and feedforward_1. These are
likely the core Vision Transformer layers that process the
input data. MLP followed by a sigmoid layer: This final part
is likely a Multi-Layer Perceptron (MLP) used to classify the
input as normal or anomalous based on the features extracted

by the Vision Transformer. The sigmoid layer outputs
a probability between 0 and 1, with values closer to 1 indicat-
ing a higher likelihood of an anomaly. The model achieved
perfect accuracy (100%) on the training data. This is often
a red flag, as it suggests the model might be overfitting
to the training data and may not perform well on unseen
data. The validation accuracy, which reflects performance
on a separate dataset not used for training, is significantly
lower (78.80%). The model has a relatively small number of
parameters (around 46,000).

This could be a positive aspect if the goal is to have a
lightweight and efficient model. However, a small number of
parameters can also limit the model’s ability to learn complex
patterns, potentially affecting its accuracy.

Table 8 focuses on the computational complexity of various
algorithms used to classify the NSL KDD Train+ dataset
with Bayesian parameter optimization. Tree-based classi-
fiers (fine, medium, and coarse trees) offer a good balance.
i.e., training time is relatively fast (ranging from 66.10 to
76.73 seconds). The model size is medium (ranging from
21 kB to 53 kB). The prediction speed is fast (ranging from
55,000 to 61,000 observations per second). The accuracy
(validation) yielded was high, with Fine Tree achieving the
highest (99.8%). As tree complexity increases (fine, medium,
or coarse), training time increases slightly, while accuracy
decreases modestly. Support Vector Machines (SVMs) show
a wider range of complexity. SVM Linear has the fastest
training time (3561 seconds) and smallest model size (7MB),
but lower accuracy (97.7%) compared to some other models.
SVM quadratic yielded Higher accuracy (99.5%) but sig-
nificantly longer training time (6931 seconds) and smaller
model size (2 MB) compared to some neural networks. SVM
Cubic provided poor performance (47.4% accuracy) despite
moderate training time and model size.

Not suitable for this task. SVMMedium Gaussian offers a
balance with good accuracy (99.3%), moderate training time
(2008 seconds), and model size (4 MB), but slower predic-
tion speed (3100 obs/sec). Boosted Tree, Bagged Tree, and
RUSBoosted Tree maintain a good balance, i.e., training time
is relatively fast (ranging from 230 to 351 seconds), model
size is moderate (ranging from 559 kB to 2 MB), prediction
speed is decent (ranging from 19,000 to 21,000 obs/sec), and
accuracy is high (ranging from 98.8% to 99.9%). Narrow,
Medium, Bilayered, and Trilayered NN offer high accuracy
(all above 99.6%) but require more resources. The training
time is significantly longer (ranging from 7282 to 9162 sec-
onds). The model size remains small (ranging from 32 kB to
47 kB). Prediction speed is slower compared to simpler mod-
els (ranging from 7300 to 14,000 obs/sec). There are minimal
performance differences between the architectures, suggest-
ing further analysis might be needed for optimal efficiency
selection. Deep learning models, i.e., bidirectional LSTM,
achieve high accuracy (99.8%) with moderate training time
(4560 seconds) and model size (590 MB). Prediction speed
is decent (14,000 obs/sec). Vision Transformer achieves
perfect accuracy (100%) with the longest training time
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TABLE 7. Classification result of the NSL KDD train+ percent dataset using different ML, neural networks, and deep learning algorithms with bayesian
optimization parameters and an optimization approach.

TABLE 8. Computational complexity to classify the NSL KDD train+ dataset using different ML, neural networks, and deep learning algorithms with
bayesian optimization parameters and an optimization approach.

(10490 seconds) and largest model size (790 MB). Prediction
speed is moderate (25,000 obs/sec).

Fig. 4 displays the training and validation accuracy loss
graph generated using vision transfer for anomaly detection
across 500 epochs. Notably, the training accuracy stabilizes at
100% after a few initial epochs, while the validation accuracy
reaches 78.43% after the entire 500 epochs. In the first epoch,

the model achieved an accuracy of 94.35%, with a validation
loss of 0.8961 and a validation accuracy of 77.28%. Subse-
quently, after 500 epochs, the model maintained a training
accuracy of 100% and a validation accuracy of 78.43%.

Fig. 5 shows the AUC of selected classifiers to distinguish
normal subjects from intrusion-attack subjects. The AUCwas
obtained as follows: Fig. 5 a) fine tree (AUC= 0.9989), Fig. 5

VOLUME 12, 2024 82459



L. Sana et al.: Securing the IoT Cyber Environment

FIGURE 4. Accuracy-loss graph using ViT for anomaly detection.

TABLE 9. Classification accuracy using the CNN sequential network for anomaly detection.

b) SVM linear (AUC = 0.9955), Figure 5 c) SVM cubic
(AUC = 0.4898), Figure 5 d) RUSBoosted (AUC = 0.9969),
and Figure 5 e) trilayered NN (AUC = 0.9994).

Fig. 6 reflects the classification performance using a
selected fine tree classifier to detect intrusions in the NSL-
KDD train+ dataset. Figure 6a shows the confusion matrix.
The positive (Anomaly) class contains 58630 subjects, while
the negative (normal) class contains 67343 for a total of

125,973 subjects. After applying the fine tree, there were
TP = 58487, FP = 143, FN = 95, and TN = 67248.
Figure 6b) indicates a TPR of 99.8% and a FPR of 99.9%.
While Figure 6 c) reflects the PPV and NPV of 99.8%,
respectively.

Table 9 provides an overview of the training and vali-
dation accuracy, as well as details about the architecture,
layers, types, and number of parameters utilized in the CNN
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FIGURE 5. AUC to detect anomalies by utilizing ML and NNs a) fine tree, b) SVM linear, c) SVM cubic, d) RUSBoosted, e)
Trilayered NN.

sequential model. The model employed a total of 26,321
parameters, achieving a validation accuracy of 56.92% and
a training accuracy of 100%.

In Table 10, the classification accuracy results are pre-
sented for the ViT. This model utilized a total of 46,925
parameters, out of which 46,753 were trainable. The ViT
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FIGURE 6. Classification performance using a machine learning fine tree: a) confusion matrix; b) TPR-FPR; c) PPV and NPV.

achieved a training accuracy of 100% and a validation accu-
racy of 78.80%.

These tables offer insights into the performance and com-
plexity of both the CNN sequential model and the ViT model,
showcasing their respective training and validation accuracies
and the number of parameters employed.

Based on these comprehensive findings, it is evident that
the proposed method holds promise for implementation in
IoT networks, offering an effective means of detecting a wide
range of network attacks.

V. DISCUSSION
The NSL-KDD dataset stands as an improved iteration of
the widely utilized KDD Cup 1999 dataset, specifically tai-
lored for intrusion detection systems. It addresses various
limitations observed in the KDD Cup 1999 dataset, includ-
ing the presence of redundant and irrelevant features as
well as the use of pre-selected training and testing sets.
The NSL-KDD dataset has emerged as a pivotal benchmark
dataset for evaluating intrusion detection systems’ perfor-
mance. It encompasses network traffic data encompassing a
range of attack types, including DoS, Probe, R2L, and U2R
attacks. Moreover, the dataset encompasses both binary and
multi-class classification challenges, rendering it suitable for
a wide array of intrusion detection approaches.

Leveraging the NSL-KDD dataset empowers researchers
and practitioners to conduct standardized comparisons of

various intrusion detection algorithms and techniques. This
standardization aids in the development of more accurate and
effective intrusion detection systems, which are integral to
safeguarding computer networks against cyberattacks. The
dataset encapsulates the intricate and concealed dynamics
inherent to intrusion detection systems, driving researchers
to devise tools for enhancing predictions.

In this study, we embarked on a journey to harness and opti-
mize machine-learning algorithms. Subsequently, we delved
into the realm of deep learning, exploring the potential of
Vision Transformer algorithms. Our findings indicate that
the proposed approach, especially the vision transformer,
exhibits robustness in anomaly detection. This robustness can
be harnessed for advanced decision-making, early detection,
automated response mechanisms, compliance adherence, and
safeguarding against emerging threats. IDS stands poised to
play an indispensable role in the protection of computer net-
works and systems against unauthorized access andmalicious
attacks. These systems meticulously scrutinize IoT network
traffic and system behavior, promptly notifying administra-
tors or initiating automated countermeasures to thwart or
mitigate attacks.

Looking forward, future research endeavors should pri-
oritize model optimization, real-time implementation, and
enhancing adversarial robustness within intrusion detec-
tion systems. Addressing these research facets will propel
the field of intrusion anomaly detection employing vision
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TABLE 10. Classification accuracy using the vision transformer for anomaly detection.

transformers within the IoT cyber landscape. Such advance-
ments will significantly contribute to bolstering the security
and trustworthiness of IoT networks.

ViT is emerging as a powerful tool for anomaly detection
in traffic sequences, potentially surpassing CNNs and RNNs
due to their unique properties. ViT’s secret weapon lies in
self-attention. Unlike CNNs with limited receptive fields,
ViT can analyze the entire traffic sequence at once, captur-
ing long-range interactions between distant elements. This
is crucial for spotting anomalies that might involve vehicles
spread across multiple lanes. While not inherently sequential
like RNNs, ViT can be adapted to understand the order of
information within the traffic flow using positional encoding.
This allows the model to learn the temporal relationships
between traffic patterns, further aiding in anomaly detection.
Furthermore, ViT’s flexibility shines when dealing with traf-
fic data that goes beyond fixed grids, such as sensor readings
or GPS coordinates. It can directly process these sequences,
making it adaptable to various data formats collected by
traffic monitoring systems. Finally, pre-trained ViT models,
honed on massive image datasets, can be fine-tuned for traf-
fic anomaly detection tasks. This transfer learning leverages
prior knowledge to improve performance, especially when
dealing with limited anomaly-specific datasets. The ViT’s
capability to model long-range dependencies, along with its
data format flexibility, makes it a promising tool for traffic
anomaly detection. While CNNs and RNNs are established
players, ViT’s potential for exploiting global context and
transfer learning positions it as a compelling avenue for
further exploration in this field.

Based on all these metrics, Random Forest emerges as the
best-performing algorithm for this dataset. It achieves the
highest accuracy, the lowest error rates, and the strongest
agreement beyond random chance. J48 follows closely, with
excellent performance as well. Adaboost performs decently,
while Naive Bayes struggles with a higher error rate.

Fine Tree achieves excellent overall performance with
high sensitivity, specificity, accuracy, AUC, F1-Score, and
MCC. These metrics indicate a well-balanced classifier
that effectively identifies both normal and attack instances.
Medium- and coarse-scale trees offer a trade-off between
accuracy and computational efficiency. They perform rea-
sonably well with high accuracy and F1-Score, potentially
making them faster to train and use. SVM linear offers a good
balance between accuracy and computational efficiency.

Its AUC is high, indicating good overall performance in
distinguishing between normal and attack instances. SVM
quadratic achieves the highest AUC, suggesting excellent
classification ability. However, it might come at the cost
of increased training time and complexity. SVM Medium
Gaussian demonstrates another strong performer with high
accuracy, F1-Score, and AUC, possibly offering a good bal-
ance between performance and complexity.

Boosted Tree and Bagged Tree achieve exceptional per-
formance, exceeding even Fine Tree in some respects. This
highlights the effectiveness of ensemble methods in com-
bining multiple weaker models for improved robustness
and accuracy. RUSBoosted Tree exhibits good performance
while potentially being faster to train than Boosted Tree due
to the use of random undersampling. All neural network
architectures (narrow, medium, bilayered, and trilayered)
demonstrate remarkable performance with high accuracy,
AUC, and F1-Score. This showcases the capability of neural
networks for complex pattern recognition in this dataset.
LSTM achieves near-perfect performance, with all metrics
at or very close to 1.0. This suggests an exceptional ability
to identify normal and attack instances in the dataset. ViT
achieves perfect performance, with all metrics at 1.0. This
indicates outstanding capability in classifying normal and
attack instances, potentially even surpassing LSTM in this
specific task. Ensemble methods (Boosted Tree and Bagged
Tree) and optimized deep learning models (LSTM and ViT)
achieve the highest overall performance based on the com-
bination of metrics. SVM and neural networks also exhibit
strong performance, indicating their suitability for this type of
classification task. Tree-based classifiers offer a good balance
of accuracy and efficiency for less resource-intensive appli-
cations. The choice of algorithm depends on the trade-off
between accuracy, computational cost, interpretability, and
other factors relevant to your specific needs.

The choice of algorithm depends on the trade-off between
accuracy, computational resources (training time, model
size), and prediction speed. Tree-based classifiers and some
SVMs offer a good balance for applications where speed
and efficiency are crucial. Ensemble methods provide high
accuracy while maintaining reasonable resource require-
ments. Neural networks achieve excellent accuracy, but they
require more computational resources. Deep learning models
(e.g., LSTM and ViT) offer the highest accuracy but come
with the highest resource demands. Consider them for tasks
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where maximizing accuracy is paramount and computational
resources are abundant.

VI. CONCLUSION
The Internet of Things (IoT) landscape presents a double-
edged sword. While increased connectivity fosters innova-
tion, it also expands the attack surface for cybercriminals.
Intrusions on IoT devices can have devastating conse-
quences, disrupting operations and compromising sensitive
data. Robust intrusion detection systems (IDS) are essential
to address this growing threat.

However, data generated by IoT devices poses a signif-
icant challenge for anomaly detection. This data is often
multivariate (containing multiple variables), highly complex,
non-stationary (its statistical properties change over time),
and non-linear. Traditional methods struggle to extract mean-
ingful patterns from such intricate data.

This research explores a novel approach to intrusion detec-
tion in IoT networks. We leverage and optimize machine
learning, neural networks, and deep learning techniques
to enhance anomaly detection. Furthermore, we employed
Bayesian optimization to optimize the hyperparameters of
these algorithms, aiming to further improve prediction per-
formance. For evaluation, we utilized the NSL-KDD dataset,
which comprises training data, testing data with a 20% pos-
itive class imbalance, and testing data with a 20% negative
class imbalance, both containing multivariate intrusion and
normal data points.

Our machine learning models, employing both tree-based
and ensemble approaches, achieved impressive performance.
Notably, the medium and coarse tree-based models, with
training times of 66.10 seconds and memory footprints
of 21 kB, offered a good balance between performance
and computational efficiency. This makes them suitable for
implementation on resource-constrained edge devices. While
optimized neural networks and deep learning models like
LSTMs and ViTs achieved perfect detection rates, they also
demanded significantly more computational resources. These
findings highlight the potential of our proposed methods for
enhancing attack and intrusion detection in resource-limited
IoT networks. Improved detection capabilities are crucial for
safeguarding system integrity, identifying fraudulent activity,
and optimizing overall system performance. Our approach
presents a promising solution for securing the ever-evolving
landscape of IoT networks.

VII. LIMITATION AND FUTURE DIRECTION
ViT models can be computationally expensive compared to
CNNs, especially for real-time traffic monitoring applica-
tions. Additionally, while ViT can be adapted for sequen-
tial data, it might not capture temporal dependencies as
effectively as specialized RNN architectures. Future work
should explore techniques for improving ViT’s computa-
tional efficiency while maintaining its strengths in anomaly
detection. Research into incorporating RNN-inspired archi-
tectures within the ViT framework to enhance its ability to

learn complex temporal relationships in traffic sequences
is also promising. By addressing these limitations, ViT has
the potential to become a dominant force in traffic anomaly
detection. While ViTs offer promising results for anomaly
detection, they also have limitations. Training ViTs can
be computationally expensive compared to simpler models
like CNNs. This can be a bottleneck for real-time anomaly
detection on resource-constrained devices. We can explore
techniques for reducing the computational cost of ViTs, such
as model pruning or quantization, to enable deployment on
edge devices. By addressing these limitations and explor-
ing future research directions, we can further improve the
efficacy and practicality of ViT-based anomaly detection for
network traffic data.

We conducted a comprehensive analysis of the intrusion
detection dataset, employing various machine learning and
deep learning techniques with hyperparameter optimization
through Bayesian optimization, and compared the results
with those of recent studies. This approach allowed for a
deeper analysis of different NSL-KDD datasets, including
NSL-KDD train+, NSL-KDD test+20%, and NSL-KDD
test-20%. All datasets comprise multivariate information for
binary class classification. Our future work will involve
applying and validating these methods on broader anomaly
detection datasets with multi-class classification.
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