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ABSTRACT With the development of robotics and wearable devices, there is a need for information
processing under the assumption that an agent itself is mobile. Especially, understanding an acoustic
environment around an agent is an important issue. In this paper, we solve a task in which a moving agent
estimates the Direction of Arrival (DoA) of the surrounding sound sources. To this end, we propose a novel
training method, Trajectory-based Direction Selection (TDS). In TDS, a mixture of binaural audio recorded
by two agents and their trajectories are given as input to a network. Then, the network is trained to estimate
the DoA of surrounding sounds that correspond to each agent’s trajectory separately. By corresponding
the agent’s trajectory to the binaural audio with TDS, we can estimate DoAs of multiple sounds even with
binaural audio as audio input, which has not been realized by sound-onlymethods. In simulated environments
covering both single and multiple sources, our method outperforms existing DoA estimation methods.

INDEX TERMS Audio processing, direction of arrival estimation, embodied agents, multi-modal learning.

I. INTRODUCTION
Growing developments in robotics and wearable cameras
have increased the demand for analyzing acoustic envi-
ronments in scenarios where the devices are in motion.
To address such situations, various sound-tracking methods
have been proposed [1], [2], [3]. These sound-tracking
methods estimate the Direction of Arrival (DoA) at each
time in a situation where the positional relationship between
the device and the sound source is continuously changing.
However, these methods have the limitation that they assume
the localization of a smaller number of sound sources than
the number of microphones. This assumption necessitates the
use of specialized or costly equipment, such as microphone
arrays, to effectively analyze complex environments in which
multiple sound sources are involved.

On the other hand, focusing on the fact that most devices
are equipped with multiple sensors such as cameras and
microphones, various models utilizing multi-modal input
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have been proposed [4], [5], [6], [7], [8], [9], [10], [11], [12].
These methods include those that leverage the movement of
the devices themselves to analyze scenes with multiple sound
sources, even with devices like binaural microphones that
have insufficient spatial information. For example, there are
navigation models guiding the agent to multiple target sound
sources [7], as well as models searching for the ‘‘sweet spot’’
where each sound is easily distinguishable [8], [9].
However, these multi-modal models for autonomous

agents are applied for limited scenarios. Specifically, in these
multi-modal models, agent movements are specialized in
localizing sound sources, and it is difficult to realize
applications in which an agent solves multiple tasks simul-
taneously. For example, multi-modal navigation models
employ reinforcement learning techniques to guide agents
incrementally toward positions where they can identify the
desired sound source. These methods are specialized in
localizing sound sources, and as a result, an agent may
struggle to estimate the DoA of surrounding sound sources
while moving toward a specific destination. To overcome
this limitation, we need a multi-modal model capable of
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FIGURE 1. Overview of our task. We address the situation in which an
embodied agent understands the status of sound sources while moving.

accommodating agents that move freely, without specializing
in DoA estimation. In this work, we assume that the agent
not only moves freely but also continuously observes the
surrounding acoustic environment, akin to sound-tracking
methods.

Our goal is to develop a model that enables a continu-
ously moving agent to understand the surrounding acoustic
environment. Specifically, we address the DoA estimation
depicted in Figure 1. In this task, we have observations
of agents moving through acoustic environments toward a
certain destination. We input the agent’s trajectory and the
binaural audio obtained from the observation, and estimate
the DoA of sound sources at each time step. Note that we
assume that the agent has only a camera and a binaural
microphone as sensors, but even in this case, we suppose
that the agent’s trajectory can be obtained using techniques
such as Visual SLAM [13], [14]. The proposed model
utilizes the agent’s trajectory to achieve DoA estimation for
multiple sound sources with binaural microphones, which
has been challenging with methods that use only sound
as input. Furthermore, the problem setting in the proposed
method assumes that agents move freely through the acoustic
environment, rather than moving to solve a specific task,
which means that we relax the limitations of existing multi-
modal methods.

Our key idea is twofold: i) applying multi-modal input of
trajectory and binaural audio to the DoA estimation model,
and ii) applying a combination of multi-modal tasks to
the training of the model with the trajectory and binaural

audio. First, an agent’s trajectory is a critical factor in
DoA estimation for moving agents. This is because the
DoA of fixed sound sources observed by a moving agent
changes according to the agent’s movement, i.e., trajectory.
For example, in Figure 1, as the agent moves diagonally
forward, the DoA of the blue sound changes to the right, and
the DoA of the green sound changes to the front. To this end,
i) we leverage the multi-modal input of agent trajectory and
binaural audio to improve the accuracy of DoA estimation.

Furthermore, we ii) effectively learn the cross-modal
correspondence between the agent’s trajectory and binaural
audio based on a combination of multi-modal tasks in audio-
visual learning. Specifically, we focus on the fact that the
combination of audio-visual localization and audio-visual
separation improves the performance of each task [15], [16].
Here, audio-visual localization is a task that highlights an
image region corresponding to a sound input, while audio-
visual separation is a task that distinguishes between audio
related to the image input and irrelevant audio. This suggests
that utilizing a task that distinguishes audio corresponding to
the other input from irrelevant audio, in addition to a task that
simply correlates audio to the other input, will emphasize the
audio consistent with the other input. Inspired by these works,
we propose a novel training method for DoA estimation
model shown in Figure 2.
Figure 2 shows an overview of our proposed method

for training a DoA estimation model with a moving agent.
We train the DoA estimation model not only by (a) applying
multi-modal inputs from the agent’s trajectory and binaural
audio to the model, but also by (b) a newly proposed
Trajectory-based Direction Selection (TDS). TDS is inspired
by the Mix-and-Separate approach [17], a common method
for audio-visual separation. In TDS, we have trajectories and
binaural audio from videos of two different moving agents.
First, (1) we mix the two binaural audio. Then, (2) the mixed
audio and one of the two trajectories are fed into the DoA
estimation model, which estimates only the DoA consistent
with the given trajectory. The addition of TDS improves the
performance of DoA estimation by effectively correlating the
agent’s trajectory with binaural audio, as in the case of the
combination of audio-visual localization and separation.

The rest of this paper is organized as follows. In Section II,
we review the related work and show the position of this work
in multi-modal learning and DoA estimation. In Section III,
we propose TDS that improves the performance of DoA
estimation for continuous moving agents. In Section IV,
we show the experiments of DoA estimation. Experimental
results with simulator-generated data demonstrate that the
proposed model outperforms prior models in both the single-
source and multiple-source cases. Finally, in Section V,
we conclude this paper.

II. RELATED WORK
A. AUDIO-VISUAL LEARNING
Audio-visual learning is a popular multi-modal learn-
ing framework in which we train models based on the
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FIGURE 2. Overview of the proposed method. To train the DoA estimation model, we perform both (a) DoA estimation with multi-modal input of
agent trajectories and binaural audio and (b) Trajectory-based Direction Selection (TDS).

correspondence between video and sound. Audio-visual
learning leads to improving the performance of tasks
conventionally solved with only a single modality such as
action recognition [18], [19]. Also, audio-visual learning
realizes novel tasks such as audio-visual localization and
separation [16], [17], [20], [21], [22], [23]. For representing
relationships between video and sound, various pretraining
methods based on semantic correspondence [18], [20] and
temporal synchronization [19], [24] have been proposed.
In recent years, several methods have been proposed to

represent the audio-visual spatial relationship by adopting
multi-channel sound input instead of monaural sound [25],
[26], [27], [28], [29]. We note that most methods use stereo
sound as multi-channel sound because of its low collection
cost. By corresponding video and stereo sound, various
audio-visual applications including vehicle detection [25],
face detection in ASMR videos [26], and stereo sound
generation [27], [28], [29] have been proposed.

While these audio-visual methods can utilize the relation-
ship between video and multi-channel sound, they assume
that devices such as cameras and microphones are placed in
fixed positions. We address this limitation by constructing a
DoA estimation model for continuously moving agents.

B. DoA ESTIMATION USING ONLY SOUND INPUT
DoA estimation models have traditionally been solved
using only sound input. Beamforming with microphone
arrays [30] and the MUSIC [31] are typical methods. With
the development of deep learning, various models using
neural networks have been proposed [32], [33]. Among them,
convolutional neural networks are often adopted. Recently,
sound localization methods based on the transformer [34]
have been proposed [35], [36]. Moreover, models for moving
sound sources have also been proposed [1], [2], [3]. For
example, Adavanne et al. combined CNN and GRU to
improve the DoA estimation performance of moving sound
sources by considering time series changes [1]. 3D CNN and

temporal convolutional networks have also been proposed as
models for representing time series changes [2], [3].

While these methods effectively estimate DoA from sound
input, they do not explicitly assume that an agent itself moves.
We propose an effective sound source localization method
for the continuous moving agents by correlating the agent’s
trajectories with the sounds.

In addition, previous DoA estimation methods have
limitations on the number of sound sources to be localized.
For example, MUSIC can only localize fewer sound sources
than the number of microphones. Furthermore, most deep
learning-based methods use multi-channel sounds to localize
a single sound source [2], [32], [33], [36]. Some works have
attempted to localize up to three sound sources, but they use
four-channel inputs, called ambisonics [1], [3], [35]. Thus,
existing DoA estimation addresses a smaller number of sound
sources than the number of channels of multi-channel sound
input. On the other hand, our method proposes to localize two
and three sources from binaural audio utilizing the trajectory
of the agent. Namely, the proposed method can localize more
sound sources than the number of input channels.

C. MULTI-MODAL LEARNING FOR EMBODIED AGENTS
Multi-modal learning has enabled a variety of applications
for embodied agents, i.e., autonomously moving agents. For
example, there are audio-visual navigation, depth estimation,
and camera pose estimation [4], [5], [6], [7], [8], [9], [10],
[11], [12]. In particular, several methods have been proposed
to process multiple sound sources by taking advantage of
the agent’s movement, even though the sound input is
binaural [7], [8], [9]. For example, Kondoh and Kanezaki
proposed audio-visual navigation that guides the agent to
each sound source sequentially in an environment with mul-
tiple sound sources [7]. Although these methods can handle
multiple sound sources by correlating the agent’s movement
to associated sound changes, the agent’s movements need to
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be specialized only to solve the task, and these multi-modal
methods restrict the agent’s behavior.

There are also methods for embodied agents that analyze
a given agent’s observations rather than manipulating the
agent’s movement [10], [11], [12], [37]. Chen et al. propose
a method that improves the performance of DoA estimation
by corresponding the agent’s rotation to changes in DoA,
although still working with a single sound source [37].
While these methods have been successful in improving task
performance by taking advantage of agent observations, they
are based only on observations at specific points and do not
target freely moving agents.

We tackle a novel problem setting of estimating the DoA
of multiple sound sources for binaural microphones, devices
with insufficient spatial information, by corresponding the
trajectory of a continuously moving agent to binaural audio.

III. PROPOSED METHOD
A. OVERVIEW
Our goal is to propose a DoA estimation method for
a continuously moving agent utilizing multi-modal input
of the agent trajectory and the binaural audio. In this
paper, we assume that an agent moves around the acoustic
environment where sound sources are fixed. To this end,
we propose a network shown in Figure 3. Our idea is to
emphasize the correspondence between the trajectory and the
audio by combining (a) DoA estimation with trajectory and
audio and (b) TDS, distinguishing between audio consistent
with the trajectory and inconsistent audio. This is inspired
by the combination of audio-visual localization and audio-
visual separation in audio-visual learning. Specifically, (a)
we estimate the DoA at each time step from each multi-
modal pair. Then, (b) we incorporate a mixture of multiple
binaural audio and each agent’s trajectory as additional
inputs. By having the model estimate only each DoA
corresponding to each trajectory from the sound mixture,
the model explicitly learns the correspondence between the
agent’s trajectory and the DoA. As a result, the model
improves the accuracy of the DoA estimation when inputting
pairs of the agent’s trajectory and the binaural audio even in
difficult cases where there are two or three multiple sources.

Let DDD = {(pppi,aaai,ddd i), 1 ≤ i ≤ N } be the dataset for
training the proposed model, where pppi, aaai, and ddd i are the
i-th trajectory path, binaural audio, and DoA labels in the
dataset, respectively. Here, N is the number of data in the
dataset. aaai is a T -second binaural audio, which is divided
into S segments of equal length for input into the model.
In other words, the length of one segment is the T/S second,
and aaai = {aaasi , 1 ≤ s ≤ S}. Also, the agent’s trajectory
pppi = {pppsi , 1 ≤ s ≤ S} consists of S segments, where pppsi =

[xsi , y
s
i , θ

s
i ] contains the coordinates (x

s
i , y

s
i ) and orientation θ si

of the agent at the T · s/S second. Note that ppp1i = [0, 0, 0],
i.e., pppi is calculated using the relative values of the agent’s
initial position and orientation as (0, 0) and 0, respectively.
When calculating d si in ddd i = {d si , 1 ≤ s ≤ S}, we assume

K bins and M sound sources. We use rms,i, representing the
DoA of the m-th (1 ≤ m ≤ M ) sound source in radians at the
T · s/S second. (i)When M = 1, d si is a single class label as
d si = ⌊r1s,i · K/2π⌋. (ii)When M > 1, d si is a vector of class
labels. Specifically, d si ∈ {0, 1}K . Here, the k-th element of d si
is 1 if k ∈ {⌊rms,i · K/2π⌋, 1 ≤ m ≤ M} and 0 otherwise. The
continuously moving agent dataset represented in this way is
used to train the DoA estimation model described below.

B. TRAJECTORY-BASED DIRECTION SELECTION
In this paper, we propose Trajectory-based Direction Selec-
tion (TDS). First, we randomly select different observations
(ppp′
i,aaa

′
i,ddd

′
i) for the i-th observation (pppi,aaai,ddd i) from the dataset.

In this experiment, (ppp′
i,aaa

′
i,ddd

′
i) is selected from observations

that contain only a single sound source. For an additional loss
in TDS, we introduce the sound mixture mmmi = aaai + aaa′

i in the
two observations and calculate

Lmix =

N∑
i=1

S∑
s=1

(C(os(pppi,mmmi), d si ) + C(os(ppp′
i,mmmi), d

′s
i )), (1)

whereC is the criterion of the loss function, and os(ppp,aaa) is the
s-th DoA estimation model output of the sequence length S
when trajectoryppp and binaural audioaaa are input.We similarly
calculate the loss for the original agent trajectory and binaural
audio pairs as

Loriginal =

N∑
i=1

S∑
s=1

(C(os(pppi,aaai), d si ) + C(os(ppp′
i,aaa

′
i), d

′s
i )).

(2)

Finally, the loss for TDS is calculated as

L = Lmix + Loriginal . (3)

We show the pseudo code of this network training procedure
in Figure 4.

C. NETWORK ARCHITECTURE
Our network shown in Figure 3 consists of an audio CNN
and a transformer-based encoder. The audio CNN is based
on ResNet18 [38]. Because the dimension of the sound input
is four as described in Section III-D, the dimension of the
first convolutional layer is changed from three to four. The
sound feature after the fourth residual block is extracted and
passed through a FC layer. Note that, as in the previous
work [21], the stride in the fourth residual block is changed
from two to one. The transformer encoder is constructed with
the transformer encoder layer which has the same structure as
the implementation in the original paper [34]. We construct
the transformer encoder with 6 encoder layers and 16 heads.
The features from these encoder layers are passed through
FC layers to obtain the final output. Additionally, we apply
the same positional encoding as in the original paper to the
input of the transformer encoder.

Next, we describe how to obtain the network output.
First, we detail the feature extraction of the agent trajectory.
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FIGURE 3. Proposed network for DoA estimation. The network consists of an audio CNN and a transformer-based
encoder. We note that the weights of the audio CNN and the transformer encoder are shared.

FIGURE 4. Pseudo code for training the proposed network.

As described in section III-A, we represent the trajectory
of the agent as coordinates and orientation at each time
step. Following the previous work [37], we transform these
values into high-dimensional vectors by positional encoding
instead of directly inputting them. We transform each
element of the agent trajectory psi = [xsi , y

s
i , θ

s
i ] into D′

dimensional feature vector fff pi,s = [PE(2π ·xsi ,D
′/4),PE(2π ·

ysi ,D
′/4),PE(θ si ,D

′/2)], where the function PE(x,D) is the
positional encoding proposed in [34] that transforms the value
x into a D-dimensional vector. Finally, the agent trajectory
pppi = {pppsi , 1 ≤ s ≤ S} is transformed into fff pi = {fff pi,s, 1 ≤

s ≤ S}. We next describe feature extraction from the binaural
audio. Each element asi of the input of binaural audio aaai =

{asi , 1 ≤ s ≤ S} is transformed into a spectrogram and fed
into the audio CNN to extract the sound feature fff ai,s ∈ RD′

.
Thus, we obtain the binaural audio feature fff ai = {fff ai,s, 1 ≤

s ≤ S}. Finally, we combine the agent trajectory feature fff pi

and the binaural audio feature fff ai to obtain fff i ∈ RS×2D′

.
We input fff i into the transformer-based encoder and pass
it through a FC layer. Then, we have the network output
o(pppi,aaai) ∈ RS×K .

D. IMPLEMENTATION DETAILS
First, we describe the calculation of spectrograms from
binaural audio. Following previous works [27], [28], [29],
we calculate a spectrogram that preserves both the amplitude
and phase information of the binaural audio. Specifically,
we first apply a Short-Time Fourier Transform (STFT) to the
left and right channels of the binaural audio. Here, instead
of calculating the amplitude spectrogram from the norm of
the real and imaginary parts, the real and imaginary parts are
calculated as distinct spectrograms. As a result, each channel
is converted into two spectrograms, resulting in four channels
in total. The binaural audio is sampled as 16 kHz and the
STFT is applied by a 25-ms Hann window with a 10-ms hop
and an FFT size of 512. Therefore, the binaural audio asi is
converted into a spectrogram of size 4 × 256 × 100T/S.

Finally, we show the training parameters. We set the input
data length T = 3.6 and the sequence length S = 24, such
that each feature element corresponds to an agent observation
of T/S = 0.15 seconds. The number of bins K = 64 and
the dimensionality of each feature D′

= 512. For the loss
function, we employ Cross Entropy Loss when the number
of sound sources is one, and Binary Cross Entropy Loss
when multiple sound sources are assumed. The network is
trained using Adam optimizer with a batch size of 16. The
learning rate and weight decay are set to 0.0001 and 0.001,
respectively.

IV. EXPERIMENTS
In this section, we present the experimental results to evaluate
the proposed method for DoA estimation in continuously
moving agents.

75512 VOLUME 12, 2024



T. Sato et al.: Direction-of-Arrival Estimation for Mobile Agents Utilizing the Relationship

TABLE 1. Number of parameters for the proposed method and baselines.

A. DATASET
To obtain observations in which an agent moves continuously
through an acoustic environment, we use SoundSpaces [4]
and SoundSpaces2.0 [5]. SoundSpaces generates transfer
functions from pairs of sound source and agent positions in
an indoor scene. We use 3D models of indoor scenes in the
Matterport3D dataset [39] and LibriSpeech [40] as a sound
source dataset. We note that SoundSpaces can reproduce
reberveration based on reverberations based on the wall
material and floor plan of an indoor scene fromMatterport3D.

1) DATASET SPLITTING
First, we describe the splitting of each dataset. We split the
indoor scenes contained in Matterport3D as in the previous
work [11], assigning 59/10/8 scenes for training/valida-
tion/test subset, respectively. The splitting of the LibriSpeech
dataset is also based on the previous work [8]. Although this
split allows for overlapping speakers, we remove speaker
overlap from this splitting to assess the robustness of our
model to unknown sound sources. Specifically, we split the
100 speakers in the split from [8] into 80/10/10 speakers
for the train/validation/test subset. Consequently, we obtain
205/24/25 voices for the train/validation/test subset.

2) DETERMINATION OF AGENT’S PATH AND SOUND
LOCATION
We then describe how we determine the agent’s path and
the sound source location. We utilize the graph provided by
SoundSpaces [4] for each scene in Matterport3D. This graph
contains nodes for every 1.0 m where the agent can move.
From these nodes, we first determine the start and end points
of the agent’s path. Specifically, among all combinations of
node pairs, we select those whose shortest paths are less than
four in the Manhattan distance and make them candidates
for the start and end points. Next, to each start and end
point, we assign candidates for the sound source location.
In this experiment, all nodes whose shortest paths from
the start and end points are within three in the Manhattan
distance are considered candidate source locations. Finally,
50 candidate pairs of start and end points are selected from
each scene, and three sound source locations are assigned to
each start and end point. An example of the start and end
points and sound source locations is shown on the left side of
Figure 5.

FIGURE 5. An example of an agent’s actions. Based on the graph paths
provided by SoundSpaces, we determine the sequence of the agent’s
actions by combining MoveForward, TurnLeft/Right, and DriftLeft/Right.

FIGURE 6. Illustration of DriftLeft. In this figure, each scale is 1/6 m.

3) DETAILS OF AGENT ACTIONS
We show howwe determine agent behavior based on the paths
in the graph. We define five types of agent action: MoveFor-
ward, TurnLeft/Right, and DriftLeft/Right. MoveForward is
an action in which the agent moves 1.0 m straightforward,
and TurnLeft/Right are actions in which the agent rotates
90◦ to the left or right. First, we transform the graph paths
with these three actions. An example of the transformation is
shown on the left side of Figure 5. Furthermore, to represent
the agent’s actions more naturally, we define DriftLeft/Right
as a new action for diagonal forward movement and replace
(MoveForward, TurnLeft/Right, MoveForward) shown in the
right side of Figure 5. When an agent follows the path
as depicted on the left side of Figure 5, it moves through
without hindrance because this path is based on the graph
provided by SoundSpaces. However, with the introduction of
DriftLeft/Right, the agentmay deviate from the path andmake
unexpected movements, such as colliding with obstacles on
the new path. In this experiment, such cases are removed
and we finally generate 2,479/422/400 agent observations for
train/validation/test, respectively.

4) DETAILS IN BINAURAL AUDIO RENDERING
Finally, we describe how we render the binaural audio.
In MoveForward and TurnLeft/Right actions, the transfer
functions are calculated by SoundSpaces at each of the
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TABLE 2. Results of trajectory-based direction selection. We adopt
accuracy and angular error for evaluation metrics. n is the number of
sound sources in the agent observations.

six subdivided points for each action and binaural audio is
rendered. Note that the agent moves forward by 1/6 m or
rotates by 15◦ in 0.15 seconds. For interpolation between
points, we use linear crossfading as in previous work [5].
However, DriftLeft/Right is slightly more complex. Take
DriftLeft as an example in Figure 6. The agent (1) moves
forward by 1/2 m, (2) repeats moving forward with 15◦

rotation five times, and then (3) moves forward by 1/2 m
after 15◦ rotation. Here, the agent’s velocity is consistent with
other actions except during moving forward in (2), where the

agent progresses by 1
2/

∑5
i=1 sin(15 · i) m in 0.15 seconds.

B. EVALUATION DETAILS
1) BASELINE METHODS AND ABLATIONS
Throughout the experiments, Proposed indicates the pro-
posed method and is compared with the following baseline
methods and ablations.

a: DoA ESTIMATION USING ONLY AUDIO INPUT
To evaluate the effectiveness of multi-modal input of agent
trajectories and binaural audio, we first compare Proposed
with DoA estimation methods using only audio input. These
methods train the DoA estimation model with binaural audio
input as a class classification problem in the same way as
Loriginal . Note that Lmix is not used because there is no agent
trajectory input. Specifically, we construct the following four
methods.
CNN: In CNN, the DoA of sound at each time is estimated

directly from aaai, a binaural audio input. Specifically, this
method uses the same idea as previous works that estimate
the DoA of fixed sound sources [32], [33].
CRNN: CRNN adopts an architecture that combines CNN

and GRUs, similar to the previous sound source tracking
method [1]. In this method, the transformer in the proposed
network is replaced with the GRU as in the previous work and
we only input the binaural audio aaai into the network.
Tran:We further construct Tran as a method that employs a

transformer to capture time-series information. Tran uses the
same architecture asProposed except for inputting the agent’s
trajectory.
SLfM: Chen et al. proposed a method for self-supervised

learning of the audio CNN by utilizing the correspondence
between DoA changes and agent rotation [37]. To compare
our method with this method, we use the pre-trained audio
CNN provided by Chen et al. Specifically, we re-train the
pre-trained audio CNN with our dataset and denote it as
SLfM.

TABLE 3. Results of DoA estimation. The evaluation metrics and n is as in
Table 2. acc and err are accuracy and angular error, respectively.

b: DoA ESTIMATION USING AUDIO AND TRAJECTORY INPUT
We also construct DoA estimation methods that use both
audio and agent trajectory inputs. These methods are
ablations of our method that evaluate that the proposed
network and loss function effectively utilize the multi-modal
input of agent trajectory and binaural audio. Specifically,
we modify the input of the networks for CNN, CRNN,
Tran, and SLfM to incorporate a feature that combines the
agent’s trajectory and the binaural audio. We call these
methods CNN-Traj, CRNN-Traj, Tran-Traj, and SLfM-Traj,
respectively. We train these methods only with Loriginal as
well as methods that input only binaural audio.

Moreover, we add Mixed. In Mixed, the model is trained
with Lmix only. Mixed is an ablation to evaluate the loss
function in Proposed, which combines Loriginal and Lmix .

Table 1 shows the number of parameters of Proposed
and baselines. Here, the column audio backbone denotes the
number of parematers for encoder of binaural audio input, and
the column DoA estimator denotes the number of parameters
for the model that estimates the DoA at each time step from
the input features. In particular, in the network of Proposed
in Figure 3, the audio backbone and DoA estimator refer to
Audio CNN and Transformer-based Encoder, respectively.
Note that Tran-Traj and Mixed are not included in Table 1
because they use the same architecture as Proposed.

2) EVALUATION METRICS
We adopt two evaluation metrics for evaluating DoA
estimation.

a: ACCURACY
The first metric is the accuracy of the DoA estimation.
In this paper, the DoA estimation is solved as a classification
problem, and the network output o(ppp,aaa) = {os(ppp,aaa), 1 ≤ s ≤

S} represents the degree of presence of sound sources in each
bin, where os(ppp,aaa) is the s-th output for ppp and aaa. When the
number of sound sources is only one, the ground truth d si is a
single class label, and the accuracy acc is calculated as

acc =
1

N · S

N∑
i=1

S∑
s=1

δdsi ,argmax(os(pppi,aaai)), (4)

where δi,j is Kronecker delta and argmax(xxx) is the index of
the maximum value of xxx. In summary, acc is the average of
the exact correspondence between ddd i and o(ppp,aaa).

75514 VOLUME 12, 2024



T. Sato et al.: Direction-of-Arrival Estimation for Mobile Agents Utilizing the Relationship

For multiple sources, we extend acc to multi-label
classification manner. We first extract indices corresponding
to the top nsi values from os(pppi,aaai), where nsi is the number
of sound sources corresponding to os(pppi,aaai). We denote the
values by oooi,s = {oni,s, 1 ≤ n ≤ nsi }. From d si , a vector of class
labels, we also extract the indices whose corresponding value
is 1 as ddd i,s = {dni,s, 1 ≤ n ≤ nsi }. Then, we calculate accuracy
acc as

acc =
1

N · S

N∑
i=1

S∑
s=1

1
nsi
maxx,y(

nsi∑
n=1

δ
ox(n)i,s ,dy(n)i,s

), (5)

where x and y are arbitrarily ordered sequences of integers
with values from 1 to nsi .

b: ANGULAR ERROR
The second metric is the estimated angular error. This error
indicates the gap between the estimated DoAs and the ground
truth. When there is only a single sound source, the angular
error err is calculated as

err =
1

N · S

N∑
i=1

S∑
s=1

min(ai,s,K − ai,s) ·
360
K

,

ai,s = |argmax(os(pppi,aaai)) − d si |, (6)

where ai,s is the distance between indices of estimated DoA
and ground truth. In the case we have multiple sounds,
we calculate the angular error as

err =
1

N · S

N∑
i=1

S∑
s=1

1
nsi

nsi∑
n=1

min(ai,s,K − ai,s) ·
360
K

, (7)

where ai,s = |ox(n)i,s −dy(n)i,s |, and x and y are the same as Eqn. 5.

C. PERFORMANCE OF TRAJECTORY-BASED DIRECTION
SELECTION
We first evaluate whether TDS is a valid task. Table 2 shows
the accuracy and angular error of TDS for each number
of sources. Considering that DoA estimation is treated as
a 64-class classification problem in this experiment, these
results are significantly above the chance rate. Therefore,
we see that the proposed network solves the TDS in both
single-source and multiple-source cases, i.e., the network can
choose only the DoA corresponding to the agent’s trajectory
from multiple DoAs.

D. PERFORMANCE OF DoA ESTIMATION FOR SINGLE
SOUND SOURCE
We perform DoA estimation for single sources, a common
problem setting in previous works [2], [32], [33], [36].
The n = 1 results in Table 3 correspond to the DoA
estimation results for a single source. We first compare
Proposed with those that use only binaural audio input.
Proposed outperforms CNN, and CRNN. Thus, we can see
that not only binaural audio features which are essential
for DoA estimation but also agent trajectory features are

important for the analysis of mobile agents. Moreover,
Proposed outperforms Tran. This result indicates that simply
introducing transformer architecture does not improve the
DoA estimation performance, and the multi-modal input and
the proposed loss function are effective for the analysis
of moving agents. We also compare Proposed to SLfM.
Proposed shows superior performance to SLfM. This indi-
cates that the proposed method also outperforms existing
approaches as DoA estimation utilizing mobile agents.

We also compare our method with those that use both
binaural audio and trajectory inputs. Proposed performs
better than CNN-Traj. This indicates that Proposed can effec-
tively analyze the acoustic environment of a continuously
moving agent with the network that captures time-series
information. In addition, the estimation performance of
Proposed is higher than those of CRNN-Traj and SLfM-Traj.
This shows that the proposed model is more suitable for
moving agents than simply adding agent trajectory features
to the existing sound-tracking method or the existing DoA
estimation method utilizing moving agents. Furthermore,
Proposed is better than Tran-Traj, which is the same method
except for the introduction of Lmix . This result indicates that
the proposed loss function, Lmix , captures the correspondence
between the agent’s trajectory and binaural audio, and
consequently improves the performance of DoA estimation.
Also, Proposed performs better than Mixed. This shows the
importance of Loriginal that trains the network with similar
data that is used during inference. Another observation is
that for n = 1, CRNN-Traj and Tran-Traj have comparable
results. This indicates that in the simple problem setting
of estimating the DoA of a single sound source, merely
introducing the transformer architecture may not directly lead
to improved performance.

We visualize the results of the DoA estimation byProposed
in Figure 7. Figure 7 shows the results of DoA estimation at
time steps S = 1, 12, and 24. As the column of n = 1 shows,
Proposed successfully localizes the sound source at each time
step.

E. PERFORMANCE OF DoA ESTIMATION FOR MULTIPLE
SOUND SOURCES
Next, we address the DoA estimation for sound sources above
the number of microphones in the binaural microphones. This
corresponds to the results for n = 2, 3 in Table 3. Proposed
shows higher DoA estimation performance thanCNN,CRNN,
and Tran. Furthermore, as in the case of a single source,
Proposed performs better than SLfM. These results indicate
that the combination of binaural audio features and agent
trajectory features is also effective in multiple-source cases.

We also compare Proposed with methods that use both
the agent’s trajectory and binaural audio as input. Proposed
performs better than CNN-Traj, CRNN-Traj, Tran-Traj, and
SLfM-Traj. These results show that the proposed architecture
and loss function are effective even in difficult problem
settings where more sound sources than the number of micro-
phones are simultaneously emitting sound. Also, Proposed
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FIGURE 7. Visualization of DoA estimation using the proposed method. The three columns from the left are for 1, 2, and 3 sources,
respectively. The rightmost column is the failure case.

shows better performance than Mixed. This means that the
combination of Lorigina and Lmix is still effective in improving
the performance in the DoA estimation for sound sources
above the number of microphones. In addition, the accuracy
of Tran-Traj outperforms the accuracy of CRNN-Traj in
these settings. Therefore, the introduction of the transformer
architecture is effective in difficult problem settings, where
estimating the DoA of sound sources with more than the
number of microphones is required.

In Figure 7, we also show visualizations of the DoA
estimation using Proposed for multiple sound sources as well
as that for a single sound source. The columns of n = 2 and
3 show that Proposed can localize each source at each time
step. We also show a failure case in the rightmost column of
Figure 7. As this example shows, our method may incorrectly
estimate some DoAs of multiple sources. However, we note
that in many cases, the proposed method improves the DoA
estimation performance for multiple sources.

F. PERFORMANCE UNDER NOISY ENVIRONMENT
To demonstrate the robustness of Proposed, we further eval-
uate our method in a noisy environment following previous
works [41], [42], [43]. Here, we consider reverberation,

TABLE 4. Results of DoA estimation under noisy environment. We set the
SNR as 5 dB. We show these results in the same manner as Table 3.

directional noise, and spatially white Gaussian noise as
noise. In Section IV-D and IV-E, we have already shown
that Proposed is robust to reverberation and directional
noise. First, Proposed shows robustness to reverberation
reproduced by SoundSpaces in these experiments. Second,
Proposed achieves DoA estimation of multiple sound sources
in Section IV-E. In multiple DoA estimation, Proposed
also shows robustness to directional noise because when
estimating the DoA for each sound source, other sound
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FIGURE 8. Performance of DoA estimation in multiple noise environments. We add spatially white Gaussian noise from -10 dB to 20 dB
with a step size of 5 dB. n is the number of sound sources.

sources are to be directional noise. In this section, we further
show that Proposed is robust to spatially white noise.
Specifically, we add spatially white Gaussian noise to each
binaural audio of the test data and observe the performance
of DoA estimation. Note that we have not retrained the model
to evaluate the performance in noisy environments.

Table 4 shows the DoA estimation performance of
Proposed and baseline methods on a noisy dataset with
a signal-to-noise ratio (SNR) of 5 dB. Proposed shows
high DoA estimation performance in noisy environments,
although its performance is lower than the original setting.
This indicates that the network architecture of Proposed and
the network training by TDS provide robust DoA estimation.
We further compare Proposed with baseline methods. First,
Proposed performs significantly better than CNN, CRNN,
Tran, and SLfM which are methods with only binaural audio
input. Also, Proposed shows much better performance than
CNN-Traj and SLfM-Traj, methods with architecture that
do not consider time series. These results show that agent
trajectories and time series information contribute to the
performance of DoA estimation for autonomous agents.

We further compare Proposed with CRNN-Traj, Tran-
Traj, and Mixed, methods that have multi-modal input of
agent trajectories and binaural audio and an architecture
considering time series. Proposed significantly improves
DoA estimation performance for n = 1 compared to CRNN-
Traj and Tran-Traj. This is because Proposed is trained in an

environment with directional noise by TDS, while CRNN-
Traj and Tran-Traj are trained in an environment with no
noise other than reverberation in the case of n = 1. However,
Proposed shows the best performance except for the angular
error at n = 2, and performs as well as Tran-Traj for
the angular error at n = 2. These results indicate that
training the network based on the correspondence between
the agent’s trajectory and binaural audio by TDS is effective
for the difficult task of DoA estimation of multiple sources in
noisy environments. Proposed also performs better in DoA
estimation thanMixed. This indicates that the combination of
Loriginal and Lmix , as in the original environment, contributes
to the improved performance.

We also show in Figure 8 the accuracy and angular error
for test data with SNR changing from −10 dB to 20 dB
with a step size of 5 dB. We choose Proposed, Tran-
Traj, CRNN-Traj, and Mixed because they are the ones that
show good performance in Table 4 because they have both
binaural audio and agent trajectory inputs, and that use an
architecture considering time series information. As Figure 8
shows, Proposed performs well in all SNR. This result
shows that Proposed is effective for various noise intensities.
Interestingly, in noisy settings such as −5 and −10 dB at
n = 2 and 3, Mixed shows comparable performance to
Proposed. This suggests that Lmix contributes significantly
to robustness in the difficult situation of DoA estimation for
multiple sound sources in a noisy environment.
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V. CONCLUSION
We have proposed a novel task, Trajectory-based Direction
Selection, to estimate the DoA without disturbing the move-
ment of the embodied agent. Our idea is to effectively acquire
cross-modal correspondence between the agent trajectory
and the binaural audio by learning to decompose a sound
mixture conditioned on the trajectory of each agent. Unlike
sound-only methods, the proposed method can localize more
sound sources than the number of microphones using low-
cost devices, including binaural microphones. Furthermore,
unlike existing multi-modal methods for embodied agents,
the proposed method can localize sound sources while the
agent moves freely. Experimental results show that the
performance of our proposed model with agent trajectories
and binaural audio as input outperforms existing DoA
estimation models.
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