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ABSTRACT The Clustering by Fast Search and Find of Density Peaks (DPC) algorithm is a clustering
method that automatically identifies clustering centers based on density and relative distance. It has several
advantages, including the ability to identify arbitrarily shaped clusters and requiring few input parameters.
However, the density measure used in DPC does not consider the spatial distribution characteristics of
the sample points in the data set. The clustering performance is suboptimal for datasets with significant
differences in cluster density. Additionally, its non-central sample point assignment method is less error-
tolerant, which can result in successive assignment errors and a domino effect, ultimately leading to poor
clustering accuracy. To address these shortcomings, we propose an improved DPC algorithm based on shared
nearest neighbor and multi-cluster fusion (SM-DPC). The local density of sample points is redefined using
K-nearest neighbors, which makes the density metric more consistent with the local structural characteristics
of the dataset. A two-step allocation strategy for non-central sample points based on shared nearest neighbors
is proposed to improve the accuracy of allocation of non-central sample points. A multi-cluster fusion
strategy is used to correct the centroid selection bias for datasets where sample points are not uniformly
distributed. The experimental results demonstrate that SM-DPC is capable of clustering datasets with
arbitrary shape and density distributions effectively. Furthermore, it exhibits superior performance and
broader adaptability to different types of datasets compared to DBSCAN, K-means algorithms, and other
DPC optimization algorithms.

INDEX TERMS K-nearest neighbor, local density, multi-cluster fusion, density peaks.

I. INTRODUCTION
The extraction of useful knowledge from the vast amount
of data generated by the rapid development of information
technology and the application of the Internet in industry
and daily life is a current research hotspot in data mining.
Kaushik et al. [1], through meticulous review and analysis
of extensive literature, provide a profound exploration and
examination of NARM. Such in-depth investigation equips
researchers with a deeper understanding of the essence and
potential of data mining technology, furnishing them with
abundant reference information and research perspectives in
the domain of data mining. Furthermore, it offers valuable
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guidance and insights for future research and practice endeav-
ors. After delving into the profound insights elucidated by
Minakshi et al., it becomes apparent that a comprehensive
comprehension of the intricate nature inherent in data mining
techniques serves as a robust cornerstone for subsequent
investigations. Armed with this comprehension, we redirect
our focus towards elucidating the pivotal role occupied by
cluster analysis in elucidating patterns and interrelationships
embedded within datasets.

Cluster analysis is an essential unsupervised learning
method that typically involves partitioning a dataset into
different clusters by computing the similarity between sam-
ple points. This ensures that sample points within the same
cluster exhibit similar features, while those in different clus-
ters demonstrate distinct features. Kaushik et al. [2] has
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also proposed discretizing numerical attributes, aiding in
simplifying data processing and enhancing computational
efficiency, thereby facilitating better exploration of potential
connections among sample points within the dataset. Such
techniques find widespread applications in various fields,
including bioinformatics [3], image processing [4], [5], and
pattern recognition [6].
Moreover, beyond its scholarly utility, cluster analysis

finds broad-ranging applications in practical realms such
as traffic safety. For example, Shahin et al. [7] leveraged
cluster analysis to discern clusters of akin accidents, thereby
unveiling underlying patterns among diverse incidents and
formulating corresponding preventative strategies. This prag-
matic instantiation underscores the expansive potential of
cluster analysis across varied domains.

The density-based clustering algorithm is a typical cluster-
ing algorithm that has received considerable attention from
researchers owing to its complete theoretical foundation and
wide application [8]. The DPC algorithm [9] is a novel
density-based clustering method that constructs a visualised
ρ-δ decision diagram by calculating the local density ρ and
relative distance δ of each sample point in the dataset, selects
the sample point with larger local density ρ and distance δ as
the center of each cluster in the dataset, and then assigns the
other non-center sample points to the clusters in which the
center was located [10], [11].
The DPC algorithm is a novel approach that can cluster

arbitrary-shaped data sets. However, it has two obvious short-
comings. Firstly, it performs poorly on datasets with uneven
density distribution. If the distribution of sample points in
a dataset is uneven, there may be multiple density peaks in
one cluster. This can lead to misselection of cluster centroids
by decision diagrams. Additionally, the non-central sample
points assignment strategy assigns sample points to clusters
where sample points with greater density and closest distance
are located. It is a one-step assignment principle, which can
result in successive assignment errors and reduced clustering
accuracy. Therefore, solving the problem of poor clustering
effect of DPC on variable density datasets has become the
research focus of related scholars.

Fang et al. [12] used grid partitioning to divide the data
space into grid cells. They then determined the clustering
centers adaptively by using the density of grid cells instead of
the local density of DPC. Li and Zhang [13] defined local rel-
ative densities to identify clustering centers of non-uniformly
distributed datasets by considering information about the
nearest neighbors of sample point truncation distance dc.
Hou et al. [14] introduced the concept of sample point
affiliation to describe the relative density relationship and
used the number of affiliated sample points as a criterion
to determine the clustering centers. In their study on the
effect of different density measures in DPC on clustering
results, Hou and Zhang [15] proposed a new kernel that
addresses the deficiency of DPC in effectively clustering
variable density datasets through normalization and other

methods. Mehmood et al. [16] proposed a nonparametric
method to estimate the probability distribution of a given
dataset. The method is based on the idea of thermal diffu-
sion to optimize the truncation distance dc and detect cluster
boundaries, which improves the clustering quality of the
DPC algorithm. Zhu et al. [17] used density ratios instead
of kernel densities in the DPC algorithm to overcome the
deficiency that global kernel densities are not fully adapt-
able to variable density datasets. Wu et al. [18] proposed
an efficient clustering method based on density peaks with
symmetric domain relations. They calculated the K-nearest
neighbors and reverse K-nearest neighbors of each sample
point to establish a symmetric neighborhood graph. Then,
they used reverse K-nearest neighbors to calculate local den-
sities and distinguish density peaks of sample points. Finally,
they applied clustering using the symmetric neighborhood
graph. Xu and Jiang [19] constructed sparse graphs based on
truncated distance dc and automatically selected clustering
centers based on the connectivity of the graphs to reduce the
effect of uneven distribution of the dataset on the clustering
results. Wang et al. [20], [21] used data fields and fuzzy the-
ory to optimize the calculation of local densities to solve the
deficiency of difficult decisionmaking of clustering centroids
due to multiple density peaks. The scholars mentioned above
proposed solutions for DPC’s lack of adaptability to variable
density datasets and achieved better results. However, they
did not effectively address the shortcomings of DPC in the
non-centroid assignment strategy.

In terms of optimizing DPC assignment strategy for
non-central sample points, Liu et al. [22], [23], [24] optimized
the assignment of non-central sample points by calculat-
ing the shared nearest neighbor information of sample
points to avoid the possible cascading errors encountered in
DPC non-central point assignment. Lei et al. [25] proposed
a multi-cluster merging strategy by defining the similar-
ity between clusters and performing multi-cluster merging
according to the metric criterion of cluster similarity to avoid
cascading errors when assigning non-central sample points.
Zhao et al. [26] first assigned the K-nearest neighbors of
the density peak to their corresponding clusters, and then
based on the proximity of the sample points, the non-central
sample points were assigned to the cluster where the sample
points with their highest proximity and have been assigned
were located, and this assignment strategy can effectively
improve the correct assignment rate of non-central points.
Seyedi et al. [27], [28], assign the neighboring nodes of the
central sample point to the label of the central sample point
to form a local backbone sample points after determining the
center of clustering, and then use the dynamic label propa-
gation process for node update to achieve the delineation of
the labels of non-central sample points. Long et al. [29] used
the local density of the DPC algorithm to capture the density
structure graph of the dataset to construct the cluster spectrum
of the dataset, designed a new similarity measure between
clades, and used the normalized cut objective function to
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cut the connection graph between these clades to achieve
the partitioning of the dataset and avoid the shortcomings
of the DPC algorithm in the allocation of sample points. All
of the above proposed methods for optimizing the DPC arith-
metic allocation strategy have demonstrated the effectiveness
of their optimization strategies on the relevant datasets and
improved the clustering quality of the DPC algorithm in terms
of accuracy.

The mentioned above related scholars have used differ-
ent methods to optimize the shortcomings of DPC, all of
which have improved its clustering effect in one aspect.
In this paper, we propose a density peak clustering algorithm
SM-DPC based on nearest neighbor relationship optimiza-
tion and multi-cluster fusion to address the shortcomings of
DPC in terms of poor adaptability to density inhomogeneous
data sets and non-central sample point assignment which
can easily result in consecutive assignment errors. The main
innovative points are as follow:

(1) The local density calculation employs the K-nearest
neighbor method to define a new measure of local density.
By using K-nearest neighbor and Gaussian kernel, the local
density considers the spatial distribution characteristics of
sample points. This approach can identify the local structure
of the data set and improve the local density values of sam-
ple points in sparse clusters. It also effectively reduces the
influence of uneven density distribution among clusters on
the selection of clustering centers.

(2) When assigning non-central sample points, use the
two-step assignment strategy of the shared nearest neigh-
bor and inter-sample similarity. Divide the non-central
sample points into core-connected and boundary-connected
sample points. Initially assign the core-connected sample
points based on the cluster center. Then, gradually assign
the boundary-connected sample points based on the clas-
sification of the core-connected sample points and their
inter-sample similarity. This assignment strategy improves
the clustering accuracy of the algorithm and prevents chain
reactions caused by DPC.

(3) In the selection of centroids, it is inevitable that the
distance between the sample points of the same class of
clusters in a special data set is too large, that means that the
Euclidean distance from the sample point i to the kth nearest
neighbor is large, causing an biased selection of centroids and
a decrease in clustering effectiveness. Therefore, designing
a new multi-cluster fusion strategy based on a new measure
criterion of similarity between clusters enables the algorithm
to have an opportunity for correction, even if the centroids are
selected incorrectly.

II. BASIC PRINCIPLE OF DPC ALGORITHM
The DPC algorithm is a density-based clustering algorithm.
Its core idea is to construct a visual ρ-δ decision diagram to
select the cluster centers. These are sample points with rela-
tively large values of both ρ and δ. The algorithm calculates
the local density ρ of the sample point and the distance δ

between the point and the sample point with larger local

density than it and the closest distance to it. The remaining
non-central sample points are clustered in the cluster of the
nearest neighbor with high-density value sample points.

DPC offers two methods for calculating the local density ρ

of sample points. The cutoff kernel, shown in equation(1),
is used for large data sets, while the exponential kernel, shown
in equation(2), is used for small data sets.

ρi =

∑
i̸=j

χ (dij − dc), χ(x) =

{
1,x<0
0,x≥0 (1)

ρi =

∑
i̸=j

exp

[
−

(
dij
dc

)2
]

(2)

where dij represents the Euclidean distance between sample
point i and sample point j, dc is the truncated distance, which
is defined as the value at the 2% position after the distance
between any two sample points is arranged from smallest
to largest, and needs to be set artificially. From equation(1),
it can be seen that the local density of sample points is equal
to the sum of the number of all sample points whose distance
from the sample point is less than the truncated distance dc.
When the size of the data set is small there may be a large
number of the same local density values, in order to avoid
this situation, choosing the exponential kernel to calculate the
local density can reduce the impact of the truncated distance
dc on the local density of the sample.

The relative distance δ of sample point i is defined in
equation (3), and for the sample point with the largest local
density, the relative distance δ is defined in equation (4).

δi = min
j:ρj>ρi

(dij) (3)

δi = max
i̸=j

(δj) (4)

After calculating the local density ρ and relative distance
δ for each sample point, a visualized ρ-δ decision diagram is
constructed, and the sample points with larger local density
and distance are selected as the centers. DPC also gives the
automatic extraction of clustering centers using the decision
value γi, see equation (5).

γi = ρi × δi (5)

The points with large decision values γi are usually the
ones with relatively high local densities ρ and relatively long
distances δ, which are selected as clustering centers. Unas-
signed centroids will be allocated to the cluster where the
sample point with greater local density and closest distance
is located.

III. SM-DPC ALGORITHM
The SM-DPC algorithm aims to address the limitations of
DPC in clustering datasets with uneven cluster densities and
non-central sample point assignment strategies that can lead
to consecutive assignment errors. The improvement method
comprises three main parts:

The first improvement is to optimize the density calcula-
tion method. By applying the concept of k-nearest neighbors,
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the local density value of a sample point is determined solely
by the relative closeness of the sample points within its
set of k-nearest neighbors. This effectively characterizes the
samples in low-density regions, thus reducing the impact of
uneven density distribution among clusters on the selection
of clustering centers. The second improvement introduces
a two-step allocation strategy that combines shared near-
est neighbors and sample similarity to allocate non-central
sample points. This approach addresses the chaining effect
produced by the original allocation method through a point-
to-point approach, enhancing the accuracy of non-central
sample point allocation. The third improvement employs
a multi-cluster fusion strategy to further improve cluster-
ing effectiveness when the selection of clustering centers
deviates. This strategy divides the dataset intomultiplemicro-
clusters, which are then merged based on the calculation of
inter-cluster affinity to refine the clustering results.

A. OPTIMIZATION OF THE CENTROIDS SELECTION
The definition of density in DPC is directly related to the
selection of density peak points, and once the density peak
as the center of clustering is selected incorrectly, it will lead
to wrong clustering results. When there is a large difference
in density between clusters in the dataset, the sample points
with peak density calculated by the DPC algorithm are most
likely to be in the high-density clusters, During the selection
of clustering centers, they will be selected in the high-density
clusters in preference to the sample points in the low-density
clusters, which will lead to the wrong selection of clustering
centers. Taking the Unbalance dataset shown in Figure 1 as an
example, Figure 1 shows the heat map of the density values of
each sample point calculated by the DPC algorithm according
to the definition of density in equation (1).

FIGURE 1. Heat map of sample point density.

It can be seen that the sample points with high den-
sity values are concentrated in the central area of the three
high-density clusters, and the cluster centers are selected by
choosing the sample points with greater density and relative
distance, so it will result in the high-density clusters may
havemore than one cluster center point, while the low-density

FIGURE 2. Selected clustering centroids and clustering results.

clusters have no cluster center points. Figure 2 shows the
8 clustering centers (pentagons in the figure) selected accord-
ing to the decision value equation (5) of the DPC algorithm
and the clustering results. It can be seen from the figure that
two more clustering centers were incorrectly selected in the
high-density cluster, while the sample points in the other two
low-density clusters had no clustering centers, and the error
in the selection of clustering centers led to the final false
clustering.

To address the problem that DPC is not applicable to
datasets with large density differences among clusters, the
K-nearest neighbor is introduced to redefine the local density
metric. For the peak density points, their values are not the
sample points with the highest density in the global range,
but the sample points with higher density in the local range,
so as long as they are the sample points with higher density
values in the cluster, they are likely to be selected as the
cluster center. The density measure of K-nearest neighbor
optimization takes into account the information of the nearest
neighbors of sample points, which better reflects the local
structural characteristics of the dataset, amplifies the local
density values of samples in low-density clusters, reduces
the gap of density values among clusters, and makes it pos-
sible for sample points with higher local density values in
low-density clusters to be selected as clustering centers.

SM-DPC introduces K-nearest neighbors into the density
calculation and redefines the calculation of the density of
sample points in combination with a Gaussian kernel.
Definition 1 (K-nearest neighbors): Given a data set X,

for any sample point i, the K-nearest neighbors of sample
point i are the set of the nearest K points in the distance of that
sample point i to other sample points [21], which is defined
in equation (6).

KNN (i) = {j ∈ X |index_dist(i, j) ≤ k} (6)

where index_dist(i, j) is the index value of the distance of
sample point i to other sample points in ascending order.
Definition 2 (Shared Nearest Neighbor): Given a dataset

X , KNN(i) and KNN(j) are the sets of K-nearest neighbors of
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sample point i this and sample point j, and the sets of shared
nearest neighbors of sample point i and sample point jis
defined in equation (7).

SNN (i, j) = KNN (i) ∩ KNN (j) (7)

Definition 3 (Local density): For sample point i in data
set X, its local density is defined in equation (8).

ρi =

∑
q∈KNN (i)

exp(−
1
k

∑
j∈KNN (q)

dqj) (8)

where KNN(i) and KNN(q) are the set of K-nearest neighbors
of sample point i and sample point q, dqj is the Euclidean
distance from sample point q to sample point j in the set of its
K-nearest neighbors.

For the new local density metric, it is divided into the
following steps:

(1) Calculate the Euclidean distance index_dist(i, j)
between sample points in the dataset;

(2) Find the set KNN(i) of the k-nearest neighbors of a
single sample point i and the set KNN(q) of the nearest
neighbors of point q in KNN(i) according to equation (6);
(3) Apply equation (8) to obtain the local density of sample

point i based on the relationship betweenKNN(i) andKNN(q).
It can be seen that new local density metric formula only

considers the K-nearest neighbor sample points of the sample
point, therefore, the local density value of a sample point is
only related to its K-nearest neighbour sample points and the
K-nearest neighbors of its K-nearest neighbors, while other
sample points at a farther distance have no effect on the local
density value.

Taking the Unbalance dataset as an example, equation (8)
is used as a measure of local density, and the heat map of the
local density value of each sample point is shown in Figure 3.
It can be seen from Figure 3 that the density is not even
among the clusters in the dataset, there are also localized
sample points with high density values in the clusters with
sparse distribution of sample points after using the density
calculation of equation (8).

FIGURE 3. Sample point density heat map of SM-DPC algorithm.

Figure 4 shows the eight clustering centers (pentagons
in the figure) selected according to the decision value

equation (5) of DPC and the clustering results. It can be seen
Figure 4 that all eight clusters have locally higher sample
points, the clustering centers are correctly selected, and the
final clustering results according to this density metric are
also correct. This indicates that the density metric proposed
by the paper takes into account the spatial distribution char-
acteristics of sample points, and can more accurately describe
the relationship among samples by using the nearest neighbor
information of sample points, which can not only identify
the local structural characteristics of the dataset, but also
improve the local density values of sample points of sparse
cluster species, which effectively reduce the influence of
uneven density distribution among clusters on the selection
of clustering centers, and improve the shortcomings of the
density calculation method in DPC. In addition, the choice of
the number of true cluster centers is not randomly entered
manually, but is determined based on the structure of the
dataset being clustered.

FIGURE 4. SM-DPC algorithm selected cluster center points and cluster
results.

B. NON-CENTRAL SAMPLE POINTS ALLOCATION
STRATEGY
The definition of non-central sample points encompasses
all sample points except for the clustering centers. In this
paper, a two-step assignment strategy for non-central sam-
ple points is proposed based on the shared neighbor count
among sample points, which categorizes sample points
into core-connection points and boundary-connection points.
Core-connection points typically reside in the core regions of
clustering clusters, representing the characteristic features of
the cluster, whereas boundary-connection points lie between
core regions and noise regions, with their k-nearest neigh-
borhood points insufficient to reach the threshold but still
directly connected to core points. By classifying sample
points into these two categories, a better understanding of the
internal structure and boundaries of clustering clusters can
be achieved. Moreover, the introduction of core-connection
points aids in the algorithm’s quicker identification of the
core parts of clusters, thereby reducing the processing of
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noise data points during iterations. As core-connection points
concentrate in high-density areas, they can effectively detect
and form clustering clusters in the initial stages, thereby
enhancing the efficiency of the algorithm.
Definition 4 (Core-connection point): Suppose sample

point i has been assigned, sample point j has not been
assigned, and sample point p is a sample point in the shared
nearest neighbor data set of sample point i and sample
point j. If equation (9) is satisfied, then sample point j is a
core-connection point of sample point i.

| {ρ|ρ ∈ SNN (i, j) = KNN (i) ∩ KNN (j)} | ≥ k/2 (9)

From equation (9), it is evident that if sample point j is
the core-connection point of sample point i, then at least half
of their respective sets of K-nearest neighbors are shared, and
sample point j is deemed to belong to the same cluster as sam-
ple point i. In other words, when the number of shared nearest
neighbors between two points is sufficient, it indicates that
they are densely and closely connected in space, suggesting
that the two points have similar local density distributions and
a strong correlation between them. Consequently, they can be
considered as data points with similar density distributions
and classified into the same clustering cluster.
Definition 5 (Boundary-connection point): Suppose sam-

ple point i has been assigned, sample point j has not been
assigned, and sample point p is a sample point in the shared
nearest neighbor data set of sample point i and sample
point j. If equation (9) is satisfied, then sample point j is a
boundary-connection point of sample point i.

0 < | {ρ|ρ ∈ SNN (i, j) = KNN (i) ∩ KNN (j)} | < k/2 (10)

Definition 6 (Similarity between sample points): The
similarity between samples Sim

(
xi, xj

)
. It is defined [30] as

follows:

ω(i, j) =

{
e−d

2
ij , j ∈ KNN (i)

0, others
(11)

A(xi, xj) =

∑
v∈|KNN (i),i| ωvj +

∑
v∈|KNN (j),j| ωvi

k
(12)

Sim(xi.xj) = |SNN (i, j)| · A(xi, xj) (13)

where, ω (i, j) represents the proximity of sample xi to
sample xj, classifying the relationship between sample xi
and other samples into k-nearest neighbor and non-nearest
neighbor cases, and ω (i, j) numerically considers only
the Euclidean distance between sample point xi and its
k-nearest neighbor. A

(
xi, xj

)
represents the mutual prox-

imity of sample xi and sample xj, which is the sum of
ω from sample xi and its k-nearest neighbors to xj, and
ω from sample xj and its k-nearest neighbors to xi, then
normalized. This reflects the density of the environment in
which the sample is located. Sim

(
xi, xj

)
is the similarity

between sample xi and sample xj, and |SNN (i, j) | denotes
the number of shared nearest neighbors between sample
xi and sample xj. In the process of calculating the sample
similarity, the distribution characteristics between samples

are taken into account, and the more shared nearest neigh-
bors between samples, the higher the sample similarity,
so that the algorithm can correctly allocate the remaining
samples.

In fact, the sample points that do not satisfy the con-
dition of core-connection points are boundary-connection
points. After dividing the non-central sample points into
core-connection points and boundary-connection points,
the assignment is carried out in two steps. Firstly, the
core-connection sample points are assigned, starting from
the cluster centroid, and using breadth-first search for its K
nearest neighbor sample points, and if the number of shared
nearest neighbors between them is greater than half of the
value of K , the sample point is subordinated to the cluster
where the current centroid is located, and it is assigned to
the cluster where the current sample point is located, which
is the assignment strategy 1. After assigning the core con-
nected sample points, find the similarity of the corresponding
unassigned points from the similarity matrix to form a new
similarity matrix, and find the unassigned sample with the
greatest similarity to the assigned sample in the new similarity
matrix. Assigning the unassigned samples to the clusters
where the assigned samples are located, which is the assign-
ment strategy 2.

Step 1:Assignment strategy 1: Assign core-connection
points

Input: set of clustering center, number of sample nearest
neighbors K.
Output: initial assignment result C
(1)Initialize the set Q, select the clustering centroids

sequentially and give the cluster label Ci, and add them to
the set Q;

(2)Take the sample point p at the head of the set Q and
remove it from the set Q;

(3)The unassigned sample point r in the K-nearest neigh-
bor set KNN(p) of sample point p, if it satisfies |SNN(p, r)|
≥ K /2, the sample point r will be grouped into the cluster
where sample point p is located, and the sample point r will
be added to the end of set Q;
(4)If the set Q is not empty, then turn (2), otherwise strat-

egy 1 end.
Step 2: Allocation strategy 2: Assign boundary-

connection points
Input: The number of sample nearest neighbors K , the

initial assignment result C.
Output: The final clustering result C.
(1) Find all unassigned points and renumber them;
(2)Calculate the sample similarity according to equation(7)

and equation(10)-equation(12), and construct the sample sim-
ilarity matrix;

(3)Finding the data corresponding to unassigned sample
points in the similarity matrix to form a new similarity
matrixM ;

(4)Find the maximum value in the matrix M , record the
unassigned points qi corresponding to the maximum value
and the corresponding cluster Ci;
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(5)Assign the sample point qi to cluster ci and remove the
sample point qi data from the matrix;

(6)Repeat (2) until all points are assigned; strategy 2 end.

C. MULT-CLUSTER FUSION
When selecting centroids for the data, it is possible that the
distance gap between sample points of the same type of clus-
ter is too large, resulting in a large Euclidean distance from
sample point i to the k-th nearest neighbor, and a selection
bias of centroids, which means that two and more centroids
appear in a cluster. To optimize the clustering effect, a multi-
cluster fusion strategy is proposed.

The concept of multi-cluster fusion [22] has gradually
become a hot topic in cluster research. The final cluster-
ing result is expected to be achieved by merging potential
clusters, which can more accurately reflect the intrinsic struc-
ture and characteristics of data. In this paper, we design a
multi-cluster fusion strategy based on a new measure crite-
rion of similarity between clusters. The similarity between
clusters is evaluated based on the distribution information of
data points in clusters, and which clusters should be merged
to form new and larger clusters are determined.
Definition 7 (Proximity of samples to clusters): Using the

inter-sample proximity obtained from equation (11), the
proximity of samples to clusters is defined, as shown in
equation (14).

pmi =

∑
j∈Cm

ω4
ij

|Cm|
(14)

Cm is the set of samples in cluster m, |Cm| is the number
of samples in cluster m, pmi is the proximity of sample point i
to cluster m, and the larger the value of ωij, the larger the
contribution of sample point j to the weight of pmi . the larger
the value of ωij, the greater the contribution of sample point j
to the weight of pmi . If there are more samples belonging to
Cm in the K-nearest neighbors of sample point i and the closer
they are to sample point i, the larger the value ofω4

ij, the larger
the proximity pmi of sample point i to Cm.
Definition 8 (Similarity among clusters): The similarity

among clusters is calculated in equation (15).

SIM (Cm,Cn) =

∑
j∈Cn

Pmj (15)

SIM (Cm,Cn) is the similarity between two clusters, and
the larger the sum of the proximity of sample j∈Cn to Cm, the
greater the similarity between Cm and Cn.
Multi-cluster fusion strategy: The first n samples are

selected as the density peaks of the final generated clusters,
and the first m (n ≤ m) samples are selected as the potential
density peaks. where n is the number of true clusters, deter-
mined by the structure of the dataset. Firstly, the similarity
among clusters is calculated, and a cluster similarity matrix
is built. Secondly, the two clusters with the highest similarity
are merged until the number of potential clusters is equal to
the number of real clusters.

Using the Jain dataset as an example, it is observed that
the dataset comprises of two crescent-shaped clusters, one at

FIGURE 5. Initial clustering results for the Jain dataset.

the top and one at the bottom. Figure 5 illustrates the initial
clustering results of the Jain dataset when the algorithm does
not employ the multi-cluster fusion strategy. The clustering
algorithm incorrectly assigns both clustering centers to the
lower cluster (sample point A and sample point B) due to the
larger distance between sample points of the upper cluster
compared to that in the lower cluster, resulting in clustering
errors.

The multi-cluster fusion strategy was used to optimize the
clustering effect, as shown in Figures 6 and 7. In Figure 6,
three sample points were selected as potential density peaks,
and three potential clusters with sample points A, B, and C
as clustering centers were obtained. Based on equations (14)
and (15), the clusters with sample point A and sample point B
as cluster centers are fused, resulting in the final clustering
shown in Figure 7.

FIGURE 6. Initial clustering results for the Jain dataset(m=3).

D. SM-DPC ALGORITHM STEPS
Input: dataset X , number of nearest neighbors of sample
points K , number of clusters n.

Output: clustering result C .
Setp1: normalized dataset X ;
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FIGURE 7. The final clustering result for the Jain dataset.

Setp2: Calculate the Euclidean distance between each sam-
ple point, and the set of K-nearest neighbors;

Setp3: Calculate the local density ρ of the sample points
according to equation (8);

Setp4: Calculate the relative distance δ according to equa-
tions (3) and (4);

Setp5: Select the clustering centers according to the local
density ρ and relative distance δ using equation (5);

Setp6: Assign the core connection sample points according
to assignment strategy 1;

Setp7: Assign the boundary-connection sample points
according to assignment strategy 2;

Setp8: Calculate the proximity pmi between samples and
clusters according to equation (13);

Setp9: Select the number of potential clusters m,calculate
the similarity SIM (Cm,Cn) between clusters according to
equation(14). Build the similarity matrix and merged poten-
tial clusters until the number of potential clusters is equal to
the number of real clusters.

The flowchart of the algorithm is shown in Figure 8.

E. TIME COMPLEXITY
The time complexity of SM-DPC is determined by four
main components. (1)The complexity of computing the dis-
tance among sample points is O(n2). (2)The computation
of the local density of sample points is restricted to their
K-nearest neighbors, and the time complexity of search-
ing their K-nearest neighbors is O(n). Therefore, the time
complexity of searching the K-nearest neighbors of n sam-
ple points is O(n2). (3)For each sample point, calculate the
distance δ value to the nearest sample point with a higher
local density, with a time complexity of O(n2). (4)Allocation
strategy 1 involves searching the k-nearest neighbors of the
core-connected sample points. Since the k-nearest neighbors
of the samples have already been calculated, and assuming
that the size of the core connection sample points is n1, the
time complexity is O(kn1). Allocation strategy 2 should tra-
verse all unallocated sample points, assuming their size is n2.
The time complexity of the similaritymatrix for the n1 sample

points that have been allocated is O(n1×n2), where n1 and
n2 are smaller quantities for n. The total time complexity of
the allocation strategy is less thanO(n2). Additionally, poten-
tial clusters should be merged. To merge potential clusters,
the algorithm calculates the similarity between samples, the
proximity of samples to clusters, and the similarity between
clusters. Each part has a time complexity of O(n2), resulting
in a total time complexity of O(n2). The proposed algorithm
in this paper has a time complexity of O(n2), which is similar
to that of DPC.

IV. EXPERIMENTAL RESULT AND ANALYSIS
A. DATASETS AND EVALUATION INDICES
For the experiments, eight synthetic datasets and ten UCI
datasets [31] were selected to test the performance of clus-
tering algorithms. These datasets differ in size, number of
features, density distribution, and categories, which verifies
the adaptability and clustering effectiveness of SM-DPC on
different types of datasets. Table 1 and Table 2 show the
detailed properties of the synthetic and UCI datasets used for
the experiments.

TABLE 1. Synthetic datasets.

Three external evaluation indices were used to evaluate
the clustering results, namely Adjusted Mutual Information
(AMI) [33], Adjusted Rand index (ARI) [33] and Fowlkes-
Mallows Index, FMI) [34], all three indices take the upper
value of 1, and the closer to 1 indicates the better clustering
effect. ‘‘Arg-’’ indicates the optimal value of the parameters
when the algorithm processes the data set, and ‘‘-’’ indicates
that the algorithm does not need to be tuned. The bolded index
value indicates that the result is the maximum value when
processing the same dataset.

B. THE PARAMETER SELECTION
In order to objectively obtain the optimal clustering effect of
each algorithm on different data sets, we make a parametric
process for the algorithms that require parametric tuning. The
SM-DPC algorithm requires setting the number of nearest
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FIGURE 8. Flow chart of SM-DPC algorithm.

TABLE 2. UCI real-word datasets.

neighbors K of the samples, ranging from 5 to 20, and the
number of potential clustersm, which takes the optimal value
from 1 to 100; The DBSCAN algorithm requires tuning the

domain radius ε and theminimum number of samplesminPts.
Different parameter values are selected for tuning in order to
obtain the best clustering results; The DPC algorithm needs
to set the truncation distance dc, which is determined by the
percentage of the distancematrix, chosen between 0.01 and 5;
The FCM algorithm needs to reconcile the number of clusters
c and the parameter m of the control algorithm flexibility;
The DWG-DPC algorithm [34] tunes the parameter k with the
optimal value between the number of parameters from 2 to the
ratio of the number of sample points to the number of clusters
in the dataset.

C. ANALYSIS OF EXPRIMENTAL RESULTS OF SYNTHETIC
DATASETS
The paper selects ten synthetic datasets with varying sizes
and cluster structures to effectively test the adaptability and
clustering effects of each algorithm when faced with dif-
ferent types of datasets. The Jain dataset comprises of two
crescent-shaped clusters that intersect, which is a common
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FIGURE 9. The clustering results of each algorithm on the Jain dataset.

characteristic of datasets with uneven density distribution.
The Aggregation dataset has a relatively uniform den-
sity distribution, and some of the clusters are connected.
The Spiral dataset is typical of streamlined data, with no
interference between the spirals. The Path-based dataset is
a complex dataset of ring clusters surrounding block clus-
ters. The Unbalance dataset is large and has significant
differences in density between clusters. The R15 dataset
has multiple categories and sticky conditions between indi-
vidual clusters. The clusters in the Longquare_1 dataset
have varying shapes and disturbances. The D31 dataset
is a larger dataset with many categories and a disorderly
distribution. The Noise_1 and Noise_2 datasets, selected
by Cheng et al. [32] for the LDP-MST algorithm
study, are complex datasets with notable characteris-
tics. These datasets not only contain a large number of
clusters but also exhibit extremely dense inter-cluster dis-
tributions, with connections even among noise points. This
renders the clustering task more challenging and complex.

Figures 9 to 18 display the clustering outcomes of ten syn-
thetic datasets using six algorithms. In the clustering image of
SM-DPC, the pentagrams represent the centroids of clusters,
not the true centroids. In K-means and DPC algorithms,
the ’+’ symbolizes the cluster centroids. The black sample
points indicate the noise points in DBSCAN.

The results of clustering each algorithm on the Jain
dataset are presented in Figure 9. The Jain dataset exhibits
uneven density distribution and a large distance between
sample points within the same cluster due to its stream-like

crescent-like cluster structure. The clustering results of DPC,
K-means, FCM, and DWG-DPC are suboptimal. DBSCAN
can cluster correctly for the most part, but there are still
some individual points that cannot be correctly classified and
are considered as noisy points. The Jain dataset is correctly
classified and achieves optimal clustering through SM-DPC.

Figure 10 displays the clustering results of six algorithms
on theAggregation dataset, which comprises of seven clusters
with distinct features, but there are cross-tangles between
them. SM-DPC, DBSCAN, DWG-DPC, and DPC can accu-
rately classify the clusters on the Aggregation dataset, with
only a few individual sample points not being correctly
clustered. Both K-means and FCM algorithms successfully
identify the correct number of clusters, but the overall clus-
tering results are unsatisfactory.

Figure 11 shows the Path-based dataset, which has
a complex flow shape. It comprises three clusters: two
spherical clusters surrounded by a ring-shaped cluster.
The clusters are interconnected in a complex manner.
The ring-shaped clusters are closely connected, which can
lead to errors when assigning sample points. The figure
shows that only SM-DPC can achieve correct clustering.
DBSCAN can divide the clusters correctly, but it identi-
fies the entire toroidal cluster as a noisy point. DPC can
select the correct clustering center, but its one-step assign-
ment rule based on distance and density results in the
lower end of the toroidal cluster being incorrectly assigned
to the two spherical clusters. The other algorithms are
ineffective.
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FIGURE 10. Clustering results of each algorithm on aggregation dataset.

FIGURE 11. Clustering results of each algorithm on path-based dataset.

Figure 12 shows the clustering results of the six algo-
rithms for the Spiral dataset, which is a streaming dataset
consisting of three helix-like clusters. It can be seen
that SM-DPC, DPC and DWG-DPC can correctly assign

the sample points, DBSCAN is less effective in clus-
tering the sample points for the Spiral dataset, while
K-means and FCM do not have satisfactory clustering
results.
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FIGURE 12. Clustering results of each algorithm on the spiral dataset.

FIGURE 13. Clustering results of each algorithm on unbalance dataset.

The Unbalance dataset shown in Figure 13 is a dataset with
uneven distribution of density among clusters. It can be seen
from the figure that SM-DPC, K-means and DWG-DPC can
correctly discover the cluster centers and correctly assign the

non-central sample points; DBSCAN also can obtain good
results; DPC and FCM appear to classify low-density clusters
into high-density clusters, resulting in an incorrect clustering
result.
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FIGURE 14. Clustering results of each algorithm on longquare_1 dataset.

FIGURE 15. The clustering results of each algorithm on the r15 dataset.

Figure 14 shows the clustering results of six algorithms for
the Longquare_1 dataset, which comprises two stream-like
clusters and four clump-like clusters. The clump-like clusters
are adjacent to each other, making them prone to assignment
errors. The figure indicates that all algorithms perform well,

with SM-DPC, DWG-DPC, and FCM having the best clus-
tering effect.

The results of six algorithms for R15, which consists of
15 clusters, are presented in Figure 15. The outer seven
clusters are well separated, while the inner eight clusters are
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FIGURE 16. The clustering results of each algorithm on the D31 dataset.

FIGURE 17. The clustering results of each algorithm on the Noise_1 dataset.

adjacent and intertwined, leading to potential misassignment
of sample points. SM-DPC, DPC, and DWG-DPC produce
the most accurate clustering results, correctly assigning
most sample points with only a few exceptions. However,
DBSCAN incorrectly groups all the inner clusters into one

cluster, while K-means and FCM also miscluster the inner
clusters.

The results of the six algorithms on the D31 dataset,
a disordered distribution of clustered data, are presented in
Figure 16. It is evident that, with the exception of the FCM
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FIGURE 18. The clustering results of each algorithm on the Noise_2 dataset.

algorithm, which makes errors in clustering when individual
clusters are adhered to each other, all other algorithms cluster
the D31 dataset correctly. SM-DPC and the K-means have the
most outstanding effect.

Figure 17 illustrates the performance of six algorithms
on the Noise_1 dataset. Due to the complex internal dis-
tribution and interference from noise points, none of the
algorithms achieve optimal clustering results. To varying
degrees, they all exhibit errors in cluster allocation. Among
these algorithms, DBSCAN performs the best, followed by
the clustering effectiveness of the SM-DPC algorithm, which
can essentially identify each cluster.

Figure 18 demonstrates the clustering performance of
six algorithms on Noise_2 dataset. This dataset com-
prises clusters of various shapes and is significantly dis-
rupted by a substantial amount of noisy points, pos-
ing significant challenges for clustering tasks. Among
the six algorithms tested, all except for SM-DPC and
DBSCAN failed to accurately identify the boundaries of
specific clusters, leading to clustering errors. While the
DBSCAN algorithm was able to recognize cluster bound-
aries, it incorrectly merged clusters together. In contrast,
the SM-DPC algorithm performed significantly better, suc-
cessfully partitioning the Noise_2 dataset into distinct
clusters.

The AMI, ARI and FMI are the common straight
metrics used to evaluate the performance of clustering
algorithms. Table 3 shows the clustering results of SM-
DPC, DBSCAN, DPC, K-means, FCM, and DWG-DPC

algorithms on eight synthetic datasets, with bolded and
weighted values indicating optimal experimental results.
It can be seen that the SM-DPC algorithm performs
better on all test data, especially for the dataset with
uneven density distribution and the dataset with more
complex cluster structure is significantly better than other
algorithms.

D. ANALYSIS OF EXPERIMENTAL UCI DATA SETS
UCI datasets are commonly used real-world datasets specifi-
cally for testing the performance ofmachine learning and data
mining algorithms. These datasets have exact classifications,
but there are large differences in the number of attributes and
sample size, etc.

The evaluation metric values of the clustering results for
each algorithm on the 10 UCI datasets are shown in Table 4.
It can be observed that SM-DPC significantly outperforms
the other algorithms in most of thet datasets, excluding Iono-
sphere and Lansat. In the clustering results for the landsat
dataset, SM-DPC did not achieve the best clustering results,
but it is still the best algorithm besides the DWG-DPC
algorithm. When dealing with the Ionosphere dataset, SM-
DPC is slightly inferior to DBSCAN but performs better
than the remaining algorithms. By comparing the clustering
results of each algorithm on the UCI datasets, we can find that
SM-DPC has good clustering performance, and the cluster-
ing performance is generally better than the other compared
algorithms.
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TABLE 3. Performance of 6 algorithms on synthetic datasets. TABLE 3. (Continued.) Performance of 6 algorithms on synthetic datasets.

E. ANALYSIS OF EXPERIMENTAL RESULTS WITH OTHER
IMPROVED DPC ALGORITHMS
In order to further validate the performance of SM-DPC,
SM-DPC is compared with other improved DPC algorithms,
and due to the different evaluation metrics chosen in various
literatures, this paper chooses ARI, which is the most fre-
quently used among the evaluation metrics, as the metrics for
evaluation. The experimental dataset in Table 5 and Table 6
was obtained from the corresponding literature. The dash
indicates that the dataset was not provided in the original
literature. It can be seen from Tables 5 to 6 that the improved
algorithms selected are relatively excellent, with SM-DPC
standing out particularly across multiple datasets.
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TABLE 4. Performance of 6 algorithms on UCI datasets. TABLE 4. (Continued.) Performance of 6 algorithms on UCI datasets.

As is shown in Tables 5, compared to the other six
improved DPC algorithms, SM-DPC achieved the best clus-
tering performance on the six artificial datasets (Jain, R15,
Spiral, Path-based, Noise_1 and Noise_2). Although it did
not achieve the optimal performance on another four artificial
datasets (Aggregation, Unbalance, Longquare_1 and D31),
the ARI was close to the best indicators and demonstrated
stability.

It can be seen from Tables 6 that SM-DPC exhibited the
best clustering results on five real-world datasets( Iris, Seeds,
Zoo, Ionosphere, and Balance Scale), when compared to
the other six improved DPC algorithms. While it did not
achieve the optimal performance on the other five datasets
(Dermatology, WDBC, Landsat, Ecoli, and Wine), its ARI
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TABLE 5. The ARI of 7 improved algorithms on 10 synthetic datasets.

TABLE 6. The ari of 7 improved algorithms on 10 real-world datasets.

scores were very close to the optimal, attesting to the sta-
bility and efficiency of SM-DPC. In summary, the SM-DPC
algorithm can obtain good clustering results on different types
of datasets, showing its excellent clustering performance and
adaptability, and its clustering performance is slightly better
compared to the other six algorithms.

V. CONCLUSION
To address the limitations of DPC in clustering datasets
with uneven density assignment due to the bias in centroid
selection and its single non-central sample point assignment
strategy, which is prone to successive assignment errors,
we propose SM-DPC algorithm. The local density of sample
points is measured using the K-nearest neighbor information
to effectively reduce the influence of uneven density distri-
bution among clusters on the selection of cluster centroids.
The assignment strategy for non-central sample points is
improved based on shared nearest neighbors and the simi-
larity between sample points to enhance its accuracy. The
multi-cluster fusion strategy is employed to correct for the
bias in centroid selection for data with uneven distribution
of sample points. The experimental results demonstrate that
SM-DPC outperforms classical clustering algorithms, includ-
ing DPC, DBSCAN, and K-means, as well as improved
DPC algorithms such as FKNN-DPC and SNN-DPC, on syn-
thetic datasets and UCI datasets. Additionally, SM-DPC is
more adaptable to datasets of various forms and distributions.

However, there are still some shortcomings in SM-DPC.
Firstly, the algorithm requires the number of nearest neigh-
bors (k) to be set artificially, and the size of k directly affects
the clustering effect. Future work will focus on developing an
adaptive method for selecting k based on different datasets.
Secondly, although the algorithm produces good clustering
results for large-scale data, it is time-consuming. Therefore,
future research will aim to improve the algorithm’s opera-
tional efficiency.
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