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ABSTRACT Aiming at the lack of accuracy and effectiveness of the current shield machine speed prediction
method, the study proposes to improve the residual network and combine this improved algorithm with the
surrounding rock category prediction model to construct the underground shield machine digging speed
prediction model. With an average accuracy of 87.4%, an F1 value of 0.86, and an accuracy of 0.84, the
study’s prediction model of surrounding rock categories was determined to be valid and superior to the
other compared models. The effectiveness of the improved residual algorithm constructed by the study was
verified, and it was found to have a better fit to the actual values, with a maximum deviation error value of
4.6 mm/min and a root mean square error of 1.835, which was lower than the other comparative algorithms.
The empirical analysis of the underground shield machine digging speed prediction model constructed by the
study revealed that the area under the line of the work characteristic curve of the subjects was 0.74, and the
F1 value was 0.35, and the accuracy was as high as 84.6%, which was significantly better than that of other
comparative models. The shield machine digging speed prediction model, which is based on an enhanced
residual network built in the study, performs better than other comparison models, according to the results,
which can serve as a theoretical guide for the digital management of coal mine output.

INDEX TERMS Residual neural network, shield machine, digging speed, real-time management, surround-
ing rock type.

I. INTRODUCTION
As one of the important equipment of modern mine mining
technology, the underground shield machine (SM) is increas-
ingly widely used in underground projects. The digging speed
(DS) of SM is directly related to the progress and efficiency
of the whole project, so how to manage the DS of SM in real
time has become a key issue to improve the efficiency and
safety of mine mining [1]. However, the old approach of DS
management of SM finds it challenging to satisfy the actual
need as coal mining depth and mine complexity develop.
The traditional methods are mainly based on experience and
rules, which have problems such as low accuracy and difficult
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to adapt to the complex environment [2]. Residual neural
network (ResNet), as a deep neural network architecture,
introduces the concept of residual learning, which improves
the training efficiency, learning ability, and generalization
ability of DS prediction of SM, and helps to improve the
accuracy and stability of prediction [3]. However, traditional
ResNet may encounter problems such as gradient vanish-
ing or gradient explosion when training deep networks [4],
[5]. A recurrent neural network (RNN) variation called long
short-term memory (LSTM) is appropriate for processing
time-series data and is good at capturing long-term dependen-
cies in data [6]. In shield DS prediction, the improvement of
ResNet by combining LSTM can better deal with long-term
dependencies in time series data, which is conducive to better
capturing the temporal characteristics of the data and more
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comprehensively capturing the complex patterns in shield DS
prediction [7]. However, there are fewer studies that utilize
LSTM to improve ResNet and apply it to shield DS predic-
tion. Thus, the study suggests combining LSTMwith ResNet
to create a shield DS prediction model based on enhanced
ResNet in order to close this gap, achieve the intelligent
and accurate management of DS of SM, and increase the
efficiency of coal mining. The innovation of the research
is the development of a new shield DS prediction method.
The contribution of the research is to provide an advanced
technical means for coal mine production management by
improving coal mine production efficiency, ensuring work
safety and reducing costs. The study describes the current sta-
tus of DS management in ResNet and SM in section one, and
constructs the geotechnical grade prediction model (GGPM),
improved ResNet algorithm and DS prediction model based
on improved residual network algorithm for underground SM
in coal mines in section two. The proposed GGPM model,
improved ResNet algorithm and the DS prediction model
based on improved residual network algorithm are empiri-
cally analyzed in section three. Conclusion and outlook of
future research directions are presented in Section IV.

II. RELATED WORKS
As computer science advances, ResNet has created a multi-
tude of uses in an increasing number of domains. Xue et al.
introduced a unique self-supervised learning technique based
on ResNet, to enable automatic learning of video represen-
tations. Their suggested self-supervised learning approach
was found to be effective and to have some degree of
generalizability when utilized as an efficient pre-training
technique for the job of identifying the activities in the
video [8]. Salama et al. suggested a ResNet-based breast can-
cer medical image-assisted diagnosis model and confirmed
the model’s efficacy. The model’s diagnostic accuracy, sensi-
tivity, and precision were determined to be 97.51%, 96.51%,
and 96.78%, respectively [9]. To improve the performance of
fruit harvesting robots, Lawal et al. proposed a ResNet-based
fruit detection model to improve the detection accuracy of
fruits and other crops, and validated the effectiveness of the
model. It was discovered that, in comparison to the conven-
tional model, its average detection accuracy was 89.3% and
its detection speed was 96.8 frames per second. These results
could be used to enhance fruit harvesting robots [10]. Chen et
al. suggested a ResNet-based classification and identification
model for near-infrared spectroscopy in order to establish a
method for efficiently determining the species and duration
of storage for sliced lentils utilizing this technique for the safe
storage and management of porcini mushrooms. The model’s
validity was confirmed, and its accuracy for species classifi-
cation and storage duration was greatly enhanced. This makes
the model practically applicable to the porcini mushroom
supply chain [11]. Yang used real-time pulse sequence low-
quality pure displacement NMR data for efficient collection,
and ResNet was used to analyze and process the data. The
validity of the method was verified and it was found that

the method can perfectly eliminate noise and artifacts and
smooth the baseline, and it can greatly facilitate various NMR
applications [12].

The field of DS management in SM is seeing an increasing
number of methods used to it due to the rapid development
of information technology. To facilitate tunnel excavation
in SM, Fang et al. proposed 2D and 3D finite element
evaluations of the system based on initial soil anisotropy and
non-coaxial plasticity. It was discovered that the degree of
cross anisotropy and the excavation technique work together
to provide an accurate estimate of the tunnel’s maximum ver-
tical displacement, hence these two variables must be taken
into account when excavating SM tunnels [13]. Gao et al.
suggested a digitization-based technique to quickly acquire
the delayed uni-axial compressive strength for subterranean
projects with complex geological conditions so that the exca-
vation speed and support designmay be adjusted. The validity
of the method was verified, and it was found that the drilling
parameters had a high responsiveness to the rock unconfined
compressive strength, which could be used to conduct con-
tinuous and rapid testing of the surrounding rock unconfined
tensile strength [14]. Zhang et al. proposed an analytical
model based on elliptically convergent deformation patterns
in order to accurately predict shield excavation effects. The
validity of the model was verified and it was found to
be an alternative method for conservatively estimating the
effects of tunnel excavation in saturated soils for preliminary
design [15]. Jasemi et al. suggested a speed prediction system
based on a multilevel cell spin transfer moment random
access memory. The validity of this system was verified, and
it was found that the system may keep the error rate below
0.12%, which is valuable for practical application [16]. Wang
et al. suggested a shield construction advancement model
based on LSTM RNNs in an effort to increase the shield
building advancement rate. After the model’s validity was
confirmed, it was discovered that the measured and projected
values had a strong correlation (a correlation coefficient of
0.93), which has practical applications in the development of
shields [17].
The aforementioned study amply illustrates how ResNet

has been implemented in numerous domains and how dif-
ferent approaches are utilized in the SM tunneling space.
Nevertheless, there is still need for development in terms of
accuracy and precision, and the current DS prediction model
of SM is unable to satisfy the demands of real-time monitor-
ing. Therefore, in order to deal with the DS data of SM more
effectively and realize real-timemanagement andmonitoring,
the study proposes to construct an improved residual network
based on LSTM and apply the improved algorithm in the field
of DS prediction of SM.

III. DIGGING SPEED PREDICTION MODEL OF
UNDERGROUND COAL MINE SHIELD MACHINE BASED
ON IMPROVED RESNET
To enhance the feasibility and effectiveness of DS pre-
diction of SM, the study proposes to improve the ResNet
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algorithm based on LSTM, utilizes the GGPM model of coal
mine underground using XGBoost, and combines the GGPM
model with the improved ResNet structure to build the DS
prediction model of coal mine underground SM.

A. XGBOOST-BASED GGPM MODEL FOR UNDERGROUND
COAL MINES
XGBoost-based coal mine undergroundGGPMBefore shield
construction, the study needs to classify the rock and soil
of the operation in order to adjust the tunneling parame-
ters according to the level of the tunnel surrounding rock
class. To provide direction and references for engineering
construction, a variety of methods are currently available for
classifying the shield perimeter rock grades [18], [19]. The
neural network chosen for the study is the eXtreme gradient
boosting (XGBoost) algorithm. XGBoost algorithm is an
improved decision tree (DT) algorithm, which can deal with
a variety of complex and irregular data [20], [21], [22]. The
surrounding rock type (SRT) predictionmodel constructed by
the study is shown in Figure 1.

FIGURE 1. Prediction model of surrounding rock category.

As shown in Figure 1, the XGBoost SRT prediction model
constructed by the study consists of four parts: data prepara-
tion and processing, feature extraction, XGBoost algorithm
classification and model evaluation. In the data preparation
and processing stage, the study eliminates the data in the
downtime segment and screens the data in the stable segment
for extraction. Subsequently, the study performedANOVAon
the extracted data to obtain the model intervals. The acquired
model intervals are input into the XGBoost algorithm as
features, and the study firstly utilized the XGBoost algorithm
to sum up the prediction results of multiple DTs, which is
calculated as shown in equation (1).

ŷ =
K∑
k=1

fk (xi), fk ∈ F (1)

In equation (1), K denotes the DTs, F is the space of
DTs. fk denotes the specific DT and ŷ is the output of the
algorithm. The features and length of the samples are set,
and the expression formula of its input samples is shown in
equation (2).

D = {(xi, yi)}
(
|D| = n, xi ∈ Rm, yi ∈ R

)
(2)

In equation (2), K is the DTs. m denotes the features. The
formula for calculating the space of DTs, i.e., the possibility
of DTs, is shown in equation (3).

F =
{
f (x) = wq(x)

}
(q : Rm→ T ,w ∈ R) (3)

In equation (3), q denotes the structure of the DT and T
denotes the child nodes of the DT. f (x) denotes the DT struc-
ture and w denotes the node weights of the DT. Equation (4)
illustrates the calculation of the XGBoost algorithm’s objec-
tive function (OF).

0(φ) =
∑

l(ŷi, yi)+
∑
k

� (fk) (4)

In equation (4), ŷi is the sample predicted value and yi
is the actual value. 0(φ) denotes the loss error. The OF is
regularized to prevent the function from over-fitting. The
formula is shown in equation (5).

�(f ) = γT +
1
2
λ ∥w∥2 (5)

In equation (5), γ and λ denote the weighting coefficients.
Since XGBoost improves the training accuracy of the model
by iteratively increasing the weak learners, in order to correct
the cumulative difference problem that occurs in the weight-
ing process, the study proposes to utilize the constant term
to correct it. At this stage, the XGBoost algorithm’s OF is
determined, as indicated by equation (6).

0(φ) =
∑

l
(
ft (xi)+

(
ŷ(t−1)i , yi

))
+

∑
k

�(ft )+ C (6)

In equation (6), C denotes a constant. If the OF is formu-
lated using the leaf nodes (LNs) T and the fraction of LNs w,
the OF is formulated as shown in equation (7).

0(t)(φ) =
[
Gjwj +

1
2
(Hj + λ)w2

j

]
+ γT (7)

In equation (7), Gj denotes the accumulation of the LNs
and wj denotes the accumulation of the LN scores. Subse-
quently, the study applies the perimeter rock classification
model based on XGBoost algorithm in practice, and its appli-
cation flow is shown in Figure 2.

The study first uses the Python programming language to
create theXGBoostmodel’s training and testing environment,
as shown in Figure 2. To ensure consistency in the results
of each segmentation, the dataset is divided into training and
testing sets in a 1:1 ratio. Random seeds are fixed. During the
training process, the study uses the sampled and processed
balanced training dataset to validate and evaluate the reliabil-
ity and generalization of the XGBoost model. To maximize
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FIGURE 2. Application flow of the XGBoost algorithm.

FIGURE 3. The residual neural network’s fundamental architecture.

the model’s precision rate, the study additionally verifies the
model’s performance using assessment measures like accu-
racy, precision, and recall.

B. MODIFIED RESNET ALGORITHM INCORPORATING
LSTMS
After completing the construction of the GGPM model for
underground coal mines, the study can classify the working
geotechnics and select the appropriate SM Hori parameters.
Based on the selected SM parameters, the study implements
the accurate prediction and intelligent management of the SM
speed. The study utilizes ResNet as the basic algorithm for
SM speed management. ResNet is a deep learning model
proposed by Microsoft Research [23], [24]. The ResNet
approach seeks to improve the network’s performance and
training efficiency by including a residual module that allows
the network to learn a residual mapping, or the residual
between the input and the desired output [25], [26], [27].
Figure 3 illustrates the fundamental composition of ResNet.
The input layer can receive input data from the outside

world and convert it into a form suitable for neural network
processing. The convolutional layer, on the other hand, can
perform convolutional operations on the input data to extract
features, and it is capable of capturing local features in the
input data. Equation (8) displays the convolutional network
formula.

f (x) = act

 n∑
i,j

θ(n−i)(n−j)x ′ij + b

 (8)

In equation (8), act denotes the activation function and θ

denotes the weight data. b denotes the bias and x ′ denotes

the sequence data. The purpose of the pooling layer, which
typically comes after the convolutional layer, is to condense
the feature map while maintaining the salient characteristics.
To expedite the process of training and inference for the
model, the pooling procedure serves to lessen the sensitivity
of the model to location while also minimizing its computa-
tional effort. Equation (9), which illustrates how ResNet uses
the output of the previous layer as the input to the next layer
for feature extraction and fusion, is the pooling layer.

xl = Hl(xl−1) (9)

In equation (9), xl−1 is the input of layer l − 1. xl is the
input of layer l. However, if the number of layers is too many,
ResNet is often prone to the problem of vanishing gradient.
The traditional ResNet is often improved by utilizing jump
connections, which are shown in equation (10).

xl = Hl(xl−1)+ xl−1 (10)

Multiple residual blocks and jump connections are stacked by
ResNet to help the model perform better by gradually learn-
ing the deeper properties of the input. However, as ResNet
gets deeper and deeper at the same time, the gradient of the
neural network may disappear, so the research proposes to
improve it by utilizing LSTM. LSTM is a special RNN archi-
tecture, which is generally suitable for tasks that need to deal
with long sequential data and long-term dependencies, and
the gating mechanism and memory unit of LSTM enable the
network to learn and memorize the information better [28],
[29], [30]. Figure 4 depicts the architecture of the Res-LSTM
network built for the study.

As shown in Figure 4, the study first introduces LSTM
units in the residual block so that the model can better capture
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FIGURE 4. The Res-LSTM network structure.

FIGURE 5. Basic framework of the prediction model of underground shield tunneling speed based
on improved ResNet.

long-term dependencies. By controlling the information flow
via the LSTM’s gating mechanism, this hybrid structure can
be made to process sequential data more efficiently on the
network. The study then integrates LSTMunits with ResNet’s
jump connections to enable information to move through the
networkmore quickly, therebymitigating the gradient vanish-
ing problem and enhancing the network’s training accuracy
and efficiency. Finally, before the activation function, the
study utilizes batch normalization to improve it. When the
input function is B

{
x1,...,m

}
, its training parameter γ is cal-

culated as shown in equation (11).

µB←
1
m

m∑
i=1

x ′i (11)

In equation (11), µ denotes the mean value. Equation (12)
displays the training parameter formula.

σ 2
B ←

1
m

m∑
i=1

(x ′i − µB)2

x̂ ′i ←
x ′i − µB√
σ 2
B + ε

(12)

In equation (12), σ denotes the standard deviation, ε denotes
the constant, and m denotes the number. Subsequently,

the back-standardization calculation is performed, which is
shown in equation (13).

y′i← γ ′x̂ ′i + β ≡ BNγ,β(xi) (13)

To accomplish the parameter correction, this phase aims to
reconvert the normalized data to the original data’s range
and scale. The output results are calculated as shown in
equation (14). {

y′i ≡ BNγ,β(xi)
}

(14)

C. CONSTRUCTION OF DIGGING SPEED PREDICTION
MODEL FOR DOWN-HOLE SHIELD MACHINE BASED ON
IMPROVED RESNET
After completing the construction of coal mine down-hole
GGPM model and Res-LSTM, the study combines the two
to construct the DS prediction model of down-hole SM based
on improved ResNet. The basic framework of the DS pre-
diction model for down-hole SM based on improved ResNet
constructed by the study is shown in Figure 5.
As shown in Figure 5, the DS prediction model of under-

ground SM constructed by the study consists of SM digging
database, DS prediction of SM and GGPM model of coal
mine underground. In this model, the initial step involves
the collection of detailed geological data and tunneling data
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from the shield tunneling database. Subsequently, the study
conducted a meticulous data cleansing process on the orig-
inal data to guarantee the precision and dependability of
the data. Subsequently, in order to ensure uniformity and
facilitate processing, the research employs the MinMax stan-
dardization method to process the cleaned data. To assess the
performance and generalization capacity of the model, the
data set is divided into three distinct subsets: a training set,
a validation set and a test set. Secondly, in constructing the
predictionmodel of tunneling velocity for SMs, the stratum of
the tunneling section that is most closely related to tunneling
velocity is selected as the input parameter. Subsequently,
two deep learning models, ResNet and LSTM, are integrated
to construct the prediction model. The residual structure of
ResNet enables the model to learn deeper feature represen-
tations, while LSTM is well-suited to processing time series
data and capturing the temporal dynamics of the tunneling
speed of the SM. Subsequently, the Res-LSTM model is
trained on the training set, and the hyper-parameters of the
model are adjusted on the verification set to achieve the
optimal prediction performance. Subsequently, the XGBoost
algorithm is employed to examine the distinctive character-
istics of various grades of rocks. XGBoost is an efficient
gradient lifting DT algorithm that is capable of automatically
identifying correlations between features and eliminating
redundant features, thereby enhancing the predictive power
of the model. By comparing the prediction results of different
input parameters, an optimal surrounding rock classification
model can be constructed. Finally, the prediction model for
SM driving speed and the prediction model for underground
rock and soil grade are integrated. The combination method
enables the model to consider the influence of geological
information and engineering parameters on the driving speed
of the SM simultaneously, thereby enhancing the accuracy
and reliability of the prediction. The basic structure of the
DS prediction model for down-hole SM based on improved
ResNet constructed by the study is shown in Figure 6.
As shown in Figure 6, the basic architecture of the study

to construct a ResNet -LSTM DS prediction model for
down-hole SM combines the characteristics of ResNet and
LSTM. In the data input layer, the study inputs the geological
information, engineering parameters, and other features of
down-hole SM to form a temporal data sequence. In the
ResNet module, the study uses the ResNet module to process
the spatio-temporal features. The residual structure of ResNet
helps to train the deep network and facilitates the capture
of complex nonlinear relationships. Subsequently, the study
introduces an LSTM layer on top of the ResNet output to
better capture temporal dependencies. The LSTM module
can effectively learn and memorize long-term dependencies
in temporal data, which is suitable for dealing with DS with
temporal features in down-hole SM. Finally, the output layer
is used to predict the DS of down-hole SM. In addition,
to verify the validity of the DS predictionmodel of down-hole
SMconstructed by the study, the study also uses the confusion
matrix as an evaluation tool. A two-dimensional table called

FIGURE 6. Basic structure of the prediction model of underground shield
tunneling speed based on improved ResNet.

FIGURE 7. The confusion matrix.

a confusion matrix is used to compare the discrepancies
between real data and model projections. False positive (FP),
false negative (FN), true positive (TP), and true negative (TN)
are these. In Figure 7, the confusion matrix is displayed.

The confusion matrix makes it possible for the study to
evaluate the model’s performance in all respects, including
prediction accuracy, performance in the event of positive and
negative category imbalance, and information on categoriza-
tion mistake.

IV. EMPIRICAL ANALYSIS OF DIGGING SPEED
PREDICTION MODEL FOR DOWN-HOLE SHIELD MACHINE
BASED ON IMPROVED RESNET
Thework conducts performance comparison experiments and
empirical assessments of the proposed SRT prediction model,
the enhanced ResNet algorithm, and the DS prediction model
for down-hole SM based on the improved ResNet, respec-
tively, to confirm their efficacy.

A. VALIDATION OF THE EFFECTIVENESS OF THE XGBOOST
SURROUNDING ROCK TYPE PREDICTION MODEL
The study verifies the effectiveness of the proposed XGBoost
SRT prediction model through performance comparison
experiments with a validation set taken from the Kaggle fen-
estration dataset. The convolutional neural network (CNN)
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FIGURE 8. Accuracy and precision of the comparison results of each
comparison model.

based SRT prediction models, the faster region-based convo-
lutional neural network (Faster RCNN), and the you only look
once (YOLO) model are the comparative models. The perfor-
mance comparisonmetrics are accuracy, precision recall (PR)
curve, F1 value, precision, error value and loss function value.
The experimental environment is Matlab. Figure 8 displays
the accuracy and precision comparison outcomes for each
comparison model.

Figure 8 shows the accuracy and PR curves for each com-
parative model. Figure 8(a) shows the accuracy curves for
each comparison model. Figure 8(a) shows how each com-
parison model’s accuracy rises with the number of iterations.
The study’s suggested XGBoost SRT prediction model has
an accuracy curve that is generally greater than the other
models’, with an average accuracy of 87.4%. The PR curve
of the research-proposed XGBoost SRT prediction model,
shown in Figure 8(b), has the biggest area under the line
(0.78) compared to the other models. When the findings
are summed up, it is evident that the research’s suggested
XGBoost SRT prediction model performs better in terms of
accuracy. Figure 9 shows the results of F1 value and accuracy
comparison for each comparison model.

The comparative findings of the F1 values for each SRT
prediction model are displayed in Figure 9(a). With an F1
value of 0.86—which is 0.08 higher than the YOLO SRT

FIGURE 9. The F1 value and accuracy comparison results of each
comparison model.

prediction model—the study-proposed XGBoost SRT pre-
diction model is overall superior to the other examined
algorithms in Figure 9(a). The accuracy of the suggested
XGBoost SRT prediction model is 0.04 higher than the
YOLO SRT prediction model and 0.84 higher than that
of other comparison algorithms, as shown in Figure 9(b).
In conclusion, it is evident that the suggested XGBoost
SRT prediction model outperforms the other SRT prediction
models in terms of prediction performance and has use in
real-world scenarios. Figure 10 displays the comparison out-
comes of the error values and loss function values for every
comparison model.

Figure 10(a) shows the comparative results of the error val-
ues of the comparison models. In Figure 10(a), the suggested
XGBoost SRT prediction model has an error value curve that
is lower overall than the other comparison models, and its
average error is lower than the other SRT prediction models
at 12.6%. Additionally, this model has greater stability and
a lesser fluctuation amplitude of its error curve than the
other comparative models. The results of comparing the loss
function values of the comparison models are displayed in
Figure 10(b). Each model’s loss function value reduces as the
number of iterations increases until it stabilizes. Nonetheless,
the suggested XGBoost SRT prediction model’s loss function
value, which is 0.2, is generally less than that of the other
comparison models. The suggested XGBoost SRT prediction
model outperforms the other models in terms of stability and
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FIGURE 10. Comparison results of the target extraction error value and
the loss function value of each comparison model.

dependability, as can be observed from the summary of the
preceding data.

B. VALIDATION OF THE EFFECTIVENESS OF THE
MODIFIED RESNET ALGORITHM INCORPORATING LSTM
The study performs performance comparison experiments on
the UCI dataset as a validation set to verify the efficacy
of the Res-LSTM algorithm presented in the study. The
comparison algorithms are residual networks-convolutional
neural network (Res-CNN) and residual networks-recurrent
neural network (Res-RNN). The performance comparison
metrics are error value, root-mean-square error (RMSE) and
mean absolute error (MAE) and coefficient of determina-
tion (R2). Matlab serves as the experimental environment.
Figure 11 displays the outcomes of comparing each compar-
ison algorithm’s anticipated and actual values.

Each comparison algorithm in the training set is shown
with its error comparison results in Figure 11(a). The
Res-LSTM algorithm developed by the study has a higher
prediction value and a maximum deviation error value of
4.6 mm/min, which is better than the other comparison algo-
rithms. The error comparison outcomes for every comparison

FIGURE 11. Comparison results of the predicted value and the actual
value of each comparison algorithm.

algorithm in the test set are displayed in Figure 11(b).
This figure illustrates how the highest deviation error value
of the Res-LSTM algorithm, which is built for the study,
is 2.2 mm/min, indicating higher prediction performance, and
how its forecast value matches the real value more closely
than the predicted values of the other comparison algorithms.
Figure 12 displays the comparison results of the R2, MAE,
and RMSE values for each comparison algorithm.

Figure 12 (a) shows the prediction error results of Res-
CNN, where RMSE value of Res-CNN algorithm is 2.052,
MAE is 0.857, and R2 is 0.959. RMSE is a standard measure
of the discrepancy between the predicted value and the actual
observed value. It is calculated by taking the mean square
root of the square of the predicted value and the actual value,
thereby giving greater weight to large errors. MAE is the
mean of the absolute values of the deviations between all
individual observations and the true value. In contrast to
RMSE, MAE assigns equal weight to all errors, irrespective
of their magnitude. R2 is the coefficient of determination for
regression analysis and is employed to quantify the degree to
which the model fits the data. The closer the value is to 1,
the closer the predicted value of the model is to the observed
value. Figure 12 (b) presents the results of the prediction
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FIGURE 12. Comparison results of the prediction error of each
comparison algorithm.

error for Res-RNN, with an RMSE value of 2.013, which
is slightly lower than that of Res-CNN. This indicates that
the deviation of the predicted value of Res-RNN is slightly
smaller than the actual observed value overall. Concurrently,
the MAE of Res-RNN is 0.770, which is also lower than
that of Res-CNN, indicating a smaller average absolute error.
The R2 value increased to 0.961, indicating that Res-RNN

FIGURE 13. Comparison of the ROC curves and F1 values of each model.

exhibited a slight improvement in the degree of fit between
the data and the model. Figure 12 (c) shows the prediction
error results of Res-LSTM. Among the three algorithms, Res-
LSTM has the lowest RMSE value (1.835), indicating that its
prediction results exhibit the least deviation from the actual
value. In a similar manner, its MAE value is also the lowest
(0.717), indicating the most accurate average accuracy. The
R2 value is the highest (0.971), indicating that the model has a
high degree of fit to the data. In conclusion, the comparative
analysis of RMSE, MAE, and R2 indicates that Res-LSTM
exhibits the most optimal predictive performance.

C. EMPIRICAL ANALYSIS OF DIGGING SPEED
PREDICTION MODEL FOR DOWN-HOLE SHIELD MACHINE
BASED ON RES-LSTM
To validate the performance of the DS prediction model for
down-hole SM based on Res-LSTM, the study conducted a
performance comparison test with the DS prediction model
for down-hole SM based on Res-RNN, Res-CNN and tra-
ditional ResNet. The performance evaluation indexes are
receiver operating characteristic curve (curve), F1 value,
error, reaction time, RMSE and MAE. The dataset used
is the constructed shield tunneling dataset. The experimen-
tal environment is Windows 10 and MATLAB platform.
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FIGURE 14. Accuracy and operation time of each model.

TABLE 1. RMSE, MAE and R2 values of each comparison model.

Figure 13 displays the ROC curves and F1 values for each
model.

The ROC curves for the DS prediction models for each
down-hole SM are displayed in Figure 13(a). The larger
area under the ROC curve line of 0.74 for the recommended
Res-LSTM DS prediction model for down-hole SM indi-
cates that it has a stronger prediction effect than the other
models. Figure 13(b) shows the F1 values of the DS pre-
diction model for each down-hole SM. The F1 value of the
proposed Res-LSTMDS prediction model for down-hole SM
is 0.35, which is higher than that of the other m-models,
indicating a better prediction performance for DS of down-
hole SM. In conclusion, the findings demonstrate that the
suggested Res-LSTM DS prediction model performs better
for down-hole SM than alternative models. The accuracy
and fault response time of each DS prediction model for
down-hole SM are shown in Figure 14.
With a prediction accuracy of 84.6%, the DS prediction

model suggested in the study for Res-LSTM down-hole SM
outperforms the other comparison models by a wide margin,
as seen in Figure 14. Furthermore, the model’s response
time of 2.8 s is noticeably faster than that of the other com-
parative models. In Summary, the DS prediction model of
Res-LSTM for down-hole SM has higher accuracy and lower
reaction time than the other models, and the model has high

reliability and efficiency in DS prediction for down-hole SM.
Table 1 displays the comparative findings of the R2, MAE,
and RMSE values for each comparison model.

Table 1 illustrates that the DS prediction model of Res-
LSTM down-hole SM built by the study has a lower MAE
of 0.736 and a lower RMSE value of 1.972 in the training
set than the other comparison models and its R2 is 0.967,
which is significantly higher than the comparison model.
In the test set, the RMSE value of the DS prediction model
of Res-LSTM down-hole SM constructed by the study is
1.847, and the MAE is 0.702, which is smaller than the
other comparison models and the R2 is 0.942, which is
significantly better than the comparison model. In conclu-
sion, the findings demonstrate the superior performance and
usefulness of the Res-LSTM down-hole SM DS prediction
model developed by the research over previous comparative
models.

V. CONCLUSION
The integration of the enhanced residual network of LSTM
and ResNet, in conjunction with the XGBoost SRT prediction
model, has led to a notable enhancement in the accuracy and
efficacy of DS prediction for underground ore bodies. Fur-
thermore, this integration has facilitated the advancement of
the digitization process of coal mine production. In this study,
LSTM and ResNet are integrated in order to enhance the
residual network. The advantage of this method is that LSTM
is well-suited to processing sequence data and capturing
long-term dependencies in time series. The ResNet architec-
ture effectively addresses the issue of gradient disappearance
and model degradation in deep neural networks by incor-
porating residual learning. The combination of LSTM and
ResNet has the potential to not only capture long-term depen-
dencies in time series data, but also to enhance the depth of
the network through residual learning, thereby improving the
accuracy of prediction. This integrated method demonstrates
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robust feature extraction and prediction capabilities when
confronted with intricate and nonlinear underground ore
body data. The adaptive learning of the deep learning model
enables the extraction of useful information from a large
amount of data in a more effective manner, thereby providing
substantial support for the safety and efficiency of coal mine
production. Through comparison experiments, it is found
that the ROC curve area under the hybrid algorithm is 0.74,
F1 value is 0.35, and the accuracy is as high as 84.6%,
which is significantly better than other comparison mod-
els, and its maximum deviation error, RMSE and MAE are
4.6mm/min, 1.835 and 0.717, respectively. Furthermore, the
enhanced algorithm was integrated with the XGBoost SRT
prediction model, which is a highly efficient gradient lifting
DT algorithm with exceptional predictive performance and
computational efficiency. The study integrated deep learn-
ing models to leverage XGBoost’s proficiency in handling
structured data and deep learning’s aptitude for navigating
intricate nonlinear relationships. This combination enabled
the model to accommodate both traditional statistical char-
acteristics and to discern intricate patterns within the data.
Through empirical analysis, it is found that the RMSE value
of this model is 1.847, MAE is 0.702, which is smaller
than other comparison models, and the R2 value of 0.942 is
also superior to that of the comparison model, thereby sub-
stantiating the efficacy and applicability of the model in
question. However, this study also has some limitations.
It only discusses the prediction of excavation speed with the
input characteristics of the model as excavation parameters,
but does not carry out sensitivity analysis of engineering
geological parameters. The future research direction is to
combine geological parameters and shield driving parameters
to predict the driving speed of the SM and predict the driving
speed of the shield.
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