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ABSTRACT This study presents a comprehensive framework for analyzing Parkinson’s disease (PD)
progression and optimizing medication recommendations based on multimodal data integration and
reinforcement learning (RL) techniques. The research framework integrates diverse biomarkers from
structured clinical assessments, imaging data, and biospecimen information, creating various single,
bimodal, and trimodal datasets. Deep learning-based embedding networks are employed to transform
high-dimensional data into lower-dimensional representations, capturing essential patterns related to
PD progression. The learned representations are evaluated using visualization methods and predictive
modeling to differentiate clinically relevant outcomes. Subsequently, medication recommendation models
are developed based on the learned representations, assisting clinicians in making informed decisions to
manage PD progression effectively. Optimal medication policies are derived considering different modality
settings, revealing insights into medication prescribing tendencies across modalities. The findings highlight
the significance of integrating diverse data modalities in understanding and managing PD progression,
showcasing the potential of RL-basedmedication recommendation systems in clinical decision-making. This
research contributes to the advancement of personalized medicine strategies for PD patients, emphasizing
the importance of tailored medication regimes based on multimodal data insights.

INDEX TERMS Reinforcement learning, Parkinson’s disease, representation learning, multimodal data,
medication recommendation, personalized medicine.

I. INTRODUCTION
Parkinson’s disease (PD) is a chronic neurological disorder
characterized by impaired function of dopamine-producing
cells in the central nervous system, leading to a gradual
decline in the ability to control movement [1]. The primary
symptoms of PD include progressive bradykinesia, rigidity,
rest tremor, and postural instability, which significantly
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hinder activities of daily living such as walking and
communication. Due to the absence of specific diagnostic
tests for PD, diagnosis typically relies on the comprehensive
assessment of various clinical criteria, encompassing motor
symptoms, response to medication, speech, imaging, and
others [2]. PD may present with a diverse array of symptoms,
typically becoming apparent upon the loss of 60 to 80%
of dopamine-producing cells. Currently, there exists no
definitive cure for PD, with treatment primarily focusing
on symptom alleviation. The severity and progression
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of symptoms vary among individuals, emphasizing the
importance of early detection and personalized therapeutic
approaches for effective management.

Previous studies have explored machine learning and deep
learning approaches to enhance PD diagnosis and prediction.
Given the diverse clinical criteria in PD diagnosis, diagnostic
methodologies leveraging various data modalities have been
suggested [3], [4], [5], [6], [7], [8], [9], [10]. Diminished
motor abilities being a primary PD symptom, motor assess-
ment scores and movement data are crucial for diagnosis.
Shahid and Singh [6] predicted PD progression using
Motor-Unified Parkinson’s Disease Rating Scale (UPDRS)
[11] and Total-UPDRS scores with a principal component
analysis-based deep neural network model, outperforming
previous studies by accurately capturing feature space non-
linearity, and El Maachi et al. [8] predicted PD diagnosis and
severity using a deep learning-based gait analysis algorithm.
Speech impairment is also a prevalent symptom in PD, and
utilizing speech signals has enabled early diagnosis and
prediction of disease severity. Grover et al. [3] proposed a
deep neural network for predicting PD severity using the
Parkinson’s Telemonitoring Voice Data Set. Sadek et al. [4]
suggested a method using artificial neural network models
with voice recording data to aid PD identification. Senturk [5]
proposed a feature selection method combining machine
learning algorithms with voice data for PD identification.
Furthermore, image data such as Neuromelanin-Sensitive
Magnetic Resonance Imaging Diffusion Tensor Imaging
(NMS-MRI) provides insights into dopamine cell loss and is
utilized in PD identification where Shinde et al. [9] proposed
a convolutional neural network-based PD prediction frame-
work using NMS-MRI.

Recently, a novel approach utilizing machine learning and
deep learning methods to integrate previously individually
analyzed data modalities has been proposed. By com-
bining diverse data types including non-motor features,
cerebrospinal fluid measurements, and dopamine imaging
markers, methodology has shown promise in facilitating early
diagnosis of PD.Makarious et al. [10] proposed a multimodal
prediction model utilizing genetics, clinico-demographic,
and transcriptomics features. This model demonstrated supe-
riority over single-data-focused approaches by leveraging the
fusion of machine learning with multimodal data.

Given that PD is a complex disorder characterized
by heterogeneity in clinical presentation, progression rate,
and risk of complications, data-driven approaches have
explored the existence of different PD subtypes, which could
have implications for understanding disease etiology [12].
Defining and categorizing subtypes through diverse cluster
analyses enabled early prediction and the provision of
interventions specifically tailored to each subtype [13],
[14], [15], [16], [17]. Previous research has delineated PD
subtypes by employing data-driven cluster analyses encom-
passing both motor and non-motor characteristics. These
methodologies provide a comprehensive understanding of the

clinical and pathophysiological clustering within PD, thereby
facilitating the development of personalized therapeutic
strategies tailored to the specific conditions of individual
patients.

The predominant pharmacological interventions in PD
management involve the administration of medications,
notably levodopa [18] and carbidopa, aimed at modulat-
ing dopamine levels to alleviate symptoms. Additionally,
adjunctive pharmacotherapies such as anticholinergics and
monoamine oxidase-B (MAO-B) inhibitors are utilized for
symptom management [19]. However, it should be noted
that prolonged medication use may lead to adverse effects
such as dyskinesia and the wearing-off phenomenon. Given
that medication administration may not consistently yield
favorable outcomes, it becomes imperative to devise an
optimal medication delivery strategy that carefully takes into
consideration a spectrum of patient conditions.

In recent years, reinforcement learning (RL) has gained
prominence in the medical field as a method for discovering
optimal treatment policies [20], [21], [22], [23], [24], [25].
RL is a subfield of machine learning, where an agent interacts
with an environment to learn the optimal actions to take,
making it particularly suitable for problems where sequential
decision-making is involved. A notable trend in RL research
is the representation of states as latent vectors [23], [24], [25].
This approach involves transforming high-dimensional input
data into lower-dimensional representations, often referred
to as latent spaces. By doing so, the complexity of the data
is reduced, making it more amenable to learning by RL
algorithms. This strategy has been increasingly favored over
directly using high-dimensional data due to its ability to
capture complex patterns and relationships more efficiently.
However, previous studies have often underutilized the
potential of high-dimensional data and have typically focused
on a subset of variables or single modality, limiting the
comprehensiveness of their analyses.

Prior research in RL for optimizing PD drug management
has been proposed, albeit not as extensively pursued as
studies focused on early prediction. Of the few studies,
Watts et al. [26] introduced a framework aimed at optimizing
personalized medication regimens for PD, with a focus on
two primary symptoms continuously monitored using data
from wearable sensors: bradykinesia and dyskinesia. Their
approach enhanced clinical practice by leveraging deep rein-
forcement learning (DRL) algorithms to determine optimal
drug dosages and administration timings. Baucum et al. [27]
developed a data-driven RL framework for optimizing PD
medication therapy using wearable sensors, constructing
simulation models to understand how individual patient’s
motor symptoms respond to medication administration.
However, there were limitations, including a relatively small
sample size and a lack of consideration for patient subtypes.
The primary focus of these studies revolved around the
analysis of data obtained from wearable sensors, thereby
constraining their capacity to incorporate extensive patient

74252 VOLUME 12, 2024



H. Kim et al.: Multimodal RL for Embedding Networks and Medication Recommendation in PD

state information. Despite the success in early prediction
tasks within the PD domain, RL’s potential in optimizing
medication delivery strategies remains underexplored, high-
lighting the need for more comprehensive methodologies.

In parallel, efforts have been made to predict optimal
medication dosages, as demonstrated by Riasi et al. [28]
and Gutowski et al. [29]. Riasi et al. [28] conducted a
study using Long Short-Term Memory (LSTM) and Gated
Recurrent Unit (GRU) architectures to optimize the dosages
of key treatments, including levodopa. Gutowski et al. [29]
optimized drug scheduling using biomedical sensor data,
which increased treatment precision by about 7%. While
these studies have contributed valuable insights, they are
often limited by their reliance on single-modality data, which
may not capture the full complexity of PD progression.
Moreover, Kim et al. [30] leveraged single modal data
from the Parkinson’s Progression Markers Initiative database
to determine the effective medication combinations for
managing the disease state. They employed policy iteration
of the Markov decision process (MDP) to accomplish this
task. However, patient state was defined according to simple
clinical guidelines and thus was not able to capture the
complex relationships among the visit or the temporal
dependencies and sequential patterns in the data. Moreover,
potential adverse effects of medication were not considered
as well.

To address these limitations and advance the field of PD
medication management, our study takes a comprehensive
and multimodal approach. We analyze a wide range of
data modalities, including structured clinical assessments,
imaging data, and biospecimen information, to identify com-
binations that best reflect disease progression and treatment
response. Specifically, given that longitudinal health records
of PD patients are high-dimensional with numerous variables
collected across diverse modalities, we explore various
embedding methods that best represent complex patient
health states. The learned latent representations of the patient
health state are further utilized to develop a medication
recommendation model where RL is used to derive optimal
medication policies. Our goal is to compare the optimal
medication policies across multiple modalities and provide
insights into modality differences. Consequently, we aim
to contribute to the advancement of personalized medicine
strategies for PD patients, emphasizing the importance
of tailored medication regimes based on multimodal data
insights.

Of particular relevance to our study, Bhattarai et al.
explored optimal treatment regimens for Alzheimer’s disease
(AD), a neurodegenerative disorder sharing similarities with
PD [31]. Their study involved gathering diverse structured
indicators and employing RL to propose a framework for
automated decision support systems in AD treatment. This
research resonates with our own investigation, as both studies
aim to leverage advanced computational techniques, such as
reinforcement learning, to optimize treatment strategies for
neurodegenerative diseases. However, a key difference lies

in the RL model state representation, where Bhattarai et al.
derived the states using a decision tree algorithm solely based
on data from the patient’s latest clinic visit. This resulted in
13 discrete states which is not capable in capturing temporal
dependencies among the visits and lacks in providing a
diverse and nuanced understanding of patient conditions.

Our work contributes to the field in several key ways.
First, we developed a comprehensive framework integrating
diverse biomarkers from structured clinical assessments,
imaging data, and biospecimen information, providing a com-
prehensive view of PD progression and treatment response.
Second, we employed advanced embedding techniques to
transform high-dimensional data into lower-dimensional
representations, facilitating the identification of clinically
relevant patterns and trends. Third, we developed medication
recommendation models based on the learned representa-
tions. These models assisted clinicians in making informed
decisions to manage PD progression effectively, thus con-
tributing to the advancement of personalized medicine
strategies for PD patients. By comparing optimal medication
policies across multiple modalities, our study offers insights
into the relative effectiveness of different treatment strategies
and highlights the importance of personalized medicine in
PD management. Ultimately, our research aims to improve
the quality of care for PD patients by leveraging multimodal
data insights to optimize medication regimens and enhance
treatment outcomes.

II. MATERIALS AND METHODS
Figure 1 illustrates the overall research framework where var-
ious biomarkers collected from diverse modalities including
structured clinical assessments (STR), imaging data (IMG),
and biospecimen (BIO) information were utilized. Upon
necessary data preprocessing, different types of datasets were
created based on the varying combination of the modalities,
consisting of 3 single modal (BIO, IMG, STR), 3 bimodal
(BIO+IMG, BIO+STR, IMG+STR), and 1 trimodal (ALL;
BIO+IMG+STR) datasets. To effectively integrate heteroge-
neous data modalities, embedding networks were utilized to
transform high-dimensional data into lower-dimensional rep-
resentations that capture important patterns and relationships.
The learned latent representations in the lower-dimensional
space can serve as state representations of the observed data
as they encode relevant information about PD progression,
such as disease severity and symptom manifestations. The
embedded states of various modality datasets were evaluated
using visualization methods and comparing the predictive
ability of the latent states in differentiating a clinically
relevant outcome metric of PD. Once the suitable latent
representations for each data modality have been selected,
the state representations were subsequently used to develop
medication recommendation models. By predicting future
disease states based on the learned representations, our
framework can assist clinicians in making informed decisions
about medication regimes, such as adjusting medication
dosage or recommending different types of drugs to slow
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FIGURE 1. Multimodal data integration and embedding framework for Parkinson’s disease progression
analysis and medication recommendations.

disease progression or minimize the occurrence of adverse
events. Furthermore, the optimal medication policies derived
under varying modality datasets can provide insights into
modality differences.

A. DATA DESCRIPTION
This study utilized data from the Parkinson’s Progression
Markers Initiative (PPMI) [32], an international multicenter
observational study aimed at enhancing the understanding of
PD by collecting a diverse array of potential biomarkers. The
collected biomarkers encompass patient demographics, clin-
ical assessments, imaging data, and biospecimens indicative
of PD progression. The study collects and utilizes information
from these diverse modalities to improve understanding and

prediction of PD progression (see Table 1). To investigate the
relationship between medication usage and PD progression,
our analysis concentrated on individuals with early-stage
PD who possessed extensive visit records suitable for lon-
gitudinal examination. The inclusion criteria for participants
consisted of: (1) an initial Hoehn and Yahr stage of 2 or
lower, (2) a history of more than 5 years of follow-up visits,
and (3) complete documentation for all relevant features.
As a result, a cohort of 594 patients, comprising a total of
8,610 visit records spanning from 2010 to 2023, was chosen
for this study.

• Structural modalities (STR) consist of motor and non-
motor assessments [33], including medical history
evaluations designed to capture various manifestations
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TABLE 1. Detailed feature information for each modality where the numbers in parentheses refer to the number of included features within the category.
UPDRS(Unified Parkinson’s Disease Rating Scale), DTI MRI(Diffusion Tensor Imaging Magnetic Resonance Imaging), HVLT(Hopkins Verbal Learning Test),
BJLO(Benton Judgment of Line Orientation), SDMT(Symbol Digit Modalities Test), MSF(Modified Semantic Fluency ), MOCA(Montreal Cognitive
Assessment), LNS(Letter Number Sequencing test), MCI(Mild Cognitive Impairment ), GDS(Geriatric Depression Scale), STAI(State-Trait Anxiety Inventory),
QUIP(Questionnaire for Impulsive-Compulsive Disorders in Parkinson’s Disease), HnY(Hoehn & Yahr (HnY) Stage), MSEADLG(Schwab and England ADL
scale), ESS(Epworth Sleepiness Scale), SCOPA-AUT(The Scale for Outcomes in Parkinson’s disease for Au-tonomic symtoms), RBD(Rapid Eye Movement
Sleep Behavior Disorder), CAUD(Caudate nucleus test), PUT(Putamen Test).

of PD in patients. Changes in drug history are con-
sidered biomarkers that can detect changes in patients’
conditions. Particularly, the AESEVER (Adverse Event
Severity) serves as an indicator for the severity of side
effects experienced by patients. A score of 1 signi-
fies mild severity, with symptoms including rash and
lightheadedness, while a score of 2 indicates moderate
severity, accompanied by symptoms such as back pain
and migraine. Lastly, a score of 3 denotes severe cases,
encompassing symptoms like syncope, convulsions, and
sciatica.

• Imaging modalities (IMG), such as Single Photon Emis-
sion Computed Tomography (SPECT) with DatScan,
were employed to assess dopamine transporter (DAT)
functionality in the brain, which is crucial for the
diagnosis and study of PD [34]. Additionally, Magnetic
Resonance Imaging Diffusion Tensor Imaging (MRI
DTI) was used to evaluate cerebral activity, further
enhancing the diagnostic capabilities in clinical trials.
SPECT imaging, as per the PPMI imaging protocol,
was acquired at designated PPMI imaging centers
and then forwarded to the imaging core lab at the
Institute for Neurodegenerative Disorders (IND) for
visual interpretation. The procedure for reviewing all
SPECT images for dopamine transporter deficit is
meticulously outlined in [35], ensuring standardized and
accurate assessments.

• Biospecimen modalities (BIO) utilized in PD research
include blood, urine, and cerebrospinal fluid (CSF)
samples [36]. These samples are particularly crucial
for collecting longitudinal data on PD, with CSF and
urine being vital for tracking the progression of the
disease. Blood samples were further categorized into
plasma and serum components, each offering unique
insights into the physiological status and biomarker
profiles indicative of PD progression. In the analysis
of proteomics data, CSF from both PD patients and
healthy individuals was examined using the SOMAscan

platform [37]. This involves comprehensive quality
control steps to exclude outliers, calibrators, buffers, and
non-human SOMAmers. The processing steps include
hybridization normalization, scaling by plate, median
normalization within each plate, followed by calibration
at SomaLogic. Additionally, the data undergoes log2
transformation, inter-plate median normalization, and
batch correction at the plate level, ensuring the accuracy
and reliability of the data for further study.

Given the diverse range of biomarkers used in diag-
nosing PD, there is a need for a single measure to
represent the overall severity of the condition. In addition
to the features obtained from the three modalities, General
Composite Outcome (GCO) was computed to assess the
overall severity of PD and categorize disease severity into
five levels based on quintile cutoff values. By utilizing
the most critical manifestations, the GCO allows for a
broad assessment of clinically relevant outcomes rather than
relying on a potentially biased single outcome. Specif-
ically, the derivation of GCO utilized Motor Symptoms
(UPDRS-II, IV), Motor Signs (UPDRS-III), Cognition
(MCI), and Non-motor Manifestations (GDS). GCO metric
allowed for a more accurate assessment of the patient’s
condition in subsequent analyses, where a higher value
indicates greater severity.

B. STATE EMBEDDING
Learning the latent representations of health state via
embedding would be particularly useful in understanding PD
for several reasons. The PPMI dataset is high-dimensional,
with numerous variables collected from each patient across
diverse modalities. By transforming the high-dimensional
data into lower-dimensional embeddings, latent variables
driving PD progression can be revealed. Furthermore, embed-
ding methods provide a unified framework for integrating
heterogeneous data modalities into a common representation
space, allowing for joint analysis and interpretation of
different types of data. For example, embedding could
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capture relationships between clinical assessments, imaging
findings, and biomarker levels, facilitating a comprehensive
understanding of PD progression. In particular, as PD
is a progressive neurodegenerative disorder characterized
by changes in symptoms and disease severity over time,
embedding methods based on deep learning models capable
of capturing temporal dynamics could be helpful in modeling
the sequential nature of PD progression. In this study,
two types of embedding networks were introduced, the
Autoencoder (AE) and the Approximate Information State
(AIS), where the embedding results on different modalities
were compared.

1) AUTOENCODER
An Autoencoder (AE) [38] is an unsupervised learning
model that compresses high-dimensional data features into a
lower-dimensional latent representation. This model consists
of two parts: an encoder and a decoder. The encoder
transforms the input data Ot into the latent space, producing
a latent representation St . The decoder then reconstructs the
data back into its original form from this space. Through this
structure, the AE aims to effectively preserve the important
information of the original data in the latent space while
minimizing reconstruction loss. In this process, the AE can
learn non-linear relationships and complex patterns, allowing
a deeper understanding of the intrinsic characteristics of
the data. An illustration of the AE structure is shown in
Figure 2-(a).
Compared to conventional representation learning meth-

ods such as Principal Component Analysis (PCA) and
Multi-Dimensional Scaling (MDS), which primarily rely on
linear techniques, the AE operates differently. PCA andMDS
identify directions or maximum variance in the data, with
PCA aiming to preserve data variance through principal
components and MDS preserving object distances in lower-
dimensional space. While effective for linear relationships,
these methods are limited in capturing non-linear data
structures. In constrast, the AE employs non-linear activation
functions, enabling it to capture non-linear characteristics
present in data. This flexibility enables the AE to effectively
represent complex and abstract data structures that PCA and
MDSmaymiss. Consequently, the AE can adapt more readily
across variousmodalities of data, making it a versatile tool for
representation learning.

2) APPROXIMATE INFORMATION STATE
The Approximate Information State (AIS) [39] is a state
estimation technique that enhances effective decision-making
in complex reinforcement learning environments. This con-
cept plays a crucial role particularly in Partially Observable
Markov Decision Processes (POMDPs), where not all
state information is directly accessible to the observer.
In POMDPs, agents must infer the current state based solely
on the history of observations and actions.

AIS provides a structure that helps agents make more
accurate state estimations in such environments. This system

FIGURE 2. Structural architecture of Autoencoder (left) and Approximate
Information State (right). Ot , At , St notations represent observation,
action, state at time t , respectively, and hi represent the i-th hidden
layers.

uses a neural network comprising an encoder and a decoder
to approximate the state. The encoder receives current
observations Ot and previous actions At−1 as input and
estimates the current state, typically utilizing recurrent neural
network structures like GRU or LSTM. These structures
capture the dependencies in data over time, effectively
incorporating past information into current decisions. Also,
decoder uses the state estimated by the encoder St along with
the current action At to predict observations at the next time
pointOt+1. Through this process, AIS reduces the uncertainty
of the current state and enables the agent to more accurately
predict future conditions. An illustration of the AIS structure
is shown in Figure 2-(b).

The operational efficiency of the AIS in POMDP
environments is further underscored by its adherence to
the Markov property and its function as a sufficient
statistic, integral aspects for the RL models it supports.
The Markov property is exemplified in the AIS model
through the encoder’s capacity to absorb and integrate
current observations Ot and previous actions At−1 into a
comprehensive state representation St . This encapsulation
ensures that all necessary information for making future state
predictions and decisions is self-contained, eliminating the
need for external historical data references. Simultaneously,
the AIS’s ability to serve as a sufficient statistic is realized
through its compression of all pertinent environmental and
historical data into a concise state estimate that fully
represents the decision-relevant information. This efficient
data synthesis allows the neural network to base decisions
on a distilled and actionable dataset, thus enhancing the
overall strategic efficacy of the agent operating within a
POMDP framework. Through these properties, the AIS
not only streamlines complex decision-making processes
but also optimizes the action selection in environments
characterized by uncertainty and partial observability. Thus,
AIS not only captures the sequential connections between
observations within a dynamic programming context but also
incorporates the actions executed, positioning it as a more
apt approach for RL settings than conventional representation
techniques.
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3) EVALUATION OF EMBEDDING METHODS
AE and AIS were employed to select an appropriate embed-
ding method for each multimodal dataset. The search for
optimal hyperparameters was conducted using Optuna [40],
which efficiently finds the optimal settings. To compare the
embedding methods, performance metrics specific to the
method were utilized to compare AE and AIS embeddings
based on their ability to predict GCO labels using a machine
learning model. The detailed hyperparameter settings for
each modality are shown in Table 7. In addition, the
learned representations were visualized to gain insights into
how well each embedding model has learned meaningful
representations of the data. Effective embeddings will result
in data points with similar characteristics (i.e., same GCO
level) being clustered together in the visualization, indicating
that the model has captured important features of the data in
the embedding space.

C. MULTIMODAL REINFORCEMENT LEARNING
Once the appropriate latent representations for each data
modality have been determined, these state representations
were utilized to construct medication recommendation
models. Leveraging predictions of future disease states
derived from the learned representations, our multimodal RL
model aimed to support clinicians in making well-informed
decisions regarding medication regimens.

1) REINFORCEMENT LEARNING
RL is a machine learning technique focused on teaching
an agent how to interact with its environment and make
sequential decisions. The components of RL consist of states
s, actions a, rewards r , transition probabilities P(s, a, s′),
and discount factors γ . In each step, the agent observes
the current state, selects an action, and the environment
transitions to the next state based on the chosen action and
provides a reward. The primary objective of RL is for the
agent to learn an optimal policy that maximizes its expected
cumulative reward R over time. The set of actions taken
by the agent is referred to as a policy π , and the set of
optimal actions for all states, which leads to the maximum
return, is known as the optimal policy π∗. To learn optimal
policies, RL algorithms use various techniques such as value
iteration, policy iteration, Q-learning, and deep Q-learning.
Of particular, deep Q learning [41] uses deep neural networks
to approximate action value functions Q, allowing agents to
process continuous, high-dimensional state spaces. Hence,
deep Q-learning was utilized in this study to represent the
state using embedding methods.

For multimodal RL, effective representation learning is
particularly crucial as it facilitates better decision-making
by enabling the agent to understand complex relationships
and dependencies present in multimodal datasets. This
understanding allows the agent to make more informed and
context-aware decisions, leading to improved performance
in various tasks. The primary objective of this study was to

develop medication recommendation models using various
modalities of PD biomarkers and compare the optimal
policies to provide insights into modality differences.

2) COMPONENTS OF REINFORCEMENT LEARNING
The key components of the RL-based medication recommen-
dation model were defined as follows:
State: To effectively represent the PD health state,
we employed deep learning-based embedding networks (AE
and AIS) to extract latent representations from the diverse
biomarkers obtained from structured clinical assessments,
imaging data, and biospecimen information. These networks
utilized neural architectures to learn hierarchical features
from the input data, effectively capturing complex rela-
tionships and patterns associated with PD progression. The
learned representations served as compact encodings of the
multimodal data, and were used to represent the state of
the RL model. From both AE and AIS embedding networks,
the latent vector St was extracted and used to represent the
states upon model convergence, which were represented as a
set of continuous vector.
Action: The primary treatment for PD is centered around
medication. Medications play a crucial role in alleviating the
primary symptoms of PD, with various medication options
offering different short- and long-term effects on patients.
In the early stages of the disease, patients typically start
with lower potency medications that offer a milder adverse
effect profile and are administered at lower dosages. As PD
advances, medication regimens are adjusted to achieve opti-
mal symptom management or mitigate medication-related
adverse effects. Among the most commonly prescribed
medications are levodopa, dopamine agonists, and MAO-B
inhibitors. To standardize the comparison of dosage levels
across different types of medications, we employed a metric
called Levodopa Equivalent Daily Dose (LEDD) [42]. LEDD
was computed based on the concept of the levodopa equiva-
lent dose (LED), which represents the dosage of a medication
that produces a similar effect to levodopa. By summing
all the LEDs administered throughout the day, we derived
the total levodopa equivalent dose, denoted as LEDD. This
metric holds particular significance in monitoring changes
in medication policy by observing alterations in LEDD.
In instances where LEDD values were unavailable, they were
estimated using a formula: LEDD = (Levodopa Equivalent
Factor) × (Daily Dose) × (Frequency). If any component
of this calculation was absent, LEDD was approximated by
taking the median of LEDDs associated with medications
sharing similar labels.

As depicted in Table 2, a total of 11 actions have been
devised, taking into account both the medication type and the
LEDD. The actions predominantly consist of prescriptions
for three types of drugs: levodopa, dopamine agonists
[43], and MAO-B inhibitors [44]. All other single drug
prescriptions are considered as ‘Other Medication’, and a
combination of multiple drugs is referred to as ‘Combination’
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TABLE 2. Action categorization based on medication type and dosage
binarization where the cutoff for dosage binarization is set as the third
quartile (Q3) of LEDD distribution for each medication type. L, D, M, O, C ,
N refer to levodopa, dopamine agonists, MAO-B inhibitors, other
medication, and no drug, respectively, and subscript L and H each refer to
low and high dosage.

action. Considering the intensity of drug prescription, each
drug type was categorized into binary actions; ‘Low’
representing low dosage and ‘High’ referring to high dosage.
To determine the cutoff for binarization, we used the third
quartile (Q3) value of the dosage distribution for each specific
drug type. This approach accounts for the diverse effects of
each medication and allows for a clear distinction between
low and high dosages. Lastly, the action of prescribing no
drug was represented as a single action ‘No Drug’.
Reward: In formulating the reward function R, we focused on
the key metric GCO by penalizing high GCO values of 4 or
5 which indicates severe patient conditions. The occurrence
of adverse events was also penalized by considering varying
AESEVER severity criteria of 1, 2, or 3. Thus, indicator
functions for GCO and AESEVER were introduced in the
reward function. 1{GCO≥λGCO} equals 1 if the GCO value
is greater than or equal to a predefined threshold λGCO.
Similarly, 1{AESEVER≥λAESEVER} equals 1 if the AESEVER
value is greater than or equal to a predefined threshold
λAESEVER. By combining these components, the reward
function penalizes highGCOvalues (indicating severe patient
conditions) and adverse events, where the thresholds λGCO
and λAESEVER determine the severity levels at which penalties
are applied. Additionally, we introduced parameter α to
assess the impact of AESEVER relative to GCO in reward
formulation, assuming 0 ≤ α ≤ 1 since GCO was our
main patient outcome target. As the choice of α is arbitrary,
we sought to derive the best α setting by experimenting with
varying α values within the range of 0 to 1 in increments
of 0.1.

R = −1{GCO≥λGCO} − α · 1{AESEVER≥λAESEVER},

λGCO ∈ {4, 5}, λAESEVER ∈ {1, 2, 3}.

3) EVALUATION OF REINFORCEMENT LEARNING MODEL
The optimal hyperparameter settings for RL training were
selected using Optuna where we conducted a comprehensive
search for six key hyperparameters of the DQN: Batch Size,
Hidden Layer Size, Loss Function, Learning Rate, Learning
Decay, and Learning Step. Additionally, the optimal reward
setting was determined through hyperparameter searching as

well, including the parameters α, λGCO, and λAESEVER (see
Table 7).

Assessment of RL model results involves evaluating the
performance of the learned policy or Q-values in achieving
the RL model’s objective. In this section, we first sought
to identify the best hyperparameter settings by evaluating
the performance of the learned Q-values in achieving the
RL model’s objective. We can use the learned Q-values to
make predictions related to the RL task and then assess the
quality of these predictions using appropriate metrics such as
AUROC (Area Under the Receiver Operating Characteristic
curve) for binary classification tasks. As the classification
task should benefit from the knowledge captured in the
learned Q-values, we utilized the same task as in the RL
model reward function formulation, i.e., classification of
GCO ≥ λGCO and AESEVER ≥ λAESEVER. As λGCO ∈

{4, 5} and λAESEVER ∈ {1, 2, 3}, we computed the average
AUROC across six combinations of λGCO and λAESEVER. This
approach allowed us to objectively evaluate the RL model’s
performance based on reward settings.

To further evaluate RL model results, the optimal policies
were evaluated by examining the Q-values to assess how well
the RL model’s optimal decisions align with the expected
reward as indicated by the learned Q-values. Specifically,
to further support the hypothesis that a serious condition
exists among PD patients and that mitigation or prevention
through medication may be possible, we sort patients
according to their visit sequence when their GCO level
first worsened. Here, the criterion of worsened GCO was
set as level 5. Thus, we aimed to examine the trends in
Q-values before reaching GCO level 5 and after reaching
it, and compared the clinicians’ actual prescription policy to
the recommended policy of the RL model. This allows the
evaluation of the adequacy of administered and recommended
medications in different modality settings. To examine both
the trends of deterioration and recovery, we selected two visit
records prior to reaching level 5, and two visit records after
reaching level 5. Hence, patients who never experiencedGCO
level 5 or patients with insufficient prior or post data were
excluded from the analysis.

III. RESULTS
A. DATA PREPROCESSING
For each modality, missing values occurred depending
on when the test was performed, resulting in vary-
ing missing value ratios: BIO: 54.59%, STR: 14.23%,
IMG: 56.31%, BIO+IMG: 59.55%, BIO+STR: 41.92%,
IMG+STR: 28.79%,ALL: 43.46%.Variables withmore than
95% missing values were dropped. To handle missing data,
we employed the Multiple Imputation by Chained Equations
(MICE) [45] method for imputation. MICE effectively
replaces missing data over time, minimizing information
loss between visits, which is a limitation associated with
commonly utilized zero or forward imputation methods.
In this study, a total of 89 variables were utilized, including
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TABLE 3. Optimal hyperparameter settings for embedding methods (AE and AIS), reinforcement learning (DQN), and reward function components.

26 structured variables, 53 biological variables, and 10 imag-
ing variables, which are summarized in Table 1.

B. OPTIMAL HYPERPARAMETER SETTING
Table 3 displays the optimal hyperparameter settings used for
state embedding and RL model training, all of which were
optimized using Optuna. For the embedding process, optimal
values were derived for three key hyperparameters: Batch
Size, Hidden Layer Size, and Learning Rate, with training
conducted to minimize the loss. For the DQN reinforcement
learning, six hyperparameters were considered: Batch Size,
Hidden Layer Size, Loss Function, Learning Rate, Learning
Decay, and Learning Step. These parameters are crucial as
they significantly influence the outcomes, and the training
was oriented towards maximizing AUROC that reflects
both GCO and AESEVER. The selection of the optimal
embedding method for each modality was also determined
through this process where the selections were AIS for ALL
and IMG+STR and AE for BIO+STR and STR. Finally, the
optimal settings for the reward function components α, λGCO,
and λAESEVER were also derived based on the best AUROC
performance setting. Notably, for the BIO+STR modality,
anα value of 0.2 suggests less consideration for AESEVER in
the reward setting, whereas the STRmodality with an α value
of 0.7 indicates a more balanced consideration of AESEVER
and GCO.

C. COMPARISON OF EMBEDDING METHODS
1) EFFECTIVENESS OF EMBEDDINGS IN GCO PREDICTION
The embedding method plays a crucial role in reducing
the dimensionality of high-dimensional data while preserv-
ing important patterns. In our study, we employed two
approaches, AE and AIS, to effectively capture the unique
characteristics of each modality. To appropriately evaluate
the learned embeddings, we assessed their capability of
predicting the overall severity level represented as the GCO
metric. Specifically, we assessed whether the embeddings
contained relevant patient information by developing the

TABLE 4. GCO level multi-classification results of the two embedding
methods for each modality. The numbers in parentheses correspond to
the standard deviation.

XGboost [46] model to predict GCO label as a multi-class
classification task. To do so, GCO features were excluded
from the input dataset and used solely as target labels.

Table 4 displays the AUROC and F1-score performance
of the embeddings across various modalities using AE and
AIS methods. For BIO, IMG, and BIO+IMG modalities,
both AE and AIS embeddings failed to achieve an AUROC
exceeding 0.6, suggesting inadequate representation of
GCO-relevant information. While for STR and BIO+STR
modalities, AE and AIS demonstrated similar performance
with an AUROC 0.7, AIS significantly outperformed AE in
the IMG+STR modality with an AUROC of 0.726, and AE
showed better performance for the ALL modality with an
AUROC of 0.702. These findings highlight the impact of
embedding method selection on modality representation in
capturing GCO information.

2) VISUALIZING THE LEARNED EMBEDDINGS
To further examine the outcomes of the embedding process,
we employed t-SNE (t-distributed Stochastic Neighbor
Embedding) [47], a dimensionality reduction technique for
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FIGURE 3. Visual comparison of embedding results for STR and IMG
modalities with raw dataset.

visualizing high-dimensional data, renowned for preserv-
ing intricate data patterns effectively. Embedding methods
often produce high-dimensional representations of data,
making it challenging to visualize and interpret directly.
t-SNE is a popular dimensionality reduction technique that
projects data points from a high-dimensional space to a
lower-dimensional space while preserving local structure
and capturing non-linear relationships between data points.
Figure 3 illustrates the t-SNE visualization outcomes of the
embedding results along with the raw dataset, comparing the
STR modality, which exhibited the highest machine learning
(ML) prediction performance, with the IMG modality, char-
acterized by the lowest performance. Effective embeddings
should exhibit distinct clusters corresponding to different
patient health states. By coloring the points based on the
corresponding GCO labels (representing varying patient
health states), we can visually inspect whether the embedded
representations exhibit distinct clusters corresponding to

different health states. The visualization showcases that the
embedding technique had adeptly organized the STR modal-
ity data with respect to the GCO label, facilitating a clear
differentiation between patient statuses, particularly using
the AE method. Note that the states with same GCO label
tend to be clustered together where the clusters show clear
stratification under the AE method. Conversely, the IMG
modality, displaying inferior ML performance, demonstrated
a poor discernible organization post-embedding, indicating
a deficiency in capturing and representing its intrinsic
characteristics effectively. Varying GCO labels were mixed
within the same cluster, not effectively representing patient
health states. Moreover, the widely dispersed points within
clusters may represent diverse or ambiguous states. Both
embedding methods were not able to differentiate severity
levels, aligning with the low ML performance results.

Overall, since modalities incorporating structure informa-
tion exhibited relatively higher GCO classification perfor-
mance, we selected the following four modalities consisting
of STR for further analysis: STR, BIO+STR, IMG+STR,
and ALL. With the appropriate embedding method selected,
we subsequently re-trained the embeddings using GCO
information explicitly for complete state representation.
Figure 4 visualizes the embedding results post-inclusion
of the GCO variable, revealing its distinct differentiation
across all modalities. By examining the proximity of points
within and between clusters, the discriminative power of
the embedded representations in capturing relevant features
of patient states can be seen. Furthermore, evaluating the
GCO classification task based on the re-trained embeddings
resulted in all four modalities exhibiting excellent perfor-
mance with AUROC scores of 0.97 or higher. From such
results, it can be concluded that the re-trained embeddings
adequately captured PD severity, and thus were subsequently
used as the state vector for RL model development.

D. EVALUATION OF MULTIMODAL REINFORCEMENT
MODEL
1) USING LEARNED Q-VALUES TO PREDICT SEVERE PD
STATUS
To assess the RL model results, the learned Q-values were
used to perform classification tasks relevant to the RL
reward function, and the quality of these classifications
was evaluated using AUROC. The tasks of classifying
GCO ≥ λGCO and AESEVER ≥ λAESEVER for λGCO ∈ {4, 5}
and λAESEVER ∈ {1, 2, 3} were evaluated. Table 5 displays
the average AUROC values, ranked in descending order of
STR, ALL, BIO+STR, and IMG+STR, with values of 0.950,
0.849, 0.806, and 0.718, respectively. We noted that across
all modalities, AUROC values were higher for severe patient
conditions (GCO 5) and lower for relatively better conditions
(GCO 4). It is also of note that AUROC performance
does not show monotonicity with respect to the number of
modalities used, and utilization of all modalities (ALL) does
not necessarily lead to the best performance. Conversely,
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FIGURE 4. Visualization of the embedding results post-inclusion of the GCO feature for All, BIO+STR, IMG+STR, and STR modalities.

TABLE 5. AUROC results of predicting severe PD status using learned
Q-values for each modality. Varying settings of severity are represented as
a tuple of (λGCO, λAESEVR ), and AVG refers to the average of the AUROC
scores.

IMG+STR modality showed the worst performance with
AUROC showing very poor performance for classifying
GCO ≥ 4 and AESEVER ≥ 3. This could potentially imply
these two modalities may not integrate seamlessly, thus
leading to poor PD state representation.

2) TREND OF Q-VALUES AROUND THE FIRST SEVERE
DETERIORATION
To examine the trend of Q-values before reaching GCO
level 5 and after reaching it, we aligned patients according

FIGURE 5. Trend of Q-values around the first entrance into severe PD
deterioration of GCO level 5 for each modality.

to the point in their care when the patient first entered
GCO level 5. The results of this analysis suggest two main
points. First, Figure 5 reveals that across all modalities, the
optimal prescription policies learned by the RL (denoted
as Optimal) exhibited better outcomes compared to those
prescribed by clinicians (denoted as Clinician). We further
selected the top 3 recommended medications to account for
variety in medication selection, where the average Q-values
of these medications (denoted as Top - 3) also consistently
showed better outcomes than that of clinicians’ policy. The
gap between the value of recommended medications and
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actual prescribed medications was significant for BIO+STR,
IMG+STR, and STRmodalities, indicating a possible mitiga-
tion of GCO worsening by adequate medication prescription.
Conversely, the ALL modality showed a close overlap
between the optimal and clinician policy, indicating the actual
prescribed medications were similar to those recommended
by the RL model. Second, a gradual decline in the patient’s
condition was observed before reaching GCO level 5, with
a distinct lowest point aligning with the time of entering
the worsened GCO status. Thus, the learned Q-values ade-
quately represent PD severity and the RL model’s decisions
align with expected rewards as indicated by the learned
Q-values. In addition, recovery or maintenance of the
patient’s condition was observed after reaching GCO level 5.
The extent of recovery for clinician policy varied depending
on the modality, implying PD severity can be perceived
differently for the same patient health condition depending
on the choice of modality.

Since the reward function formulation setting α varies
between modalities, a direct comparison of Q-values was not
possible. Nevertheless, the trend of optimal policy Q-values
could be compared where BIO+STR results showed the
least change in values. This observation suggests a potential
benefit in terms of preventing worsening conditions through
the appropriate prescription of medications.

3) COMPARISON OF RECOMMENDED MEDICATIONS
With the RL model results validated, we compared the
prescription patterns by investigating the recommended
policy from the RL model using different modality datasets.
Table 6 illustrates the distribution of drugs recommended
by the RL model. In the ALL modality, drugs ML , OL ,
and OH are prescribed at a notably high rate, consisting of
90% of prescriptions in total. Conversely, for the IMG+STR
modality, three drugs, LH , ML , and OL , are prescribed at
an identical rate of 33.3%. These three drugs also feature
prominently in the STRmodality, with rates of 33.3%, 30.8%,
and 28.6%, respectively. It is worth noting that approximately
7-8% of cases in the ALL and STR modalities do not
receive any drug prescription (N ). In contrast, the BIO+STR
modality exhibits a diverse range of drug prescriptions
despite a relatively high rate of 31% for OL , as observed in
other modalities. This suggests a propensity to prescribe a
variety of drugs within the BIO+STR modality.

Overall, the distribution of recommended medications
varied substantially depending on the chosen modality. Lev-
odopa was frequently prescribed when considering a single
modality of STR or the bimodal combination of IMG+STR.
MAO-B andOthermedicationwere frequently recommended
regardless of the modality used, with notable differences in
prescription dosage. High dosages of Other medication were
only prescribed under the ALL or BIO+STR modalities. The
modality resulting in the least diverse set of medications
was IMG+STR, which also exhibited the lowest embedding
performance as shown in Table 4. Conversely, BIO+STR
recommended the most diverse array of medications, with

TABLE 6. The distribution of recommended medications from the RL
model across the ALL, BIO+STR, IMG+STR, and STR modalities.

its embedding performance being the second best in terms
of both AUROC and F1-score. Therefore, it can be inferred
that the effectiveness of state embeddings does impact the
resulting RL model’s optimal policy.

IV. DISCUSSION
We further compared modality differences by analyzing
the characteristics of the recommended policy from the
RL model. The objective of this analysis was twofold:
1) for each modality, examine whether PD severity was
considered when prescribing medications, and 2) compare
medication prescription pattern differences acrossmodalities.
The medications with the top 3 highest Q-values were
considered as the recommended policy where the policies
are visualized for each modality in Figure 6. To examine
the difference in prescription policies according to patient
condition, GCO was set as the PD severity metric and the
recommended medications were plotted for each condition.
In addition, using AESEVER as the PD severity metric,
a similar recommended medication distribution plot is
presented in Figure 8.

A. PRESCRIPTION PATTERN COMPARISON
Analyzing the characteristics of each modality reveals
distinct trends in prescription patterns. First, both IMG+STR
and STR modalities tended to prescribe strong doses of
levodopa (LU ) and weaker doses of MAO-B inhibitors (MD)
and other medication (OD). Notably, for the IMG+STR
modality, variations in prescriptions based on the patient’s
GCO level were minimal which could be a sign of insufficient
consideration of PD severity when prescribing medications.
The STR modality exhibited a slight increase in no med-
ication (N ) and strong doses of medication combinations
(CU ) as the patient’s condition worsened. Interestingly, the
selection of non-prescription was more frequently selected
as the GCO level worsened, which may be due to drug
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FIGURE 6. Distribution of the recommended medications stratified by GCO level. The x-axis refers to the actions of
the RL model, the y-axis represents the frequency of the recommended action, and the colored bars refer to the
different types of medications.

side effects. However, the clinical applicability of such a
prescription pattern needs further justification.

In ALL modality, there was a predominant prescription of
MAO-B inhibitors and other drugs, maintaining consistent
drug strength during stable patient conditions. However,
as the patient’s condition worsened, there was a decrease
in prescribing other medication (OU ) and a substantial
increase in not prescribing medications (N ). Notably, the
recommendation of not prescribing medications was most
frequent under the ALL modality. Again, such prescription
patterns could be attributed to a significant shift in medi-
cation for identifying patients with deteriorating conditions
and consideration of side effects, thus requiring further
investigation.

On the other hand, the BIO+STR modality encompassed
the most wide range of medications. As the condition dete-
riorated, there was a decrease in prescribing strong levodopa
drugs (LD), combination drugs (CD), and non-prescriptions
(N ). Additionally, for dopamine agonists, strong dosage
(DU ) was increasingly prescribed as the condition wors-
ened. These distinct prescription patterns indicate that the
BIO+STR modality incorporated the patient’s condition
when recommending medications. Furthermore, compared
to other modalities, rather than completely avoiding drug

prescriptions and selecting non-prescriptions, alternative
prescriptions were recommended based on the potency of the
drugs.

A similar analysis was conducted using AESEVER as
PD severity metric where the distribution of medication
prescriptions based on AESEVER severity is shown in
Figure 8. Note that given the imbalanced AESEVER
distribution, cases with AESEVER of 2 or higher were
grouped and visualized together. The overall distribution
of prescriptions was similar to those of GCO. Specifically,
within the ALL modality, there was no significant change
in medication trends with increasing AESEVER severity.
Also, MAO-B inhibitors and other drugs were prescribed
in large quantities similar to GCO-based prescriptions. For
the IMG+STR and STR modalities, a consistent pattern of
high reliance on specific medication types (LU ,MD,OD) was
observed, mirroring previous results. However, this pattern
may not represent appropriate prescriptions due to the lack
of change in drug prescription despite the consideration of
adverse events. In contrast, the BIO+STR modality showed
a decrease in drug dosage as AESEVER severity increased,
suggesting consideration for potential drug side effects.
These characteristics were particularly evident in dopamine
agonists.
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FIGURE 7. A patient trajectory visualized in the embedded space for the
BIO+STR and IMG+STR modalities. The visit sequence begins from ‘‘Start’’
and progresses through the ordered numbers until reaching the final visit
marked as ‘‘End.’’

Overall, these findings allowed us to understand the
distinct characteristics of each modality. Specifically, a single
modality alone could not provide sufficient information
regarding PD severity and the recommended prescriptions
mainly relied on three medication types with the same
dosage. Regarding multimodal analysis, the IMG modality
did not provide additional information to the STR modality,
as the resulting prescriptions still did not accurately represent
PD severity and exhibited a consistent pattern. In contrast,
integrating BIO modality information into the STR modality
led to prescriptions that more closely reflected the patient’s
state. The recommended prescriptions utilized a wide range
of medications similar to what was observed in the dataset,
and alternative medications were prescribed for severe PD
status rather than avoiding drug prescriptions. However,
utilizing all three modalities did not necessarily lead to the
most appropriate prescription decisions as non-prescription
wasmost frequently recommended for severe GCO levels and
prescriptions relied on a limited set of medications.

B. ILLUSTRATIVE CASE STUDY OF A SINGLE PATIENT
TRAJECTORY
We further provide a comparison of modalities through the
example of a single patient case. Figure 7 shows trajectory
data for a specific patient record using two different modality
datasets. This patient had a total of six visit sequences
with an adverse event (AESEVER=2) reported on the third
visit, starting with a benign GCO level 1 and ending with
a relatively severe GCO level 4. Both modalities show a
clear trend of the patient’s condition worsening over time,
transitioning from a predominantly blue-dominated area to a
prominently red-marked area. The results are based on actual
prescriptions and do not indicate a clear trend of recovery due
to the absence of medication administration.

However, the prescriptions generated by the RL model
varied across modalities. In the IMG+STR modality, three
medications (LU , ML , OL) were consistently prescribed
regardless of GCO severity or AESEVER occurrence.
Conversely, in the BIO+STR modality, the prescription
strategy changed around the third visit when adverse event
occurred. Levodopa (LD) was initially prescribed until the
second visit. However, following the onset of AESEVER,
MAO-B inhibitor (ML) was chosen, succeeded by a dopamine
agonist (DU ), reflecting a dynamic drug selection based
on patient response and side effect management. These
observations highlight that despite the same PD severity and
adverse event status, the characteristics of each modality lead
to distinct prescriptions and potential for recovery.

V. CONCLUSION
Our study employed a multimodal dataset to comprehen-
sively compare and analyze prescriptions for PD patients.
Specifically, we utilized various embedding techniques to
extract latent vectors from diverse modalities as state
information, which was used in training an RL model
considering GCO and AESEVER. Our findings confirm that
prescription characteristics vary across modalities. Notably,
while the ALL, IMG+STR, and STR modalities exhibited
consistent medication prescribing tendencies, the BIO+STR
modalities considered a variety of drug strengths in their
prescriptions, taking into account the patient’s condition
(GCO) and side effect (AESEVER). This underscores the
importance of considering which modality information is
used in making prescription decisions when patients seek
medical treatment.

However, our study does come with several limitations.
First, the lack of data on prescriptions involving the
combination of two or more drugs prevented us from
fully considering the complex interactions between multiple
prescribed medications. Second, the study overlooked the
diversity of information included under ‘‘OtherMedications’’
and disregarded potential drug interactions and side effects.
Lastly, the results were derived using a limited size of
dataset and need further validation on an external dataset.
However, we provided insights into how multimodal data
integration could play a key role in capturing essential
patterns related to PD progression, and affect medication
prescription policies accordingly. The findings highlight
the significance of integrating diverse data modalities in
understanding and managing PD progression, emphasizing
the importance of tailored medication regimes based on
multimodal data insights.

APPENDIX.
The complete set of hyperparameter setting values shown in
Table 7 is used as input for Optuna for hyperparameter tuning.
Note that the resultant optimal setting is depicted using an
asterisk. Furthermore, the distribution of the recommended
medications from the RL model is depicted in Figure 8 using
AESEVER as the PD severity metric.
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TABLE 7. The complete set of hyperparameter setting values where the asterisk refers to the optimized setting identified via Optuna.

FIGURE 8. Distribution of the recommended medications stratified by AESEVER. The x-axis refers to the actions of the
RL model, the y-axis represents the frequency of the recommended action, and the colored bars refer to the different
types of medications.
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