
Received 28 April 2024, accepted 21 May 2024, date of publication 24 May 2024, date of current version 3 June 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3405071

An Explainable Decision Support Framework for
Differential Diagnosis Between Mild COVID-19
and Other Similar Influenzas
KRISHNARAJ CHADAGA 1, SRIKANTH PRABHU 1, (Senior Member, IEEE),
NIRANJANA SAMPATHILA 2, (Senior Member, IEEE), RAJAGOPALA CHADAGA3,
AND SHASHIKIRAN UMAKANTH 4
1Department of Computer Science and Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
2Department of Biomedical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
3Department of Mechanical and Industrial Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka 576104,
India
4Department of Medicine, Dr. TMA Pai Hospital, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India

Corresponding authors: Srikanth Prabhu (srikanth.prabhu@manipal.edu) and Niranjana Sampathila (niranjana.s@manipal.edu)

ABSTRACT It is tough to clinically differentiate betweenmild COVID-19 and other similar influenzas due to
their comparable transmission traits and symptoms. The Real-time reverse transcriptase-polymerase chain
reaction (RT-PCR) test is utilized regularly to diagnose severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2) despite being prone to false-negative results. In recent years, intelligent support systems
have been developed for patient triage and disease diagnosis. Thus, this research utilizes machine learning
to diagnose COVID-19 from routine biomarkers. Twelve feature selection techniques, which include nature-
inspired techniques, have been compared to extract the essential features. Multiple classifiers, including
stacking, voting and deep learning, are trained to predict the patient diagnosis. The maximum accuracy
obtained by the classifiers was 95% in this retrospective study. The diagnostic predictions were further
interpreted using five explainable artificial intelligence methods. Biomarkers such as albumin, protein,
eosinophil and total white blood cells were crucial. Thus, automated diagnostic systems can be supportive
in the accurate and timely detection of COVID-19 and similar influenza infections.

INDEX TERMS Biomarkers, explainable artificial intelligence, Mild COVID-19, nature-inspired
algorithms, non-COVID-19 influenza.

I. INTRODUCTION
Mild COVID-19 symptoms include fever, myalgia, cough,
sore throat, and other flu-like manifestations [1]. However,
the above symptoms are also observed in other non-COVID-
19 influenza [2]. Early diagnosis is crucial for preventing
infections and lowering the fatality rate. Therefore, it is
essential to establish effective diagnostic techniques to detect
COVID-19 quickly. Due to several similarities between
non-COVID-19 influenza and mild COVID-19, detection
has become more complex. Because both infections exist
alongside one another, it is essential to distinguish between
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them to treat individuals at a high infection risk, some of
whom may have symptoms specific to the virus [3]. Some of
the mild symptoms observed in patients are depicted in Fig. 1.

Two diagnostic methodologies, Real-time reverse tran-
scriptase polymerase chain reaction (RT-PCR) and antibody
testing, have been used for most patients [4]. However, both
the above methods have their limitations. RT-PCR tests have
been known to generate false-negative results [5]. Handling
specimens and high costs have also been an issue [5].
Antibody testing showed an extremely low sensitivity, too [6].
Hence, other diagnostic techniques, such as imaging, voice-
based detection and clinical markers, were also tested [7].

The healthcare sector has already made tremendous use
of artificial intelligence (AI) and machine learning (ML)
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FIGURE 1. Mild symptoms observed in COVID-19 patients.

techniques. In the modern world, disease detection and
prognosis are accurately predicted using soft computing
techniques [8]. The doctor’s decision-making ability can
be improved using multiple cognitive and visualization
techniques. The foregoing developments are primarily
attributable to the rise of pertinent clinical datasets and tech-
nologies [9]. Before using automated AI systems in real-life
situations, assessing their transparency and interpretability
is vital. The reasoning behind a classifier’s prediction must
be clear to the medical personnel [10]. Models which are
hard to understand cannot be used for real-time diagnosis.
A new sub-branch of AI called explainable AI (XAI)
makes the predictions transparent and trustworthy [11].
The algorithms’ visualisation techniques make it easier for
doctors to understand the diagnosis.

Blood and routine laboratory tests diagnose various
diseases, including COVID-19. However, no single blood
marker can detect this contagious virus. However, combining
markers such as albumin, neutrophil to lymphocyte (NLR)
ratio, eosinophils, neutrophils, lymphocytes, and other clin-
ical markers have been helpful [12], [13]. This offers an
unparalleled chance for investigators to examine character-
istics affecting patient diagnosis while creating novel testing
approaches for coronavirus detection. Some similar research
conducted by other investigators are described below.

In a research by Altantawy and Kishk [14], a diagnostic
classifier based on equilibrium methodology was utilized
for detecting this virus. A 1D-CNN model was used on
the San Raphael Hospital dataset. A testing accuracy of
98.50% was obtained in this study. Self-organizing maps
and cluster analysis were utilized for COVID-19 detection
in another study [15]. The best classifier obtained an
accuracy of 83%. A technique called ‘‘Information needs’’
was used to identify essential markers. According to it,
the crucial blood variables were Leukocytes and Basophils.
Mohammadi et al. [16] utilized artificial neural networks
to classify COVID-19 from routine laboratory markers.
According to the research, the critical blood parameters
were CRP, magnesium, vitamin D and lymphocyte count.
The multilayer perceptron network obtained an accuracy
of 99.16%. Another research used explainable learning for

automatic COVID-19 detection [17]. The data was from
Israel, and the model reached an accuracy of 96.34%.
The research also utilized the ‘‘Local Interpretable Model-
agnostic Explanations (LIME)’’ framework for demystifying
the algorithms. Roland et al. [18] used a domain shifts-based
method to diagnose the virus. The data was obtained from
Johannes Kepler University, Austria. The best performing
machine learning algorithm obtained an AUC of 0.88.
A machine learning methodology was used for differential
diagnosis between COVID-19 and other similar diseases in
children [19]. Data of two hundred sixty-eight children were
utilized in this research. The automated model performed
well with an accuracy of 98.4%. Baik et al. [20] used a
boosting algorithm to classify COVID-19 and non-COVID-
19 illnesses. The xgboost classifier obtained a maximum
AUC of 0.99. Shapley additive values (SHAP) was the XAI
technique used, and the most critical markers according to it
were D-Dimer, glucose, basophil and eosinophils. Another
research used laboratory parameters to detect COVID-
19 [21]. Five hundred fifteen patients from Poland were
considered. The various models obtained accuracies between
90%-100%. Gomes et al. [22] used haematological markers
for COVID-19 diagnosis. Multiple ML models were used,
and an accuracy, specificity and sensitivity of 99% were
obtained. According to the COVID-19 research, the most
important features were troponin, ferritin, serum glucose,
indirect bilirubin, D-dimer and lactate dehydrogenase (LDH).

The above studies show that COVID-19 can be diagnosed
using machine learning and routine blood markers. However,
no other studies exist that using machine learning to diagnose
mild COVID-19 from similar influenzas. Our retrospective
study also makes other significant contributions which are
listed below:

• Descriptive and inferential statistical analysis has been
utilized to comprehend the data better. Several exciting
trends were observed using visualization techniques
such as box plots and scatter plots.

• Ten nature-inspired techniques were utilized to select
the important clinical attributes and were also compared
further.

• Multiple mac The XAI should be used to explain a
dataset from the data used with full explanation to a
lay manhines learning algorithms, including stacking
and voting, have been utilized. Two deep learning
classifiers were also tested. The results obtained by the
neural networks were compared with machine learning
classifiers.

• The classification results attained by the best-
performing algorithms were demystified utilizing five
XAI approaches.

• The results obtained by the classifiers and the marker
variations were also analyzed in-depth from a medical
frame of reference.

The following sections are organized as follows: Materials
and methods are detailed in Section II. Details about the
dataset, statistical analysis, pre-processing, feature selection
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TABLE 1. Markers utilized in research to predict COVID-19 diagnosis.

and machine learning methods have been included. The
results and XAI interpretations are explained in-depth in
Section III. Predictions and interpretations are discussed in-
depth in Section IV. Section V concludes the article.

II. MATERIALS AND METHODS
A. DATASET FROM TWO HOSPITALS IN INDIA
Blood test data was attained from patients admitted to
‘‘Dr TMA Pai Hospital’’ and ‘‘Kasturba Medical College’’.
Ethical clearance was procured before conducting this
retrospective study (IEC: 613/2021). Patient information
from RT-PCR tests performed between April 2022 and
December 2022 was considered. The dataset was collected
manually from files and Electronic Health Records (EHR).
Only mild COVID-19 patients were considered for this
research. The cohort consisted of 309 mild COVID-19
patients and 135 patients who exhibited similar symptoms but
were considered COVID-19 negative by the RT-PCR test. The
number of demographic and clinical attributes included was
25, which included the class label (RT-PCR test results). The
attributes considered, their descriptions and units, are listed
in Table 1.

B. STATISTICAL ANALYSIS AND DATA PREPROCESSING
Descriptive and inferential statistical analysis was made
in this study using Jamovi. Jamovi is being used by
data scientists and biostatisticians worldwide [23]. In the
beginning, we have tabulated descriptive statistical measures
for each attribute. Further, to gain inferences from the
data, various t tests have been utilized to compare the
two groups. Comparison of the two groups were also done

using violin and scatter plots. Descriptive measures such
as mean, median, sample size, minimum and maximum
value and other measures are described in Table 2. All the
above statistical measures are obtained for both COVID-
19 and non-COVID-19 cohorts. To conduct t-tests, three
variants of it have been utilized. They are the Student’s
t-test, Man-Whitney U test and the Welch’s t-test. The
marker is considered significant in differentiating between
the cohorts if the obtained p-value is less than 0.001. The
p-value obtained by the t-tests are detailed in Table 3.
According to the above t-tests, the most critical markers
were hemoglobin, TWBC, neutrophils, lymphocytes, NLR,
monocytes, eosinophils, platelets, sodium, T. bilirubin, D.
bilirubin, albumin and ALP.

Further, the difference in marker levels was analyzed using
violin plots, as shown in Fig. 2. It can be observed that
haemoglobin, lymphocytes and monocytes were higher in
COVID-19 cases. Markers such as age, TWBC, neutrophil,
eosinophil and platelets were lesser in the COVID-19 cohort.
Scatter plots were then used to understand the relationships
between markers, as depicted in Fig. 3. A direct relationship
exists among haemoglobin and hematocrit. Albumin and
protein were also linearly separable. A slight dependent
relationship exists between platelets and TWBC. Further,
when the neutrophil count increases, the lymphocyte count
decreases (linear relationship).

The following steps were carried out during data pre-
processing. Null values were removed, categorical variables
were encoded, the data was balanced and the data was scaled.
Generally, null values are substituted by measurements like
mean and median. In this study, the median was preferred
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TABLE 2. Descriptive statistical measures obtained for this study (COVID-19 and non-COVID-19 cohort).
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TABLE 2. (Continued.) Descriptive statistical measures obtained for this study (COVID-19 and non-COVID-19 cohort).

since they deal better with outliers [24]. Categorical encoding
is essential in preprocessing [25]. Gender was the only
categorical attribute available in this data. One-hot encoding
method was deployed to encode the gender attribute. The
above technique was used since it is generally reliable [26].
The data needed to be more balanced in research. The number
of mild COVID-19 patients considered was 309. The non-
COVID-19 cohort consisted of only 135 patients. When
cohorts are imbalanced, results are biased [27]. The models
also consider the minor class as outliers. The borderline
synthetic minority oversampling technique (SMOTE) was
deployed to balance the data [28]. The oversampling tech-
nique is a better version of the traditional SMOTE since it also
considers the decision boundary while generating synthetic
data. The test dataset was not exposed to data balancing to
protect the dataset’s integrity. The standardization technique
was utilized for scaling the data [29]. This technique converts
all the values between ’-1’ and ’1’ using standard deviation.
It is crucial to scale the data to prevent the classifiers from
preferring higher values over lower ones.

C. FEATURE SELECTION
The performance of the ML classifiers reduces when unnec-
essary features are chosen for model training. The main aim
of feature selection is to identify the optimal set of variables
that will allow the building of best performing models [30].
Generally, three types ofmethods are used: (a) Filtermethods,

(b) Wrapper methods (c) Embedded methods [31]. Filter
methods use univariate statistics to choose the most essential
features. They are also faster in execution. Wrappers need an
approach for searching the available space of all potential
characteristic subsets, evaluating each feature’s accuracy
level by building and assessing a classifier using it. The
wrapper algorithms are more efficient than filter methods.
However, the filter methods are faster. The embedded method
combines the above two techniques. In this study, two filter
and ten wrapper methods were utilized.

Pearson’s correlation method describes the degree of
association among two parameters [32]. The Pearson’s
correlation coefficient exists between -1 and 1. When the
number is closer to ‘1’, it indicates a positive correlation.

The number near ‘-1’ indicates that the variables are
negatively correlated. It has several strengths. It is easy to
calculate and understand. It is a standardized measure which
calculates the strength and direction of relationships. It can
also be utilized for bivariate analysis. However, it is sensitive
to outliers. It also assumes linearity and does not capture
causation. The Pearson’s heat map is described in Fig. 4.
According to the figure, the important markers are TWBC,
NLR and Albumin. The top 10 features were chosen using
this methodology, which are tabulated in Table 4. Mutual
information (MI) has also been used in this study. It uses
the concepts of ‘‘mutual dependence’’, ‘‘information theory’’,
and ‘‘probability theory’’ [33]. The entropy of the feature is
also measured in this algorithm. Advantages of the algorithm
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TABLE 3. Inferential statistics conducted using three t tests (a) Student’s
t test (S) (b) Welch’s t test (W) (c) Mann-Whitney U test (M). A marker is
considered important if p-value is less than <.001.

include capturing non-linear relationships, robustness and
faster execution. It also does not make random assumptions

about the data. However, there are a few disadvantages too.
The algorithm is less efficient when high dimensional data is
used. It is also sensitive to bias. Interpretation of the algorithm
can also be a challenge. The most critical biomarkers are
described in Fig. 5. The essential markers are Albumin,
Protein, HbA1c, AST and ALT. The top ten features were
chosen and are described in Table 4.

Further, ten nature-inspired algorithms have also been
utilized. These methods are influenced by natural processes
which occur in everyday life [34]. They support parallel and
distributed computing and focus on global optimization. They
are also robust and versatile. However, computational cost
can be an issue. It is also prone to parameter sensitivity. Some-
times, it is also difficult to understand them theoretically.
The markers chosen by these algorithms are also tabulated
in Table 4.
The clinical attributes selected by various feature selection

algorithms are depicted in Figure 6. From the diagram, it can
be seen that ALP, ALT, haemoglobin and TWBC were the
most chosen markers. Many algorithms also chose sodium
and eosinophils. However, platelets were not considered by
any technique.

D. MACHINE LEARNING METHODOLOGY
This study considered several ML techniques, such as
bagging, boosting, stacking and voting. Hyperparameter
optimization was conducted using the grid search method.
This searching technique finds the optimal hyperparameters
for each algorithm. It is a simple technique and has already
been used in several medical studies [35]. The five-fold cross-
validation was utilised to shuffle the training and testing data
into various sets. The training data is equally divided into
five subsets, and the validation is done separately for each
subset. The results are then averaged to make the models
more reliable. Further, the stacking approach was used to
combine eight baseline classifiers.

Stacking uses an ensemble technique to merge the predic-
tions made by the multiple models [36]. Hence, the stacked
models become more reliable than an individual model.
Stacking also makes use of a ‘‘meta-learner’’, which helps in
making the predictions. Voting combines the predictions of
multiple classifiers and selects the class using the ‘‘majority
vote’’ [37]. In this study, we have considered hard-voting and
soft-voting classifiers. In hard voting, each algorithm predicts
a class using the concept of the highest vote share. In soft
voting, eachmodel generates a probability score. The average
score of probabilities is chosen for predicting the class
label.

Two deep learning algorithms: DNN (Deep Neural Net-
work) and 1D-CNN (1-Dimensional Convolutional Neural
Networks) were also tested to predict the diagnosis [38], [39],
[40], [41]. Due to their capacity to independently predict
and retrieve hierarchical characteristics from unprocessed
information, DNNs have achieved exceptional success across
various fields, including medicine. A CNN is typically used
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FIGURE 2. Violin plots for Non-COVID-19 and COVID-19 groups. (a) Patient age (b) Hemoglobin (c)TWBC (d) Neutrophil
(e) Lymphocyte (f) NLR (g) Monocyte (h) Eosinophil (i) Platelet.

FIGURE 3. Scatter plots to understand the relationship between variables. (a) Lymphocyte vs Neutrophil (b) Hematocrit vs
Hemoglobin (c) Albumin vs Protein (d) Platelet vs TWBC.

to predict image data. However, 1D-CNN is specifically
designed for time series data analysis.

The test dataset was evaluated using various classification
and loss metrics. The results obtained by the classifier
were understood using five heterogeneous explainers. The
importance of each feature in predicting the model output
can be analyzed accurately using these algorithms. The
entire process carried out in this research is clearly depicted

in Figure 7. In the beginning, data was collected from
two hospitals. Descriptive and inferential statistical analysis
was conducted on the data later. Various preprocessing
methods such as removal of empty values, categorical
variable encoding and scaling were done later. Twelve feature
selection methodologies were further utilized to select the
best markers. After data splitting, the training data was
then balanced using Borderline SMOTE. Further, machine
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FIGURE 4. Finding important biomarkers for COVID-19 detection using Pearson’s correlation heatmap.

FIGURE 5. Feature selection using mutual importance.

learning models were trained and tested. The predictions
were also compared with deep learning models. XAI was
then used to interpret the classifiers. The models could
then be deployed to perform real-time diagnosis on new
prospective data.

III. RESULTS
A. MODEL EVALUATION
Multiple ML models were tested in this study. Every
classifier was trained on ten occasions, with the average
being calculated. This procedure was performed to prevent
overfitting. The weighted average F1 scores attained by
the classifiers are tabulated in Table 5. Among all the
algorithms, the optimal results were obtained by the mutual

information, Pearson’s correlation, bat algorithm, flower
pollination algorithm, particle swarm optimization and salp
swarm optimization. The weighted F1-score obtained by
the stacked model were 94%, 89%, 88%, 92%, 90% and
87%, respectively. The above feature selection methods were
considered for further analysis since they obtained good
results. The classification and loss metrics for the above-
selected algorithms are described in Table 6.When themutual
information algorithms were used, the optimal predictions
were obtained by the xgboost and catboost models with
an outstanding accuracy of 95%. The combined stacking,
hard voting (HV) and soft voting (SV) classifiers attained
accuracies of 94%, 90% and 90%, respectively. When
Pearson’s correlation was utilized, an accuracy of 93% was
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FIGURE 6. Markers chosen by the feature selection techniques.

TABLE 4. The number of clinical attributes chosen by each technique along with the feature names.

attained by the catboost algorithm. The stacking, HV and
SV attained accuracies of 89%, 91% and 98% each. When
the bat algorithm was used, the maximum accuracy was
obtained by the random forest model (90%). The stacking,
HV and SV algorithms attained accuracies of 88%, 84% and
83%, respectively. When the flower pollination method was
utilized, an accuracy of 94% was attained by the xgboost
classifier. The stacking, HV and SV algorithms attained
accuracies of 92%, 90% and 90%, respectively. When the
particle swam optimization was utilized, an accuracy of 90%

was attained by the lightgbm and stacking classifiers. HV and
SV attained accuracies of 82% and 86%, respectively. When
the salp swarm optimization was utilized, an accuracy of
93% was attained by the lightgbm classifier. The ensemble
classifiers (stacking, HV and SV) attained accuracies of
87% each. The hyperparameters chosen by the algorithms
are described in Table 7. The AUC curve graphs for
the stacking algorithms are depicted in Fig. 8. An AUC
of 0.97 was attained by particle swarm optimization and
mutual information methods. From the figure, it can also
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FIGURE 7. Process flow of this research.

TABLE 5. Weighted average F1-score obtained in this research.

be inferred that the number of false negative and false
positive cases were very few. The precision-recall curves
for the optimal six feature selection algorithms (stacked
algorithms) are pictorially depicted in Fig 9. The highest
maximum precision was obtained for the mutual information
method. Most algorithms obtained good precision and recall
values according to the figure. The confusion matrices
for the optimal six feature selection algorithms (stacked
classifiers) are described in Fig. 10. From the figure, it can
be inferred that the number of wrongly classified cases were

minimal for the mutual information and flower pollination
algorithm.

Further, four deep neural networks are utilized. The
architecture for DNN, 1D-CNN and LSTM have been
depicted in Fig 11. The results attained by the algorithms are
depicted in Table 8. The 1D-CNN attained an accuracy of
83% among all the classifiers. Compared to machine learning
algorithms, the DL models’ results were inferior. This is
a common trend in medical AI research when the data is
small [38], [39].
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TABLE 6. Classification metrics obtained in this research.
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TABLE 6. (Continued.) Classification metrics obtained in this research.

B. EXPLAINABLE ARTIFICIAL INTELLIGENCE
This retrospective study uses five XAI techniques to under-
stand the most critical markers in COVID-19 diagnosis.
The explainers also make the models interpretable and
understandable [10], [11]. The STACKmodels of the best six
techniques were chosen for explanation. The STACK models
performed well, and their predictions are trustworthy. Deep
learning algorithms were not selected for analysis since their
performance was slightly inferior to the machine learning
algorithms. Further, many XAI techniques still need to work
for deep learning models.

SHAP uses a probabilistic approach and a set of strategies
for describing the outcomes of the classifiers [52]. It is
based on assigning a Shapley value for every attribute
and measuring its contribution. It also uses the concept of
‘‘game theory’’. The beeswarm plots obtained for all six
feature selection techniques (stacking classifier) are depicted
in Fig. 12. The hyperplane separates the two classes. The
patients predicted as COVID-19 negative are placed towards
the left of the hyperplane, and those diagnosed as COVID-19
positive are placed towards the right. Red depicts an elevated
value of the biomarker, and blue depicts a lower value of
the biomarker. The graphs show that the critical markers are
Albumin, Protein, HbA1c, Sodium, Eosinophil, TWBC and
ALP.

Albumin, Protein, and Sodium levels increased for the
COVID-19 cohort, and ALP, HbA1c, Eosinophil, and TWBC
decreased for the COVID-19 cohort.

LIME is a local explainer that helps explain the model
predictions [53]. This algorithm’s main steps are selecting
an instance, perturbations, model predictions, and fitting the
best model and interpreting it. LIME is very versatile and is
used in various domains. The LIME graphs for the optimal
six algorithms are described in Fig. 13. Fig. 13(a), Fig. 13(d),
and Fig. 13(e) indicate a COVID-19 negative patient. Blood
variables like Albumin, Protein, T. Bilirubin and TWBC
point the prediction towards COVID-19 negative diagnosis.
Fig. 13(b), Fig. 13(c) and Fig. 13(d) indicate a COVID-19
positive prediction. Laboratory biomarkers such as Albumin,
Eosinophil, TWBC, Sodium and Protein have been essential
for this diagnosis.

Eli5 is an explainer commonly used to decipher tree-
based machine-learning models [54]. The Eli5 predictions
are described in Fig. 14. The clinical parameters are arranged
based on their contribution to the model output. The explainer
also considers the bias (error) in the prediction. It can be
seen that the most crucial attributes are Albumin, Protein,
Lymphocytes, TWBC and Urea.

Qlattice uses ‘‘quantum theory’’ to explain the pre-
dictions [55]. It was developed by a company named
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TABLE 7. Hyperparameters chosen by the machine learning algorithms.
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TABLE 7. (Continued.) Hyperparameters chosen by the machine learning algorithms.

VOLUME 12, 2024 75023



K. Chadaga et al.: Explainable Decision Support Framework

TABLE 7. (Continued.) Hyperparameters chosen by the machine learning algorithms.
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TABLE 7. (Continued.) Hyperparameters chosen by the machine learning algorithms.

FIGURE 8. ROC curves for the optimal six feature selection algorithms. (a) MI (b) PC (c) BA (d) FPA (e) PSO and (f) SSO.

‘‘Abzu’’ and is used sparingly in machine learning and
data science. The models are demystified using QGraphs
as shown in Fig. 15. These graphs contain activation
functions, nodes and edges. Each attribute is represented
using a node and the edges connect the nodes. The
activation function is used to activate/deactivate the nodes.
The figure shows that Albumin, TWBC, Sodium, Eosinophil
and protein are the most essential markers considered by
the Qgraphs. Activation functions such as inverse, tanh,
addition, multiplication and Gaussian have been used for
interpretation.

Anchor is an explainer that uses conditions to demystify
themodel outputs [56]. The explanations are further validated
using two parameters: Coverage and precision. Precision

measures the importance of the explanation, whereas cov-
erage measures the number of samples which use the exact
anchor explanation. The anchor conditions are presented
in Table 9. Important markers according to Anchor, are
Albumin, Protein, TWBC, T. Bilirubin and Eosinophil. The
Albumin and Protein count increase in the COVID-19 cohort.
The TWBC, T. Bilirubin, and Eosinophil levels slightly
reduced in COVID-19 cases.

Five XAI methodologies were used for interpretation
in this research. According to them, the crucial clinical
attributes are Albumin, Protein, HbA1c, TWBC, Lympho-
cyte, ALP, Sodium and Eosinophils. Combining these mark-
ers and machine learning could be useful to for COVID-19
diagnosis.
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FIGURE 9. Precision-Recall curves for the optimal six feature selection algorithms. (a) MI (b) PC (c) BA (d) FPA (e) PSO and (f) SSO.

FIGURE 10. Confusion matrices for the optimal six feature selection algorithms. (a) MI (b) PC (c) BA (d) FPA (e) PSO and (f) SSO.

TABLE 8. Metrics obtained for deep learning models.
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FIGURE 11. Architecture of the deep neural networks. (a) DNN (b) 1D-CNN.
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FIGURE 12. SHAP beeswarm plots. (a) MI (b) PC (c) BA (d) FPA (e) PSO and (f) SSO.

FIGURE 13. LIME plots for the optimal six feature selection algorithms. (a) MI (b) PC (c) BA (d) FPA
(e) PSO and (f) SSO.
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FIGURE 14. Eli5 explanations for the optimal six feature selection algorithms. (a) MI (b) PC (c) BA (d) FPA (e) PSO and (f) SSO.

FIGURE 15. QGraphs for the optimal six feature selection algorithms. (a) MI (b) PC (c) BA (d) FPA (e) PSO and (f) SSO.

IV. DISCUSSION
In this retrospective research, ML algorithms were utilized to
predict COVID-19 in patients. The patient data was collected
from two medical facilities in India after taking appropriate
ethical permissions to conduct this research. Twenty-four
markers were analyzed statistically in the beginning. A few
data preprocessing steps were conducted later on the data.
ALP, ALT, Hemoglobin and TWBC were the highest chosen
markers by the feature selection methods. Various machine
learning algorithms were tested later, including stacking and

voting classifiers. Two deep neural network models were
also used for COVID-19 diagnosis. Several classification
and loss metrics were used for performance evaluation. The
predictions made by the algorithms were deciphered using
five explainers. According to them, the crucial markers
are Albumin, Protein, HbA1c, TWBC, Lymphocyte, ALP,
Sodium and Eosinophils.

The top six feature selection algorithms were considered
for in-depth analysis. The mutual algorithm obtained the
optimal results among all the techniques. Two boosting
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TABLE 9. Model explanations using anchor.

models were able to attain an accuracy of 95%. Among
the deep learning neural networks, 1D-CNN performed well
with an accuracy of 83%. After using five heterogeneous
techniques, we identified the most important markers for
COVID-19 diagnosis.

Albumin levels were raised in mild COVID-19 cases.
Lower levels of albumin can indicate damage to the
kidneys/liver [57]. Higher Protein levels were also observed
in coronavirus patients. Lower Protein levels can lead to
Hypoproteinemia [58]. HbA1c levels were also lower in mild
coronavirus patients. Elevated HbA1c levels were found in
moderate and severe COVID-19 patients, according to many
studies [59], [60]. Neutrophil levels are known to elevate with
a severe infection [61]. The neutrophil count was lesser in the
mild COVID-19 class. Many researchers have also observed
decreased lymphocyte count in COVID-19 patients with
dire prognoses [62]. Our study agrees, and the lymphocyte
count was elevated in the COVID-19 group. Neutrophil to
lymphocyte levels were lesser in the mild COVID-19 cohort
and agree with other similar published studies [63], [64].
Liver biomarkers such asD. Bilirubin, T. Bilirubin, AST,ALT
and ALP were elevated in the non-COVID-19 group [65].
Many articles have been published that use clinical markers

to diagnose COVID-19. Baik et al. [20] used boosting
models to conduct differential diagnosis among COVID-
19 and other patients. Model explainability was achieved
using SHAP. According to the study, the most essential
features were D-Dimer, Glucose, Eosinophil, Basophil and
AST. Haematological markers were used to detect COVID-
19 influenza among children [19]. The machine learning
models obtained a maximum accuracy of 98.4%. Using

standardized blood tests, a deep convolutional classifier
was used for COVID-19 diagnosis [14]. An accuracy of
98.5% was attained during testing. The critical markers were
LDH, WBC and AST. Mohammadi et al. [16] evaluated the
effectiveness of multilayer perceptron in diagnosing COVID-
19 using laboratory markers. The algorithm obtained an
accuracy of 99.16%. CRP, lymphocytes, magnesium and
vitamin D were considered more important. The number of
COVID- 19 studies which conducted differential diagnosis
using machine learning and clinical markers was very few.

However, a few limitations exist in this study. While
biomarkers are helpful, they cannot provide a complete
prediction and may have their limitations and variations [66].
Other diagnostic procedures such as X-rays, CT-Scans and
antigen-based testing could be suitably combined. The data
considered in this study was obtained from two medical
facilities in India. COVID-19 datasets from different Coun-
tries could be suitably combined in the future. The size
of the dataset could also be increased for better analysis.
In this study, a few algorithms were not explored. Therefore,
unsupervised and reinforcement learning algorithms could
also be tested. Cloud frameworks were not used for storage
in this study. This can lead to memory/space issues when the
data is significant. Hence, cloud-based architectures could be
deployed in the future. Deep learning models perform well
when the data is enormous. Hence, in the future, the sample
size could be more. A user interface could be developed in
the future. This module would make it easier for medical
professionals to test the classifiers. The models were not
deployed in real-time in Hospitals. Clinical validation could
be performed, and the model predictions could be compared
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with the treatment outcomes. Emphasis should also be given
to data security and privacy. Sensitive details such as patient
information should not be leaked. Other health monitors such
as oxygen saturation, blood pressure pulse rate and heart rate
could also be considered.

V. CONCLUSION
COVID-19 vaccines were critical in curbing the severe
symptoms caused by the virus. However, this contagious
virus continues to exist along with other similar illnesses.
Hence, supervised artificial intelligence techniques are uti-
lized in this retrospective study to predict mild COVID-19
from other influenzas. Multiple machine learning and deep
neural networks were trained and used for prediction.
Among the models, stacking and voting classifiers proved to
be the best. Five XAI techniques were also used to interpret
the best-performing classifiers. According to them, the best
markers required for differential diagnosis were Albumin,
Protein, HbA1c, TWBC, Lymphocytes, ALP, Sodium and
Eosinophils. The albumin, protein, lymphocytes and sodium
were higher in mild COVID-19 cohort. TWBC, ALP and
Eosinophil were lower in the mild COVID-19 cohort. This
model architecture could be deployed as a decision support
system to identify mild SARS-CoV-2 patients. The models
can also ease the load on healthcare personnel and medical
infrastructure.

In the future, datasets from various hospitals could be
combined to make the results more reliable. A user-interface
could be created for real time prediction of COVID-19
patients. The data and models could be deployed on a cloud
platform. Other demographic, immunological, clinical and
epidemiological markers could also be combined. Other
diagnostic methods such as Chest X-rays and CT Scans could
also be used synchronously to make the predictions better.
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