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ABSTRACT Localization of motor unit (MU) innervation zones (IZs) is an important step in several clinical
and non-clinical applications, such as 1) acquisition of surface electromyogram (sEMG) signal for accurate
estimation of its amplitude and other parameters by avoiding placing electrodes on IZs, 2) accurate estimation
of the EMG-Force relationship, 3) effective injection of Botulinum Toxin in Post-stroke Spasticity near the
IZs, and 4) guiding obstetricians to perform episiotomy during child delivery by avoiding cutting near the IZs
of External Anal Sphincter (EAS) muscle. The most minimally invasive way to identify the location of motor
unit innervation zones (IZs) in any muscle, including the External Anal Sphincter (EAS) muscle, is to use
multi-channel surface electromyography (sEMG) signals. In this manuscript, we propose a novel approach
for automatic musclemotor unit innervation zone localization usingmulti-channel electromyography (EMG)
signals. Our method is based on a linearity measure derived from eigenvalues of the Hessian matrix. The
motor unit action potential (MUAP) propagation pattern is first detected in the spatio-temporal sEMG images
using a Linearity measure based on eigenvalues of the Hessian matrix. The corresponding MU IZs is then
identified as the starting point of propagation of the MUAP. A software is also developed which can be used
to record and visualize the signals acquired from EAS and other muscles, detect, and display the IZs and
more importantly compute and display the histogram of the IZs and generate reports which will help the
obstetrician while performing episiotomy during child delivery to avoid cutting vulnerable regions that may
lead to fecal incontinence at later age. The evaluations,on both simulated and experimental EMG signals,
demonstrate the effectiveness and robustness of our proposed approach. Compared to existing methods, our
approach achieves higher accuracy in innervation zone localization on experimental and simulated signals
with mean absolute error of 0.53 and 0.53 inter electrode distance (IED).

INDEX TERMS EMG signals, spatio-temporal image, eigenvalue, Hessian matrix, linearity measure,
innervation zone.

I. INTRODUCTION
Themotor unit (MU) is a fundamental component of amuscle
and is made up of a motor neuron and several fibres it inner-
vates. The motor unit innervation zone (MU-IZ) is a region
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approving it for publication was Jinhua Sheng .

where a lot of neuromuscular connections that belong to the
same MU are dispersed (see Fig. 1a). Each MU has one IZ in
addition to several neuromuscular connections. One or more
IZs may exist in a muscle. At every neuromuscular junction,
where a fibre is innervated, an electrical potential begins
and runs in the fibres in opposition to one another called
fiber potential. The motor unit action potential (MUAP) is
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FIGURE 1. a) A motor unit (MU) composed of a motor neuron and its corresponding muscle fibers. The MU-IZ is the region of space
where the neuromuscular junctions are located [image courtesy of Pearson publications], b) The sEMG consisted of MUAPs acquired with
an electrodes array placed parallel to the muscle fibers with a bipolar electrode arrangement.

a collection of these fibre potentials from the same MU.
When muscle fibres are along the skin, as in Fig. 1b, we may
see the MUAP pattern in the sEMG signal collected with
an electrode array placed parallel to the muscle fibre on the
skin. The MU-IZ is the starting point of the bidirectional
MUAP propagation. High density sEMG signals from various
skeletal and non-skeletal muscles exhibit this type of MUAP
propagation pattern [1]. If one end of the electrode array is
near the IZ, then instead of bidirectional propagation, uni-
directional MUAP propagation can be seen in the acquired
EMG signals [2]. This is very common in the EMG signal of
the External Anal Sphincter (EAS) muscle [2]. The aim of
this research is to automatically detect the MU IZ of different
muscles from multi-channel EMG.

Since the sEMG amplitude is smaller when the electrodes
are over the IZs in single differential configurations, collect-
ing sEMG at the innervation zone may result in inaccurate
estimation of the EMG amplitude parameters such as the root
mean square (RMS) value, average rectified value (ARV),
and other significant parameters of the EMG signals [1].
For proper assessment of these parameters, which will result
in accurate estimation of the physiological and anatomical
information of the muscle, the identification of the IZ is
therefore important prior to recording the EMG signals. Also,
In order to control exoskeletal, rehabilitative, and prosthetic
robots, sEMG is also employed to quantify muscle force [3].
Since they take into consideration the spatial variation of
the sEMG signal in the muscle, recently created methods
using multi-channel signals for estimating muscle force have
greatly improved the force estimation [4]. Recent research
has discovered that the electrodes’ placement across the IZs
region alters the EMG amplitude parameters, which in turn
influences the force estimates. Therefore, IZs localisation is
crucial for exoskeletal and prosthetic device control. Accord-
ing to a recent study in [5], the channels having IZs had a
higher percentage of faulty channels when it came to EMG to

Forcemodelling. The placement of electrodes over IZs should
be avoided to obtain a constant EMG-Force connection, and
this can only be done if the position of the IZs is known.
Obstetricians and medical professionals can detect the area
around the EAS muscle vulnerable to perform episiotomy by
determining the position of IZs of the external anal sphincter
(EAS) muscle during episiotomy during childbirth. Accord-
ing to several studies [6], [7], and [8], there is a strong
correlation between women’s EAS incontinence and EAS
injury in cases of episiotomy after vaginal childbirth. Those
who have an episiotomy during childbirth are more likely
to have faecal incontinence than women who don’t have
damaged EAS nerves [9]. The risk of nerve tears during
child delivery or obstetric is discussed to a greater extent
in literature, however, the best location for performing the
episiotomy is yet to be determined due to large number of
variations in the MU-IZs from woman to woman. Thus to
guide episiotomy in a good way, the MU-IZ of EAS muscle
of each individual subject should be detected first and then
a possible location (middle, left, right) of the vagina, can be
suggested for the cutting, or cutting may be considered too
dangerous and avoided. Poststroke spasticity is considered as
emerging health problem for stroke fighters [10]. Botulinum
toxin remains the first line treatment for focal spasticity man-
agement. In recent research in [11], it was found that precise
injection near the MU-IZs increase the effect of Botulinum
neurotoxin type A (BoNT-A) and thus reduces the dosage
and expense. They also claimed that near theMU-IZ injection
reduces the BoNT-A dose into the and optimizes the therapy
effect of BoNT-A. It also minimizes the side effects such as
undesirable weakness of the nearby muscles.

The identification of MU-IZs is crucial in the aforemen-
tioned clinical and non-clinical applications. Although an
expert can locate IZs by visually examining the bipolar signal,
this method is time consuming thus not applicable for real-
time applications; hence, algorithms are required to automate
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this IZ localization procedure. The objective is to develop
innovative methods for the multi-channel sEMG-based auto-
matic localization of muscle IZs, specifically for the EAS
muscle and broadly for other skeletal fusiform muscles.

II. RELATED WORK
Researchers have recently made numerous attempts at
automating the process of localizing innervation zones in
multi-channel surface electromyography (sEMG) [12] indi-
cates that the electrode with the lowest sEMG RMS value is
the one where the MU-IZs are located. This is not always
the case, however, as in the case of EAS muscle, there
are typically channels that have no MUAP activity but are
nonetheless recognised as IZs since their RMS is likewise
lower than that of the other channels. The method’s other
drawback is that it can only identify one IZ per epoch of
the EMG signal because it computes the lowest EMG RMS
over all channels for the whole epoch, which only has one
value and can only identify one IZ. However, for EAS, the
IZs are under distinct electrodes for various MUAPs, and the
muscular MUs are typically not innervated at the same spot
(see Fig. 3). Methods based on optical flow techniques were
proposed by Östlund et al. in [13] and Saitou et al. in [14].
None of these techniques, however, were applied especially
for the signal from the EASmuscle or compared to the ground
truth value (the real position of IZ). There are also some
more recent strategies based on multi-channel sEMG that
use template matching and the Radon Transform [15], [16],
however none of these systems extract the MU-IZ using a
2D spatio-temporal EMG map. The exceptionally accurate
method for the automatic detection of motor unit IZs that we
previously presented in [2] requires a preliminary decompo-
sition of the EMG signal into individual motor unit action
potentials, which is computationally expensive and cannot be
completed in real-time. The authors of [17] employed a novel
approach based on graph cut segmentation for the detection
of IZs. This technique can identify several innervation zones,
however, is only used to analyse synthetic data rather than
complicated experimental EMG signals from EAS muscles.
In a recent study in [18], the authors proposed a new method
for innervation zone localization based on ICA and radon
transform. Although the results of the proposed method are
good for clean EMG signals, however the radon transform
is very sensitive to noise. In order to detect many IZs in
a single EMG epoch without first decomposing the signal,
and from noisy signals, a novel approach for IZs localization
needs to be devised. The proposed method overcomes these
limitations with following contributions.

i. The proposed method detects muscle innervation zone
directly frommulti-channel EMGwithout prior decom-
position of the signals.

ii. A novel representation as spatio-temporal image of the
multi-channel EMG is proposed.

iii. For IZ localization a novel linearity measure in
spatio-temporal EMG image is presented which detects
innervation zones with high accuracy.

FIGURE 2. a) 15-channel simulated single differential noisy EMG signal,
b) its corresponding interpolated spatio-temporal EMG image.

FIGURE 3. a) A synthetic 16 channel noisy signal with a propagating
Gaussian profile, b) the corresponding spatio-temporal image, c) The
linearity coefficient for the image in b). It is evident from the results that
the tubular structure in the given image is enhanced while the
background is suppressed. d) The segmented tubular region.

III. METHODS AND MATERIALS
Multi-channel sEMG signals can be represented using
spatio-temporal images where time is depicted along the
x-axis, electrode numbers along the y-axis, and EMG ampli-
tude is the gray level of the image. An example of sEMG
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TABLE 1. Local structure classification in image based on eigenvalues of
Hessian matrix of each pixel in the image.

signal and its corresponding spatiotemporal EMG image are
depicted in Figs. 2a and b, respectively. Over a grey back-
ground, the MUAP propagation pattern appears as a structure
that resembles a series of, white, and black lines. Positive
EMG amplitude causes the white pattern, while negative
amplitude causes the dark pattern.

In a spatio-temporal sEMG image with a MUAP pattern,
a Gaussian waveform can be used to mimic both the bright
and dark regions [19]. So, a filter for MUAP representation,
augmentation, and detection can be created using multi-scale
second order local structure (Hessian). To do this, the local
likelihood of the MUAP propagation pattern can be calcu-
lated using the Eigenvalues of the Hessian matrices for each
pixel of the sEMG pictures. A similar approach is used by
Ullah et al. to enhance linear features in digital images [19].
Based on the work of Farina and Merletti [20] we proposed
a multi-scale method to detect MUAP propagation in sEMG
images. The EMG spatio-temporal image is first convolved
with the derivative of a Gaussian at various scales, and then
essian matrix is computed for each pixel. The eigenvalues
namely λ1 and λ2 of the Hessian matrix for each pixel are
then computed to determine whether that pixel is a part
of the MUAP propagation structure or not. It is discovered
that a sEMG image pixel in a MUAP propagation region
has λ1 smaller (almost zero) and λ2 negative and of greater
magnitude [19]. To locate the local MUAP structure in the
images, one can use these eigenvalues. Table 1 [20] lists
the classification of local structures that can be determined
based on eigenvalues of Hessian. This multi-scale technique
enables the enhancement and detection of the linear structure
i.e. MUAP in sEMG spatiotemporal images.

A. ELECTRODE ARRAY FOR sEMG ACQUISITION
Multi-channel sEMG signals are acquired from human mus-
cles using a linear array of N equally spaced electrodes
placed over a muscle along the direction of muscle fiber.
Using this configuration N monopolar signals are acquired
which are then converted to N-1 single differential sEMG sig-
nals. Such electrode arrays used in this study are developed,
at LISiN politecnico di Torino, by Roberto Merletti and his
team [21]. The signals acquired with this configuration are
1D signals for one electrode with respect to time. However
for multiple electrodes the signals can be represented as 2D
spatio-temporal image where the electrode covers the space
and the time is the 2nd dimension.

B. MUAP DETECTION USING EIGENVALUES
OF THE HESSIAN
A pixel in the sEMG spatio-temporal image can be cate-
gorised as either belonging to the background, a line-like
(MUAP) structure, or a spot based on the eigenvalues of
the Hessian, as was previously mentioned, and summarised
in Table 1. While the eigenvalues can categorise a pixel,
they are unable to reveal any details regarding that pixel’s
intensity level. To quantify the line-like MUAP pattern in
the spatiotemporal EMG images, we propose a metric called
Linearity Coefficient (CL), based on the eigenvalues of Hes-
sian for each pixel, the following two variables are initially
calculated: 1) the norm N and 2) the eigenvalues ratio R.

N =

√
λ21 + λ22, R =

|λ1|

|λ2|
(1)

The linearity coefficient is calculated using the Norm (N)
and eigenvalues ratio (R) as follows.

CL = N ∗ (1 − R) (2)

For a pixel belonging to the line-like MUAP propagation
region, the value of N is higher as the absolute value of the
2nd eigenvalue (|λ2|) is higher, while the ratio R is nearly zero
as the first eigenvalue of λ1 is zero and the 2nd eigenvalue λ2
is higher thus CL is nearly one. In contrast, for a pixel belong
to the background region, R is nearly one and N is lower
thus CL is nearly zero. Thus the MUAP propagation region in
the image after applying the linearity measure of equation 2,
is enhanced and the background region with noise is sup-
pressed as the CL value is nearly one for the MUAP region
and zero for the background. To elaborate the performance
of the proposed linearity measure, an example of synthetic
signal and its spatio-temporal image with a Gaussian profile
of width σ = 15 pixels is synthetically simulated as shown in
Fig. 3a and 3b respectively.The linearity coefficientCL of this
synthetic image is shown in Fig. 3c. It is clear from the Fig.3c
that the CL is higher for the tubular structure while zero for
the background pixels. Thus this linearity coefficient is suc-
cessfully suppressing the background noise while retaining
the tubular line-like structure (similar to MUAP propagation)
and enhances it in the image. The enhanced image can now be
binarized using adoptive threshold. This threshold is chosen
to be 0.07 in this study after empirical findings on several
sets of EMG signals. The segmented tubular region for the
synthetic signals of Fig. 3a is shown in Fig. 3d. An example
of the linearity coefficient CL computed for a simulated
EMG signal (simulated using the model presented in [22]
is also shown in Fig. 4. The signal is contaminated with
uniform noise of SNR 10dB. It can be seen from the results
in Fig 4c that despite the presence of the noise, the linearity
coefficient is High in the MUAP propagation region and is
zero otherwise which leads to an enhanced image in which
the MUAP propagation region is now clearly distinct from
the background and can be segmented using an adaptive
threshold or any other segmentation method. The segmented
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TABLE 2. Interquartile range values, 95% confidence intervals, mean value and the p values (probability of observing the given result, by chance if the
null hypothesis is true) for the error distributions of IZ identification comparing different methods.

MUAP region after binarization using adaptive thresholding
is shown in Fig 4c.

C. DETECTION OF THE IZs FROM THE MUAP SEGMENTED
IMAGES
The MUAP segmented image has sometime some small non
propagating region falsely identified due to noise in the
sEMG signals. Thus, morphological operators like dilation
and erosion are used to remove the outliers. As multiple firing
of the same MU or firing of different MUs can occur in a
single EMG epoch, thus multiple MUAPs are detected by the
proposed method in a single EMG spatio-temporal image.
Thus, labels are assigned to all the regions identified in the
image. For each region then various parameters like starting
and end points, slope of the central axis, y-intercept of the
central axis etc. are computed. These parameters are used to
group the regions belonging to same MUAP.

Each MUAP region is then classified as propagating
in upward direction (upward Line) or downward direction
(downward Line) based on their slope. Before identifying

the IZs, we first determine either there is bidirectional or
unidirectional MUAP propagation at a particular time instant.
For this purpose, we compare the starting time instants of
the upward and downward propagating lines. If the upward
and downward propagating lines start at the same time instant
and there is a difference of 1 channel (with some tolerance)
between their starting channels, then bidirectional propaga-
tion is recorded and the point of intersection of the upward
and downward propagating regions correspond to the IZ at
that time instant. Otherwise, unidirectional propagation is
recorded and the IZ is the starting of the upward or the down-
ward propagating line (whichever exists at that time instant).
An example of the proposed method applied to experimental
EMG signals from EAS muscle is shown in Fig. 5.

IV. RESULTS AND DISCUSSION
As a result of various noises and the destructive interference
of neighboring MUAPs, EMG spatio-temporal images have
poor MUAP visibility. Due to a combination of destructive
and constructive interferences, as well as the presence and
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FIGURE 4. a) A 16 channel noisy simulated single differential EMG signal,
b) Its corresponding interpolated spatio-temporal EMG image, c) The
linearity coefficient for the image in b). It is evident from the results that
the MUAP structure in the given image is enhanced while the background
is suppressed. d) The segmented MUAP.

absence of noises at various electrodes, the thickness of
the MUAP propagation region might occasionally be irreg-
ular [19]. Thus, a multi-scale fiter is required to reduce
background noise while maintaining and enhancing the
MUAP regions at various scales proportional to the MUAP
width. This is achieved by computing the hessian matrix
at different scales and then the linearity matrix is used for
MUAP detection which leads to detection of MUAP of dif-
ferent sizes and widths.

To evaluate the performance of the proposed method, three
types of signal datasets are used. The first dataset consists
of synthetic images with gaussian propagating profiles of
different width. An example of such synthetic image, the
linearitymeasure, and the detected propagating structure (like
MUAP) are shown in Fig. 3.

The 2nd dataset is a set of simulated EMG signal
generated using the cylindrical model of the muscle pro-
posed by Farina and Merletti [20]. The model takes a
source which is a spatio-temporal function that characterised
the creation, propagation, and extinction of the intracellu-
lar action potential at the end-plate, along the fibre, and
at the tendons, respectively. The volume conductor was
described as an anisotropic multi-layered cylinder. The
Inter-Electrode-Distance (IED) was set to 5 mm and the rest
of the model parameters were same as described in [2]. 16
Single Differential (SD) channels with a sampling frequency

of 2048 samples/sec were simulated along the muscle fibre
direction. An example of the simulated signal, the detected
motor units using the linearity measure and the corresponding
motor unit IZs are shown in Fig. 6. A total of 640 MUAPs
were produced using the cylindrical model of [19] to com-
pare the proposed method with the others mentioned in this
paper. The model generates EMG signal with single MUAP
recorded by a circumferential 16 electrode array in single
differential mode. Single MUAP is generated because the
methods discussed here are able to detect IZ of a single
MUAP only. The proposed method is compared with 2D
correlation method [2], Radon Transform method [15] and
Template Matching method [16]. Error between the actual
location and the detected location by each method is com-
puted for these simulated signals. As for most of the methods
the error distribution was not Gaussian so the median and
interquartile range of the error are computed as performance
indicators. For the simulated signals, the proposed linearity
measure (LC) based method showed the least inter quartile
ranger (IQR) error of 0.1633 IED compared to the 2DCorr
with IQR of 0.2312 IED, Radon Transform 0.4926 IED and
Template Matching 1.1926 IED.

Comparisons between the median of the error distributions
were made using the Wilcoxon signed rank test. The compar-
ison and error analysis in identification of innervation zone
for simulated signals is summarized in Table 1. It is evident
the proposed method outperform with least IQR error. The
Template matching method uses a threshold whose optimal
value is difficult to determine that is why it has higher error
in IZ localization. Other drawbacks of the 2DCorr, Radon
Transform and Template matching method is that it can only
detect single IZ per epoch. However in most of the cases
for EAS muscle there are multiple Innervation zones and the
proposed linearity measure based method is able to detect
multiple Innervation Zones per epoch. An example of such
EMG signal with multiple motor units firing and multiple
innervation zones is shown in Fig. 6. The average error of the
proposed method for simulated signals for multiple channels
is 0.53 IED.

The third dataset consists of experimental EMG signals
captured from 150 patients chosen at random from a clinical
study on External Anal Sphincter (EAS) muscle [21], [22],
[23]. The probe shown in Fig. 7a was used to find the signals.
Intra-anal sEMG signals were recorded at 2048 Hz, stored
on a PC after 16 bit A/D conversion, and then bandpass
filtered off-line in the frequency range of 20 to 450 Hz. The
intra-anal sEMG signals were recorded in single differential
mode using a 16 channel EMG amplifier (www.lisin.polito.it,
Torino, Italy) with a gain of 186 V/V, 2-500 Hz 3 dB Each
participant was instructed to unwind while the basic sEMG
signal was captured for 10 seconds, and they then had to con-
tract strongly while the EMG signal was likewise recorded
for 10 seconds.

Figure 7b depicts an example of a sEMG signal from
EAS muscle. Additionally shown in Fig. 7 are the associated
interpolated spatio-temporal image, the segmented MUAP
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FIGURE 5. Example of EMG signals from EAS muscle of two subjects, the detected MUAPs and the detected IZs using the proposed
method. The red spheres represent the location of the innervation zone.

FIGURE 6. Simulated EMG signals, the spatio-temporal EMG image, the Linearity measure, the segmented MUAP, the grouped regions
related to single MUAP, the detected Innervation Zones using the proposed method.

regions, the grouped regions, and the recognised Innervation
zones. Using these experimental sEMG signals from EAS
muscle, the suggested method was compared with the com-
peting approaches. The innervation zones of the EAS muscle
were found using these experimental EMG data using the
proposed Linearity measure approach, which had the lowest
IQR error of 0.1748 IED. The IQR error for the 2DCorr
method was 0.32 IED, but the IQR errors for the RT and the
TM were 0.49 IED and 1.19 IED, respectively. The detailed
analysis is shown in Table 1. Since the true positions of the
IZwere unknown, the inaccuracy was calculated in relation to

the visual identification on interpolated signals (interpolation
factor of 10). Since thresholds are applied by the TM and RT
algorithms when identifying the IZ, in 31% of the cases, these
approaches failed to do so. The TM technique additionally
provides a bimodal distribution of the error. Since the position
of the IZ in experimental signals is unknown and expert visual
identification of the IZ is the gold standard.

In comparison to other approaches published in the litera-
ture, the unique method for MUAP detection and subsequent
MU IZ localization shown in this study offers improved
results, and it is in good agreement with the gold standard
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FIGURE 7. a) 16-channel probe for acquisition of sEMG signal from EAS muscle, b) Example of a 16-channel sEMG acquired using
the electrode probe shown in a for 10m.

offered by the visual detection carried out by an expert opera-
tor (Fig. 7 and Table 1). The method has one minor drawback:
It necessitates a certain number of non-overlapping MUAPs
in a single epoch. Additionally, the method’s small tails of
inaccuracy are probably caused by motor units that are very
close to one another and fire simultaneously. In contrast
to the time-consuming visual analysis, which provides a
median bias of 1.1 percent of IED, IQR = 0.20 IED, and
95 percent CI = [0.72 to 0.68], the proposed method is
nearly bias-free, IQR = 0.17483 IED. The proposed linear-
ity measure based technique might be used on any skeletal
muscle, while being specifically designed for the sphincter
muscles.

V. CONCLUSION
This research work presents a novel method for muscle
innervation zones localization from spatio-temporal sEMG
images. The method based on multi-scale filter has however
overcome the limitations of the 2DCorr method as it does
not require any prior decomposition of the EMG signal.
In conclusion, a novel method for automatic IZ location
was developed and tested on simulated and on experimental
MUAP signals detected from the EAS. The performance
of the method is comparable to that of an expert human
operator. The method may further be improved by using
suitable pre-processing techniques to enhance the quality of
the images.
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