
Received 2 May 2024, accepted 20 May 2024, date of publication 24 May 2024, date of current version 3 June 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3404918

LinFuzz: Program-Sensitive Seed Scheduling
Greybox Fuzzing Based on
LinUCB Algorithm
YINGHAO SU 1, DAPENG XIONG2, YING WAN2, CHENGHAO SHI2, AND QINGYAO ZENG1
1Institute of Graduate, Space Engineering University, Beijing 101416, China
2Institute of Aerospace Information, Space Engineering University, Beijing 101416, China

Corresponding author: Dapeng Xiong (xiongdapeng@hgd.edu.cn)

This work was supported by the Science and Technology on Complex Electronic System Simulation Laboratory under
Grant 614201002012204.

ABSTRACT The mutation-based greybox fuzz testing technique is one of the widely used dynamic
vulnerability detection techniques. It generates testcases for testing by mutating input seeds. In the process
of fuzz testing, the seed scheduling strategy and energy scheduling strategy impact the test results and
efficiency. Existing seed scheduling strategies, however, only consider a few specific seed attributes and
ignore contextual information during seed execution. This oversight makes it challenging to prioritize the
selection of suitable seeds based on historical fuzz test results. Meanwhile, current methods for calculating
coverage lack evaluation of software paths, which makes it easy to waste time on testing high-frequency and
low-risk paths. This article proposes a new greybox fuzzing scheme, LinFuzz, which transforms the seed
scheduling problem into a contextual multi-armed bandit machine model. It utilizes the LinUCB algorithm
to assess the value of seeds for scheduling by considering their historical execution information. At the same
time, LinFuzz improves the calculation method for fuzz testing path rewards and the seed energy scheduling
algorithm. It allocates more energy for testing low-frequency paths in the testing program, thereby enhancing
the efficiency of exploration and the path coverage ability of the testing tool. This article evaluated the
proposed LinFuzz on 12 real programs in comparison with other open-source tools such as AFL, AFLFast,
FairFuzz, Neuzz, etc. The results show that under the same testing time budget, LinFuzz outperforms other
tools in terms of vulnerability discovery quantity and code coverage ability. Compared with complex fuzz
testing optimization algorithms, LinFuzz has lower memory consumption and time complexity.

INDEX TERMS Coverage-guided fuzzing, LinUCB algorithm, seed scheduling.

I. INTRODUCTION
Fuzz testing, a dynamic method for uncovering vulnerabili-
ties, has been widely employed in software testing due to its
effectiveness and the absence of the necessity for static anal-
ysis of associated programs [1]. Fuzz testing is an approach
that utilizes automation to produce random inputs, execute
the test program, and monitor for exceptions to identify pro-
gram defects. One of the most advanced testing techniques in
this area is coverage-guided greybox fuzzing (CGF), which
has been widely adopted by the industry and has proven

The associate editor coordinating the review of this manuscript and

approving it for publication was Chi-Yuan Chen .

effective in detecting tens of thousands of vulnerabilities in
commonly used software.

In the coverage-guided fuzz testing, the fuzzer initially
maintains a queue of seeds. Testcases for software are gen-
erated from seed files. Each execution of a testcase leads to
the activation of a distinct execution pathwaywithin the target
program. Subsequently, the fuzzer enhances the performance
of fuzz testing by allocating mutation energy to these seeds.
Numerous studies have shown that there are differences in
the effectiveness of seeds in generating compelling test cases.
These test cases can induce distinct execution paths or cause
crashes in the target program. The effectiveness of fuzzing
in exploiting program vulnerabilities varies, as different
test cases traverse distinct execution paths. Seed scheduling

VOLUME 12, 2024

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 74843

https://orcid.org/0009-0003-7818-7688
https://orcid.org/0000-0001-9338-4274


Y. Su et al.: LinFuzz: Program-Sensitive Seed Scheduling Greybox Fuzzing Based on LinUCB Algorithm

optimization is widely recognized as a highly effective strat-
egy for enhancing the efficiency of fuzzing [2]. Therefore,
the implementation of a carefully designed seed scheduling
and energy allocation strategy is essential for effectively gen-
erating a greater number of intriguing test cases. However,
establishing a definitive causal relationship between vulner-
abilities and seed files is challenging due to the inherent
uncertainty associated with vulnerabilities in software. The
presence of uncertainty in identifying the seed most likely to
result in a crash adds complexity to the problem of optimizing
seed scheduling. This uncertainty also makes the problem
unsolvable from a mathematical perspective [3].
The classic seed scheduling strategy primarily relies on

a single indicator to calculate seed fitness for guiding seed
scheduling and prioritizing sorting [4], [5], [6], [7]. This
method evaluates the relative value of candidate seeds in
the test sequence by establishing a concise and intuitive
measurement standard. These standards are based on char-
acteristics such as coverage, number of executions, and
execution speed, which guide the sorting and scheduling of
seeds in the execution queue accordingly. Although this type
of single-indicator-oriented seed scheduling strategy has the
advantages of convenient implementation and easy under-
standing, relying on a single indicator to guide fuzz testing
may not necessarily yield favorable results due to the different
characteristics of the testing target program. This means that
it may not fully capture the true potential of seeds in exploring
deep-seated vulnerabilities or revealing complex program
behaviors.

In order to address the limitations of scheduling methods
based on the single fitness of seeds, researchers have utilized
multi-armed bandit (MAB) modeling techniques to solve the
seed scheduling problem [8], [9], [10]. The main obstacle
encountered by seed schedulers involves the complex balance
between seed exploration and exploitation [3]. On the one
hand, using new seeds has the potential to achieve broader
coverage. On the contrary, seeds with high fitness that have
already been explored may be more prone to discovering
vulnerabilities during the fuzzing process.

However, theMABmodel did not fully utilize the feedback
information from the fuzz testing process in making seed
scheduling decisions. Epsilon-Greedy and UCB algorithms,
based on the MAB model, only calculate rewards for seed
scheduling and energy allocation based on the coverage of
historical seed tests [11]. This makes it difficult to select
the optimal seed based on the characteristics of the testing
program and historical fuzz testing results [7]. These methods
not only delay the selection of seeds that may lead to crashes
but also reduce the resources allocated to effective muta-
tion test cases, thereby impacting efficient crash detection.
At the same time, fuzz testing tools utilize edge coverage
as a seed value evaluation indicator, while disregarding the
execution frequency of seed edges and the hazard function in
basic blocks. They typically consume a significant number
of resources for high-frequency and low-risk paths, which
reduces the efficiency of fuzz testing.

To address the aforementioned challenges, this paper
proposes LinFuzz to tackle the mentioned issues. In each
iteration of fuzz testing, LinFuzz systematically records the
attribute feature information of seeds, converts it into context
vectors, and then uses the LinUCB algorithm to accurately
estimate the potential value of each seed in the seed queue.
This process helps determine the priority order of seed execu-
tion. To overcome the limitations of edge coverage evaluation
indicators that cannot effectively reflect path execution fre-
quency and potential risks, the LinFuzz proposed in this study
innovatively adopts a path reward mechanism based on path
frequency and risk. Under this mechanism, LinFuzz quanti-
fies the frequency of each path execution and the level of risk
that may trigger vulnerabilities, using this as the standard for
the reward of the path. During fuzz testing, LinFuzz utilizes
a path reward strategy to direct the intelligent distribution of
seed energy. This strategy prioritizes allocating resources to
paths with low-frequency and high-risk functions. Addition-
ally, this reward mechanism is incorporated into the selection
process of the seed queue to ensure the preservation of seeds
that cover more valuable paths. In summary, our main contri-
butions are described below:
• In order to fully utilize program execution and seed

attribute information, we model the seed scheduling prob-
lem as a contextual multi-armed bandit machine model.
We design a seed scheduling strategy based on the LinUCB
algorithm, use context vectors to calculate expected seed
returns, and aim to achieve optimal seed scheduling.
• We propose a program path reward calculation method

based on path frequency and danger, which evaluates the pro-
gram path value according to program execution frequency
and the associated danger functions, effectively guiding fuzz
testing. Meanwhile, our method is lightweight and consumes
fewer resources compared to stain analysis and symbol exe-
cution methods.
• We have developed a seed energy allocation algorithm

and a queue cull algorithm based on path value. These algo-
rithms aim to enhance the exploration of low-frequency and
high-risk paths while maintaining the exploration capacity of
high-value seeds effectively.
•We have developed and implemented a new fuzz testing

tool called LinFuzz, which is a greybox fuzz testing tool
based on all the methods mentioned above. We compared
LinFuzz with open-source fuzz testing tools such as AFL.
We tested LinFuzz using the LAVA dataset and 12 real
programs. Prove the effectiveness of LinFuzz in terms of
discovering paths and the number of vulnerabilities.

The remainder of this paper is organized as follows.
In Section II, we provide an overview of Fuzz testing,

the MAB model, and the LinUCB algorithm. Section III
describes the specific architecture of the LinFuzz, includ-
ing the LinUCB based seed scheduling algorithm, path
value evaluation algorithm, energy allocation and queue cull
algorithm used by LinFuzz. In Section IV, we evaluate the
prototype system using the LAVA-M test suite and real pro-
grams and compare it with other fuzz testing tools. Section V

74844 VOLUME 12, 2024



Y. Su et al.: LinFuzz: Program-Sensitive Seed Scheduling Greybox Fuzzing Based on LinUCB Algorithm

discusses the limitations of our approach. Section VI intro-
duce the related work about the improve of fuzzing test.

II. BACKGROUND
A. COVERAGE GUIDED GREYBOX FUZZ TESTING BASED
ON MUTATION
Mutation-based fuzz testing generates test data by modifying
the content of seed files. Fuzz testing tools manipulate seed
samples through operations such as bit flipping,mathematical
operations, insertion, deletion, and concatenation, resulting in
new testcases. This approach explores more program execu-
tion paths, achieving higher code coverage and discovering
potential vulnerabilities in the software.

AFL [12] is a representative mutation-based greybox
fuzzer. It implements dynamic instrumentation technology on
each basic block during the compilation of program source
code to collect real-time branch coverage information during
program execution. This information guides its fuzz testing
process. During the execution of fuzz testing in AFL, the
program maintains a seed queue and follows a predetermined
scheduling strategy to extract the test seed file. After selecting
the seed file, AFL allocates energy to it. In AFL, the energy
given to each seed is fixed. AFLmutates the seeds to generate
a large number of test cases, which are then used to exe-
cute the target program. During the execution process, AFL
relies on feedback information provided by pre-implanted
instrumentation code to record and track the response of the
target program to different test cases and the execution paths
it traverses. AFL applies the coverage-oriented principle to
evaluate the value of the test cases obtained. For intriguing
test cases that cover new execution paths or trigger anomalies
in program behavior, they are added to the seed queue for
additional iterations and more thorough testing. Other test
cases that fail to yield effective exploration increments are
discarded. After completing the entire testing cycle for a
seed file, the fuzz testing tool selects the next seed from the
queue based on a loop mechanism for a new round of testing
activities. This process continues until the preset testing time
limit is reached or an external stop command is received. Seed
scheduling is an important method to enhance the efficiency
of coverage-guided fuzz testing. Seed scheduling is an impor-
tant method to enhance the efficiency of coverage-guided
fuzz testing.

Based on the analysis above, it can be seen that there is
still room for improvement in AFL in terms of seed schedul-
ing and seed energy allocation strategies. When selecting
seeds, AFL only considers factors such as execution time
and coverage, and cannot adaptively adjust seed selection
and energy allocation strategies [12]. Usually, some seeds
are continuously allocated more energy than the minimum
required to discover new paths, resulting in energy waste.
Based on AFL, we design improved seed scheduling strategy
and energy scheduling strategy to improve the efficiency and
detection rate of fuzzing.

B. CONTEXTUAL MULTI-ARMED BANDIT MODEL
The Multi-Armed Bandit model originates from probability
theory and game theory, providing a fundamental theoretical
framework for gradually learning optimal resource allocation
strategies in uncertain and dynamically changing environ-
ments [13]. This model assumes that there are N bandit
machines in front of the gambler, and he does not know
the true profit situation of each bandit machine beforehand.
He needs to choose which machine to pull down based on
the results of each bandit machine play in order to maximize
the final profit. This involves striking a balance between
exploring unknown options and utilizing known information
to achieve long-term benefit maximization.

The contextual bandit machine is an extension of the
multi-armed bandit machine model. It takes into account
the interaction between different bandit machines and the
influence of environmental factors [14]. In contextual bandit
machines, each bandit machine has contextual information
related to it, such as time, location, user information, etc.
This contextual information can affect the probability of prof-
itability for each bandit machine. Therefore, when choosing
the next bandit machine, gamblers need to consider the cur-
rent contextual information, as well as previous choices and
results, to determine their next action [15].

The context multi-armed bandit machine problem can be
represented as a tuple <A,X,R>, where:
A is a set of actions, which includes all executable actions.

Let a multi-armed bandit machine have a total of K pull rods,
defined ai ∈ A, i = {1, 2, . . . ,K }, to represent any action and
obtain a set of action spaces {a1, . . . , aK }.
X is the set of context vectors. For each action ai ∈ A, the

contextual multi arm bandit machine model defines feature
vectors xa,t for the contextual information of action a during
the experimental process.
R is the reward probability distribution, and each action

at corresponds to a specific reward R(r|a) probability dis-
tribution. The distribution of rewards for different levers is
typically varied.

Assuming that only one action can be selected at each
moment, the goal of the model is to dynamically optimize the
action selection strategy based on contextual information, and

maximize the cumulative reward max
T∑
t=1

rt , rt ∼ R (• | at)

income within a certain number of time steps t .
There are several issues with modeling seed scheduling

as Multi-Armed Bandit models. First of all, when applying
the MAB model, fuzzing models the seeds as the pull rod in
the middle. But with the progress of fuzzing, the number of
interesting seeds continue to increase, making it difficult to
achieve a balance between exploration and exploitation [3].
Secondly, the problem with traditional multi-armed bandit
machine models is that they assume that the profit probability
of each bandit machine is fixed. However, in the fuzzing
process, as the exploration path increases, the probability of
discovering new paths decreases. This makes it difficult to

VOLUME 12, 2024 74845



Y. Su et al.: LinFuzz: Program-Sensitive Seed Scheduling Greybox Fuzzing Based on LinUCB Algorithm

choose the optimal strategy by setting a fixed reward value
for the path. In fuzzing, there is a mutual influence between
the benefits of different seeds. However, the multi-armed
bandit machine model ignores the interaction between differ-
ent bandit machines, making it difficult to accurately model
fuzzing seed scheduling. To address the aforementioned
issue, this paper constructs program execution information in
fuzz testing into context vectors and designs seed scheduling
strategies based on contextual multi-armed bandit models.

C. LinUCB ALGORITHM
Due to the unknown reward for each action in the initial state,
solving the MAB problem requires two stages. The explo-
ration stage refers to attempting to pull more rods, which may
not necessarily result in the maximum reward. However, this
approach allows for the evaluation of the reward situation
for all rods. The exploration stage refers to pulling the rod
with the expectation of the maximum reward that is already
known. Since the available information is based on a limited
number of interactive observations, the current optimal rod
may not necessarily be globally optimal. Therefore, it is
necessary to design a strategy to balance the number of explo-
rations and exploitation, in order to maximize cumulative
rewards [16].
The LinUCB algorithm is an online learning algorithm

originally proposed by Li, a researcher at Yahoo, in 2010 [17].
The LinUCB algorithm combines linear regression models
with the Upper Confidence Bound strategy to dynamically
estimate the expected benefits of each arm in a continu-
ous, high-dimensional feature space. It intelligently explores
based on confidence intervals, effectively solving the con-
textual multi-armed bandit machine problem. The LinUCB
algorithm combines the concepts of linear prediction models
and confidence intervals. It establishes a linear prediction
model using feature vectors to estimate the expected reward
of the action arm and selects the action with the maximum
expected reward. As each action is taken and reward feedback
is received, the algorithm updates the linear model based on
the observational results, continuously optimizing its predic-
tive ability for future action rewards. The LinUCB algorithm
combines linear models and UCB strategies to effectively
balance the trade-off between exploring new information
and exploiting existing knowledge when dealing with deci-
sion tasks involving continuous and high-dimensional feature
spaces. It aims to maximize the cumulative reward within a
limited number of interactions [18].
The LinUCB algorithm defines a coefficient vector θ∗a for

each action a in action set A of the multi arm bandit machine
model, and sets the expected reward of each arm as a linear
function of its feature vector

E
[
rt,a | xt,a

]
= xTt,aθ

∗
a (1)

Based on historical data and returns, approximate estimates
∧
θ can be made. Defined Da as the m ∗ d dimensional feature
matrix at time t, which corresponds to the feature vectors

of m historical inputs and the reward vectors of m inputs,
ridge regression was applied to the historical data (Da, ca) to
estimate the coefficients:

θ̂a =
(
D⊤a Da + Id

)−1
D⊤a ca (2)

Using substitution, its upper confidence bound as shown in
equation (3)

P

{∣∣∣x⊤t,aθ̂a − E
[
rt,a | xt,a

]∣∣∣ ≤ α

√
xT

(
D⊤a Da+Id

)−1
x

}
≤ 1− δ (3)

where: α = 1+
√
ln(2/δ)/2 (4)

α is defined as explore factors. The larger α, the wider the
confidence interval, which is more inclined towards explo-
ration; On the contrary, the smaller α, the more inclined it is
to utilize.

At this point, the optimal action selected based on contex-
tual historical information is:

at
def
= argmax

a∈At

(
x⊤t,aθ̂a + α

√
x⊤t,aA

−1
a xt,a

)
(5)

where: Aa
def
= D⊤a Da + Id (6)

Through the LinUCB algorithm, the system utilized con-
textual information to fully exploit and explored each action
to be selected. This helped discover truly valuable actions,
gradually eliminate less than ideal actions, and achieve max-
imum revenue.

III. METHODS AND IMPLEMENTATION
A. OVERVIEW
LinFuzz is derived from AFL 2.52b and adheres to the
AFL framework, incorporating its key mechanisms such as
feedback-driven coverage and crash filtering mechanisms.
Based on the aforementioned considerations, we have incor-
porated the LinUCB seed scheduling algorithm and the
path-sensitive energy allocation algorithm into the seed
scheduling module in order to enhance the effectiveness of
the seed scheduling strategy.

Figure 1 illustrates the overall framework of the LinFuzz
system. The LinFuzz fuzz testing tool comprises a feature
extraction module, a seed scheduling module, and a program
execution module. In the process of fuzz testing, the seed
file is first added to the seed queue. The feature extraction
module removes low-scoring seeds based on the feedback
information from fuzz testing, extracts feature values from
seed execution, and constructs feature vectors. The seed
scheduling module utilizes the LinUCB algorithm to esti-
mate the expected seed return and choose the next round of
test seeds. The energy scheduling module utilizes an energy
scheduling algorithm based on path heat to allocate energy to
the seeds. The program execution module collects program
information through instrumentation and tests the seeds. The
test case execution information is fed back to the feature
extraction module to update the seed features, and new seeds
discovered during testing are added to the seed queue.

74846 VOLUME 12, 2024



Y. Su et al.: LinFuzz: Program-Sensitive Seed Scheduling Greybox Fuzzing Based on LinUCB Algorithm

FIGURE 1. The overview of LinFuzz.

The subsequent section of this chapter provides a com-
prehensive elaboration on the aforementioned perspective.
In Section III-B, the context attribute and the LinUCB
based seed scheduling algorithm were defined for the pur-
pose of seed selection. In Section III-C, the concept of
path value based on frequency and danger was introduced.
In Section III-D, the seed energy allocation and queue cull
algorithm based on path value were described.

B. SEED SCHEDULING ALGORITHM BASED ON LinUCB
When conducting fuzzing on a specific program, it has
been observed that seeds with identical attributes exhibit
varying levels of efficiency across different programs.
Reference [9] demonstrates, through the application of
statistical testing methods, that seeds possessing distinct
attributes exhibit varying performance within a single pro-
gram, while seeds possessing identical attributes exhibit
divergent performance across different programs. The cur-
rent fuzzing tools used for seed evaluation primarily focus
on identifying unique paths and crashes, often overlooking
the interrelation between various attributes and programs.
This oversight may result in the failure to detect cer-
tain vulnerabilities in seed discovery during the fuzzing
process.

In order to fully utilize the feedback information from
each round of fuzz testing, this paper abstractly expresses the
seed selection problem as a contextual multi-armed bandit
machine problem. Specifically, LinFuzz constructs a feature
vector Xt,s for each seed s. Based on the contextual infor-
mation accumulated during the historical iteration process,
it constructs a global seed context matrix At, while recording
the actual feedback reward pt brought by each seed. On this
basis, LinFuzz utilizes the LinUCB algorithm to predict the

upper limit of potential rewards for seeds. Subsequently,
it selects the seed with the maximum reward for the next
round of fuzz testing. The constructed context feature vector
Xt,s is crucial as it ensures the inclusion of attributes closely
related to the efficiency of fuzz testing while avoiding unnec-
essary increases in algorithm complexity due to excessive
dimensionality. To achieve this goal, we integrated the actual
testing scenario of real programs with the detailed feedback
offered by instrumentation technology. We systematically
identified several key seed attributes that directly impact the
efficiency of fuzz testing and developed the context attribute
vector of the seeds. The seed attributes contained in the fea-
ture vector are shown in Table 1, covering the basic attributes
of the seeds and information during program execution. Lin-
Fuzz compiles and executes programs using AFL’s LLVM
mode to obtain seed attribute information. During the process

TABLE 1. The Properties of seed in context vector.

VOLUME 12, 2024 74847



Y. Su et al.: LinFuzz: Program-Sensitive Seed Scheduling Greybox Fuzzing Based on LinUCB Algorithm

FIGURE 2. The new data structure of the seed queue.

of constructing feature vectors, some attributes need to be
standardized. We have adopted a standardized method for
label encoding for two types of attributes: execution time and
file size. Based on the practical experience of fuzz testing,
the execution time is categorized into four groups: long,
short, normal, and timeout. Similarly, the file size is classified
into three levels: large, small, and medium. Other funda-
mental attributes are documented according to the highest
value of the test samples produced following seed muta-
tion throughout the execution process. After each round of
fuzzing, LinFuzz updates the changing attribute information
to recalculate the seed reward in the next round of fuzzing
testing.

Algorithm 1 describes a seed scheduling approach that
leverages the LinUCB algorithm. The algorithm involves
updating the seed feature vector using historical testing out-
comes prior to commencing each round of fuzz testing,
as well as initializing the context feature matrix for newly
added seeds. It then proceeds to calculate the expected reward
and confidence upper bound of the seed based on histori-
cal execution data. Additionally, the algorithm updates the
context matrix parameters based on the feedback received
during each round of fuzz testing. The seed attributes and
reward values are updated before each round of fuzz testing,
and the expected reward and confidence upper bound of the
seed are computed using the LinUCB algorithm formula. The
seed with the highest expected reward is selected for the
subsequent round of fuzz testing. Following the fuzz test, the
context matrix parameters are updated based on the actual
reward obtained, and the process continues to the next round
of testing.

To operationalize a seed scheduling algorithm reliant on
context vectors, modifications were made to the seed storage
data structure to incorporate attributes and files associated
with the seeds, as depicted in Figure 2. The seed queue is
modeled after the AFL queue storage system, which retains
the initial stored data while incorporating the seed context
matrix and feature vectors. LinFuzz employs a maximum
heap to oversee the seed queue, organizing seed IDs accord-
ing to the anticipated value p, sequentially selecting seeds for
testing, and giving precedence to seeds with greater expected
reward values to optimize testing efficacy.

Algorithm 1 Seed Select Algorithm
Input: Seed Queues Q, Feature Vector xt ,
Seeds Context Matrix At ,Seed rewards rt ;
Output: The Seed in Next Fuzzing Loop

1: for t = 1 to T
2: Update Feature vectors of all Seeds in Q
3: for all s in Q do
4: If s is newseed then
5: As← Id (d-dimensional identity matrix)
6: bs← 0d×1 (d-dimensional zero vector)
7: End if
8: θ̂s← A−1s bs
9: pt,s← θ̂Ts xt,s + α

√
xTt,sA

−1
s xt,s

10: end for
11: k ← argmax

s∈Q
pt,s

12: fuzzing (sk )
13: get_reward rt,s
14: Ask ← Ask + xt,skx

T
t,sk

15: bsk ← bsk + rt,skxt,sk
16: end for

C. FREQUENCY AND DANGER BASED PATH VALUE
EVALUATION ALGORITHM
In the current field of fuzz testing tools, the assessment
of edge coverage serves as a crucial evaluation metric and
a benchmark for rewards, relying on reinforcement learn-
ing fuzzification [19]. At present, coverage-based fuzzing
tools do not differentiate the importance of different code
coverage segments, irrespective of the functionality of code
calls and their potential security impacts. Therefore, all input
samples that aid in discovering new statements or code con-
versions will be saved for future mutations [20]. Although
this approach may be deemed acceptable in software test-
ing for achieving thorough code coverage, it is considered
ineffective in identifying vulnerabilities. During the fuzzi-
fication process, as the number of specific path executions
increases, the likelihood of discovering new paths and vul-
nerabilities decreases. This leads to a gradual decrease in the
effectiveness of seed exploration and vulnerability discovery.

74848 VOLUME 12, 2024



Y. Su et al.: LinFuzz: Program-Sensitive Seed Scheduling Greybox Fuzzing Based on LinUCB Algorithm

In addition, paths in the program that involve dangerous
functions such as memory calls are more likely to expose
vulnerabilities. Therefore, relying solely on path coverage
to evaluate the value of paths may lead to fuzz testing seed
scheduling algorithms falling into local optima. To address
this particular issue, this study introduces a new method for
calculating program path fitness using path heat and path
danger.

The danger level of program edges is determined by the
danger function of path execution. Usually, vulnerabilities
are caused by developers mistakenly using standard library
functions that involve memory operations. Table 2 compiles
common hazard functions that are susceptible to triggering
vulnerabilities like buffer overflow and UAF, and categorizes
function hazards according to factors such as the complexity
of triggering vulnerabilities. The fuzzer assesses the level of
risk at the edge by considering the quantity of risky functions
and risk levels present in the basic block of the edge target
that is executed by the program.

TABLE 2. Common dangerous functions and risk levels.

Define V as the set of dangerous functions, Dese as the
target basic block of edge e, and Func(Dese) as the set of
functions called during the execution of basic blockDese. The
danger level of edge e is expressed as:

Risk(e) =
{
Vul(Func (Dese) ∩ V ) Func (Dese) ∩ V ̸= ∅

1 Func (Dese) ∩ V = ∅
(7)

Vul (·) represents the sum of all hazard functions in the set
according to the hazard level in the table. LinFuzz calculates
path danger by using the LLVM compiler’s getCalledFunc-
tion() to retrieve the function names in the basic blocks of the
program. It then matches these function names with a set of

dangerous functions in a table during the compilation of the
test program.

The heat of program edges corresponds to the number of
times each edge is executed in the fuzzing test. In fuzz testing,
LinFuzz constructs a shared edge execution frequency matrix
and records the number of times each edge is executed as
N (e). The frequency fitness of the edge is related to the heat
of the edge, defined as:

fre(e) =


1 N (ek ) ≤

n
10

n
10 ∗ N (e)

N (ek ) >
n
10

(8)

where n represents the number of seeds in the current queue.
The frequency fitness calculation method assigns higher

fitness to seeds with lower heat. When the edge heat is greater
than one-tenth of the number of seeds, we believe that it
is difficult to increase the new coverage by continuing to
execute the seeds passing through the edge. The frequency
fitness of the edge is inversely proportional to the heat of the
edge; in other words, the more times the edge is covered,
the lower the score. When the heat of the edge is less than
one-tenth of the number of seeds, we believe that there is
still a possibility of discovering new edges after the seeds
pass through the edge. The frequency fitness is assigned as 1,
and the higher fitness guides the next fuzz testing process to
continue selecting this path.

Based on theRisk (e) and frequency fitnessFre (e) of edges,
define the exploratory value of edges:

r (e) = Risk (e) ∗ fre(e) (9)

To calculate path fitness, LinFuzz captures the number of
program branch executions through instrumentation detec-
tion and manages them using shared memory. In order to
record the frequency of path execution and exploration value,
LinFuzz enhanced the AFL bitmap structure by incorporat-
ing the path frequency matrix and exploration value matrix.
These matrices record the number of edge executions and
exploration values, with each index corresponding one-to-one
with a bitmap index. The method for updating the value of
path exploration is illustrated in the Figure 3. After each seed
is executed, Linfuzz updates the bitmap based on the execu-
tion path, records the newly discovered path, and increases

FIGURE 3. Path value update process.

VOLUME 12, 2024 74849



Y. Su et al.: LinFuzz: Program-Sensitive Seed Scheduling Greybox Fuzzing Based on LinUCB Algorithm

the frequency value of the corresponding seed’s execution
path by 1. Finally, the exploration value matrix updates the
path exploration value based on changes in path frequency.

D. PATH VALUE UPDATE AND ENERGY ALLOCATION
ALGORITHM
The reward value of a seed is determined by the explo-
ration value of the path it covers. Improving the calculation
method of seed reward value serves a dual purpose: firstly,
it offers seed reward feedback for seed scheduling algorithms;
secondly, LinFuzz allocates seed energy and removes seed
queue elements based on the fitness of the seed execution
path. In the LinUCB algorithm, the initial feedback value is
determined by the exploration value of the edges it covers
and whether the seed triggers vulnerabilities. The seed reward
value is the sum of the exploration values of the edges in the
seed execution path. If the seed triggers a program vulnera-
bility, it will add additional value. Set the seed sk to cover the
edge set of the program, Ek , and the reward value of the seed:

r(sk ) =
∑
ei∈Ek

r(ei)+ 5 ∗ Is_crashed (10)

where Is_crashed indicates whether the test case of seed
mutation triggers a vulnerability. When the execution pro-
cess triggers a vulnerability, the value of Is_crashed is set
to 1. When the seed does not trigger a vulnerability during
the testing process, the value of Is_crashed is 0. The seed
reward value gives higher importance to seeds with longer
execution paths, which is advantageous for exploring deeper
code blocks. Meanwhile, as the value of edge exploration
decreases with the increase of edge heat, the seed value of
executing the same path multiple times will decrease. This
helps avoid limiting path exploration to certain branches and
achieves a balance between exploration and utilization.

The energy scheduling strategy also affects the efficiency
of fuzz testing. AFL calculates the seed score by considering
various factors, including the execution time of the testcases,
the size of the bitmap, and the average size of the seed
file. Based on this score, seed energy is assigned to the
seed. However, this approach fails to account for the varying
significance of paths, thereby overlooking the influence of
testcases execution paths on vulnerability detection. Conse-
quently, it becomes challenging to effectively leverage the
seed’s capacity for path exploration. This paper presents a
novel approach for energy allocation that takes into account
the sensitivity of the path. In order to allocate energy to
seeds, the average value of the covered path of each testcase
is computed. Subsequently, the energy adjustment factor is
determined based on the average path value, enabling the
secondary distribution of seed energy.

In each round of fuzzing, calculate the average path value
for the selected seed:

r(sk ) =

∑
ei∈Ek

r(ei)

length(Ek )
(11)

Set an energy adjustment factor based on the average path
value and improve the source AFL program to allocate energy
to seeds.

factor = 22(r(sk )−0.5) (12)

Seed .energy = max{Seed .energy ∗ rate,M } (13)

The secondary allocation of seed energy is accomplished
by employing energy adjustment factors. Seeds that follow
low-frequency paths are allocated more energy compared to
seeds that follow high-frequency paths. Algorithm 2 outlines
the procedural steps of this method. When the average path
value range of the seed falls between 0.125 and 0.5, the
range of the energy adjustment factor is between 0.6 and 1.
For seeds that follow high-frequency paths, it is necessary
to appropriately decrease the energy. When the average path
value range of the seed falls between 0.5 and 1, the range of
the energy adjustment factor is between 1 and 2. Exploration
is fostered through the augmentation of the seed’s energy.
Finally, in order to maintain optimal efficiency, the maximum
energy value of an individual seed is constrained to a value
denoted asM , thereby preventing any excessive energy from
negatively impacting the overall efficiency.

The aim of queue cull is to simplify the input while ensur-
ing equal edge coverage. In coverage-guided fuzz testing
tools, fuzzers typically add test cases that increase coverage
to the test queue. However, many retained test cases cover
the same edges, leading to redundant testing. Meanwhile,
a large number of seeds are retained in the seed queue, which
reduces the efficiency of the LinUCB algorithm. The queue
cull algorithm of AFL first marks all edges as uncovered.
Next, AFL iteratively selects an uncovered edge, chooses
the input that covers the edge with the smallest size and
execution delay, and marks all edges accessed by the input as
covered. AFL repeats this process until all edges are marked
as covered.

LinFuzz enhances the queue cull algorithm for AFL.
As described in Algorithm 2, LinFuzz Seed maintains a
temporary coverage bitmap Temp_map and marks all edges
as uncovered during initialization. Subsequently, LinFuzz
iteratively selects the seed based on its reward value, marks it
as ‘‘favor’’ and assigns a value of 1 to the edge covered by the
seed in the corresponding position of Temp_map. If it is found
that the current Temp_map edge set contains a seed-covering
edge set, meaning the seed has not changed the Temp_map,
it is marked as ‘‘no favor.’’ Due to the correlation between
the reward value and the number and depth of seed coverage
paths, this algorithm can prioritize retaining seeds with high
coverage and mutation potential while removing duplicate
coverage seeds.

IV. EXPERIMENTS
In our evaluation, we aim to answer the following research
questions:

Research Question 1:Can the seed scheduling method
based on LinUCB algorithm improve the efficiency of
fuzzing?

74850 VOLUME 12, 2024



Y. Su et al.: LinFuzz: Program-Sensitive Seed Scheduling Greybox Fuzzing Based on LinUCB Algorithm

Algorithm 2 Queue Cull
Input: Reward value based seed priority queue Q
1: for s = Q.head→ Q.end do
2: s.favor← 0
3: end for
4: temp_map← ∅
5: for s = Q.head→ Q.end do
6: s.favor← 1
7: if s.coveredge ∈ temp_map then
8: s.favor← 0
9: continue

10: end if
11: temp_map← temp_map ∪ s.coveredge
12: end for

Research Question 2:Are we proposed method’s perfor-
mance and efficiency better than those of the comparison
targets in various programs?

Research Question 3:How does our proposed method
affect the efficiency of fuzz testing?

We design three sets of experiments to answer the
above questions separately.We conduct all the follow-
ing experiments on a machine running 64-bit Debian
11.3.0 equipped with one Intel i7-10750H @3.60GHz and
8GB RAM. Each fuzzing instance is bound to a core to avoid
interference.

A. SEED SCHEDULING METHOD EFFECTIVENESS
In this experiment, we evaluated the effectiveness of our
proposed LinUCB algorithm in the seed scheduling pro-
cess. We integrate the seed scheduling method based on
the LinUCB algorithm into AFL. In order to conduct a
comprehensive comparative analysis, we selected the sim-
ple heuristic scheduling algorithm built into the original
AFL, as well as two widely recognized optimization algo-
rithms based on multi-armed bandit machine models: the
Epsilon-Greedy algorithm and the UCB algorithm, as con-
trol benchmarks. The experimental subjects are a group of
programs containing six specific vulnerability features, and
the specific types of these vulnerabilities are detailed in
Table 3. In order to rigorously test the effectiveness of the seed
scheduling algorithm, we standardized the instrumentation
and compilation of all test programs in the same experimen-
tal environment. Especially in the section involving Libexif
library functions, we have specifically developed correspond-
ing C language call interfaces to ensure compatibility and
accuracy. We consistently utilize the same seed file as the
source of initialization test data and meticulously set up
the seed file format dictionary in advance for XML special
format input scenarios to standardize and direct the accurate
generation and parsing of seed files.

Based on the experiment presented in reference [21],
the efficiency and performance improvement of fuzzing
can be evaluated by quantifying the exposure time.

TABLE 3. Subjects for Crash Reproduction in experiment A.

TTE (Time to Exposure) refers to the duration between
the initial discovery of a specific vulnerability and its
identification during the process of fuzzing. The mea-
surement of factor improvement involves calculating the
performance gain by dividing the average time to event
(TTE) of the AFL program by the TTE of the improved
program. A higher factor suggests that the method is
superior. For each program, we conducted five iterations
and calculated the average of the experimental results.
Table 4 presents the findings obtained from the conducted
experiment.

Using different scheduling algorithms to test specified vul-
nerabilities in the same environment, the TTE is shown in
Table 4. The table indicates that, in most cases, the fuzz test-
ing tool employing the enhanced seed scheduling algorithm
requires less time to exploit the target vulnerability. However,
in CVE-2009-3895 reappearance, the scheduling algorithm is
less efficient than the original AFL algorithm. Due to the time
required for seed fitness calculation in scheduling algorithms,
and the fact that this vulnerability is relatively easy to trigger,
the discovery of this vulnerability takes more time compared
to AFL. Compared to other scheduling algorithms, the Lin-
UCB algorithm has higher efficiency in discovering vulnera-
bilities, showing an efficiency improvement of over 10%.Due
to the fact that the LinUCB algorithm places more empha-
sis on the influence of program execution information and
seed properties on testing, while Epsilon-Greedy and UCB
algorithms only depend on historical rewards and seed cov-
erage for scheduling, their effectiveness in triggering specific
vulnerabilities is lower compared to the LinUCB algorithm.
The experiment shows that the LinUCB based seed schedul-
ing strategy adopted by Linfuzz is effective, especially for
complex vulnerabilities that may take a long time to trigger.
The vulnerability discovery efficiency has been significantly
improved.

The experiment shows that Linfuzz’s seed scheduling
strategy is effective and has a significant effect in testing
large-scale software, and can play an effective role in vul-
nerability replication.

VOLUME 12, 2024 74851



Y. Su et al.: LinFuzz: Program-Sensitive Seed Scheduling Greybox Fuzzing Based on LinUCB Algorithm

TABLE 4. Performance of seed schedule algorithm in experiment A.

FIGURE 4. The boxplot of region coverage found in 8 trials on LAVA-M, where ‘▲’ and ‘—’
represent the mean and median, respectively.

Answer to RQ 1. The proposed seed schedual
algorithm based on LinUCB can improved crash detec-
tion efficiency over comparison targets by appropriately
evaluating the crash detection potential of the seed and
preferential selecting suitable seeds in fuzz testing.

B. EVALUATION ON LAVA-M
In order to verify the efficiency of LinFuzz vulnerabil-
ity discovery, we conducted comparative experiments on
the LAVA-M dataset with other coverage oriented greybox
fuzzing tools. The LAVA-M dataset is proposed as a bench-
mark for evaluating fuzzers performance. The dataset con-

tains four programs: base64, md5sum, uniq, and who [22].
Each program is generated by injecting some bugs into the
source code. The triggering conditions of the vulnerability
add certain path constraints. Testing the LAVA-M dataset can
verify the effectiveness of the greybox fuzzing tool.

The experiment selected open-source fuzzers AFL [12],
AFLFast [7], AFLGo [21], FairFuzz [23] and AFL++ [24]
for comparison. For each fuzzer, use the same seed file to test
for 24 hours. Conduct 8 experiments using different seeds and
take the average of the results.

Each fuzzer conducted 8 experiments, and their path cov-
erage performance is shown in Figure 4. From the upper
quartile and median of the box plot, it can be observed that
LinFuzz performs the best in achieving path coverage for the

74852 VOLUME 12, 2024



Y. Su et al.: LinFuzz: Program-Sensitive Seed Scheduling Greybox Fuzzing Based on LinUCB Algorithm

TABLE 5. Number of paths covered and bugs found by each fuzzer on LAVA-M.

base64, who, and uniq programs. Table 5 indicates that in the
four programs of the LAVA-M test set, LinFuzz has a 15%
increase in total path coverage compared to AFL. However,
as shown in Figure 4, LinFuzz does not always achieve the
best results in every test. AFL++ performs better in the
md5sum program test, with a 2% increase in path coverage
compared to LinFuzz. Although LinFuzz changes the order
of seed testing and the allocation of mutation energy, it does
not modify the mutation method. Therefore, the initial seed
selection has a significant impact on the experimental results
of LinFuzz during program testing. However, LinFuzz has the
highest total path discovery count among the four test pro-
grams. From this, we conclude that our method outperforms
other open-source tools in terms of average path coverage on
the LAVA-M dataset.

Table 5 also shows the vulnerability discovery situation
of the fuzz testing tool in LAVA-M. As depicted in Table 5,
LinFuzz detected a higher number of bugs in base64, who,
and uniq compared to other fuzzers. In md5sum, AFL++
achieved more path coverage, resulting in a higher number
of vulnerability discoveries than LinFuzz. However, overall,
LinFuzz discovered the most bugs in the LAVA-M dataset.
Therefore, it can be concluded that LinFuzz outperforms
other fuzzers in the LAVA-M dataset.

C. EVALUATION ON REAL-WORLD PROGRAMS
In this segment of our experimentation, we assessed the per-
formance of LinFuzz by employing it on real-world software
programs. To identify appropriate exemplars that effectively
gauge the efficacy of fuzz testing, we undertook exten-
sive research into scholarly articles published in esteemed
journals within the realms of information security and soft-
ware engineering. This meticulous process culminated in
the identification of a collection of representative real-world
applications, presented in Table 6.
These 12 meticulously chosen programs serve as bench-

marks for assessing both the effectiveness and efficiency of
fuzz testing methodologies. They encompass a broad range
of functionalities, spanning six distinct categories: image pro-
cessing, audio parsing, video manipulation, compressed file
handling, binary file processing, among others. Notably, these

TABLE 6. The configuration of target programs.

programs exhibit not just functional diversity but also typify
a variety of security vulnerabilities. These include prevalent
security issues such as heap buffer overflow, stack overflow,
segmentation faults, global buffer overflows, different varia-
tions of stack buffer overflows, memory leaks, use-after-free
errors, floating-point operation exceptions, and more.

For comparative analysis, we selected four leading fuzzing
tools—AFL, AFLFast, FairFuzz, and Neuzz. The Neuzz [25],
specifically, is an enhanced coverage-guided fuzzing tool
built upon AFL, integrating neural networks to refine pro-
gram exploration and thereby enhancing the efficiency and
performance of fuzz testing. Each test program underwent a
rigorous 24-hour fuzz testing experiment, with random seed
selection drawn from a seed corpus for every trial. These
experiments were executed within a single-core processor
environment, designed to emulate the performance of fuzz
testing tools under identical resource constraints. Moreover,
each experiment was repeated five times to mitigate the
effects of randomness and ensure robust, reliable results.

Seed scheduling aims to discover additional paths and
vulnerabilities with the minimum number of execution cases.

VOLUME 12, 2024 74853



Y. Su et al.: LinFuzz: Program-Sensitive Seed Scheduling Greybox Fuzzing Based on LinUCB Algorithm

FIGURE 5. Number of total paths discovered by different fuzzers.

Therefore, we select the number of path coverage and vul-
nerability discovery as the evaluation criteria for fuzz testing
within the same time frame. Figure 5 illustrates the variation
of 24-hour path coverage, while Table 7 displays the total
number of path coverage and the average number of vulner-
abilities discovered by the fuzzers in 5 experiments.

The total number of path coverage for each fuzz testing tool
during the execution of the test program is shown in Table 7.
The data in Table 7 shows that in the coverage evaluation
of 12 target programs, LinFuzz achieved higher coverage
indicators in 8 of them and surpassed other comparison tools
in overall path coverage statistics. Specifically, compared to

74854 VOLUME 12, 2024



Y. Su et al.: LinFuzz: Program-Sensitive Seed Scheduling Greybox Fuzzing Based on LinUCB Algorithm

TABLE 7. Number of paths covered and bugs found by each fuzzer on real-world programs.

AFL and FairFuzz, LinFuzz achieved a significant improve-
ment, increasing path coverage by 11.44% and 11.48%,
respectively. For Neuzz, LinFuzz achieved a path coverage
increment of 3.00%. Based on the above data analysis, we can
conclude that the scheduling algorithm and energy allocation
strategy adopted by LinFuzz are effective in improving code
coverage.

Figure 5 illustrates the evolution trend of path coverage
over time for the test program using various fuzz testing
tools. The results indicate that in most cases, the Lin-
Fuzz path coverage rate is generally higher than that of
other comparative testing tools. Although LinFuzz’s path
discovery rate was slightly slower than AFLFast in the
testing of the readelf program, it still maintains a leading
position in overall performance on other programs. Due
to LinFuzz’s improved seed scheduling and seed energy
scheduling algorithms, seeds with higher mutation poten-
tial are prioritized for execution. This reduces the energy
required to execute high-frequency path seeds, guiding test-
ing tools to discover paths faster. On average, LinFuzz has
the highest path discovery rate among the five fuzzing testing
tools.

Table 7 shows that LinFuzz exhibits significant advantages
over comparative testing tools in terms of the total number of
vulnerabilities discovered. Among the six tested programs,
LinFuzz discovered the highest number of vulnerabilities.
For example, in the nm program, LinFuzz can discover two
additional unique vulnerabilities compared to AFLFast. The
Neuzz tool enhanced seed scheduling using neural networks

and determined that it outperformed AFL, AFLFast, and
FairFuzz in identifying vulnerabilities. The best vulnerabil-
ity discovery results were achieved in the cxxfilt and djpeg
program tests. However, overall, LinFuzz found the highest
number of independent vulnerabilities. Further precise anal-
ysis shows that the number of unique vulnerabilities revealed
by LinFuzz has increased by 57.52%, 21.91%, 13.37%, and
9.87% compared to AFL, AFLFast, FairFuzz, and Neuzz,
respectively. This result clearly demonstrates the superiority
and deep mining ability of LinFuzz in vulnerability discovery
performance.

In order to further verify the exact effectiveness of the vul-
nerabilities detected by LinFuzz, we documented the known
public vulnerabilities and their corresponding generic vul-
nerability disclosure CVE identifiers identified by various
fuzz testing tools in the target application during the exper-
imental process. These data are summarized in Table 8. The
results showed that LinFuzz performed particularly well in
identifying CVEs, successfully discovering a total of 22 CVE
IDs, which is 3 more than the second-ranked Neuzz tool.
These CVE IDs contain denial of service and stack over-
flow vulnerabilities, posing serious threats to businesses and
users. Compared with the original AFL tool, LinFuzz iden-
tified a total of 5 additional CVE IDs across all testing
objectives, demonstrating the effectiveness of our method
in enhancing vulnerability detection efficiency. The signifi-
cant performance of the discovered and published CVE IDs
demonstrates the effectiveness and efficiency of LinFuzz in
detecting serious vulnerabilities.

VOLUME 12, 2024 74855



Y. Su et al.: LinFuzz: Program-Sensitive Seed Scheduling Greybox Fuzzing Based on LinUCB Algorithm

TABLE 8. The published CVE IDs found by each fuzzer.

Answer to RQ 2. LinFuzz is effective and efficient
in coverage improvement and vulnerability discovery.
LinFuzz significantly outperforms the other test fuzzers
in terms of vulnerabilities detection. As for coverage,
LinFuzz achieves more average edge coverage on real
programs and LAVA-M dataset.

D. FUZZ OVERHEAD EVALUATION
LinFuzz collects more seed execution information at runtime
and constructs a feature matrix to calculate rewards, requir-
ing more steps in seed scheduling than AFL and AFLFast.
In addition, LinFuzz considers multiple seed attributes for
selecting seeds, but it does not prioritize seed size as the
main factor in seed selection. In fuzz testing, larger and more
complex seeds may be selected, leading to longer execution
times. Therefore, we anticipate that LinFuzz incur additional
overhead in fuzz testing, as its fuzz throughput is lower than
other testing tools such as AFL.

To assess the extra resource costs associated with LinFuzz
in improving fuzz testing performance, we systematically
recorded the average and peak memory usage of different
fuzz testing tools in a set of experiments aimed at real-
world programs. The results are summarized in Table 9.
Based on the data presented in Table 9, we have made

the following substantive observations. Overall, the classic
fuzz testing tools AFL and AFLFast perform excellently
in terms of memory resource utilization efficiency, with an
average memory consumption of only 13.3MB and 14.4MB,
respectively. In contrast, during the process of enhancing
fuzziness testing, LinFuzz had an average memory usage of
27.5MB, which is approximately double the average con-
sumption of AFL and slightly surpassed FairFuzz’s average
memory usage. In comparison with another tool, Neuzz,
LinFuzz demonstrated relatively better memory usage effi-
ciency, with significantly lower memory consumption than
Neuzz. Due to LinFuzz’s lightweight scheduling algorithm,
it performs better in terms of memory usage compared to
Neuzz.

In order to accuratelymeasure the impact of LinFuzz on the
throughput of fuzz testing, we focus on examining the time
ratio consumed by LinFuzz during the scheduling phase. This
is specifically manifested as the proportion of non-direct pro-
gram execution time, which includes seed feature extraction,
running the LinUCB algorithm, seed scheduling algorithm,
and energy scheduling time. We conducted a control exper-
iment and selected three other representative fuzz testing
tools for reference: Mopt [26], which utilizes the particle
swarm optimization algorithm to optimize the seed mutation
strategy; Neuzz, which employs neural networks to enhance
the efficiency and performance of fuzz testing by smoothing
programs; and Angora [27], which utilizes data flow tracking
technology to guide its fuzz testing process. These three
testing tools enhance the efficiency of fuzz testing through
various algorithms but also decrease the throughput of fuzz
testing. In the experimental design, we selected a diverse
set of program samples and varied seed inputs for each fuzz
testing tool to ensure the universality and accuracy of the test
results. Each tool conducted a single fuzz test lasting 3 hours
for the selected program and seed combination, and a total
of 20 independent experiments were carried out. Through-
out the entire experiment, we recorded the proportion of
non-program execution time relative to the total fuzz testing
time. This was done to gain a deeper understanding and
evaluate the time cost of each fuzz testing tool in enhancing
fuzz testing strategies during actual operation.

In Figure 6, we systematically calculated the proportion
of time each testing tool spent on non-program execution
tasks compared to their total fuzz testing time during the
experiment. The results show that the average time spent
by LinFuzz on seed scheduling in fuzz testing accounts for
approximately 1.5% of the total time spent in fuzz testing.
This percentage is lower compared to the time spent by Neuzz
and Angora tools, demonstrating the superiority of LinFuzz’s
scheduling algorithm in terms of time efficiency. Mopt has
the lowest non-program execution time among the four tools,
which is about 0.02 percentage points lower than LinFuzz.
Due to Mopt not requiring complex feature calculations and
matrix operations during runtime, the time cost is relatively
low. However, overall, although LinFuzz consumes a cer-
tain amount of time resources in the scheduling process,

74856 VOLUME 12, 2024



Y. Su et al.: LinFuzz: Program-Sensitive Seed Scheduling Greybox Fuzzing Based on LinUCB Algorithm

TABLE 9. The memory consumption (MB) of each fuzzer.

FIGURE 6. The boxplot of fuzzers’ seed scheduling time ratio, where
‘■’ and ‘—’ represent the mean and median, respectively.

the scheduling algorithm introduced by LinFuzz has a lesser
impact on the overall efficiency of fuzz testing. The increased
cost compared to tools that depend on complex optimization
methods like static analysis and neural networks seems to be
more moderate.

Answer to RQ 3.Although LinFuzz incurs additional
time overhead while optimizing fuzz testing perfor-
mance, this increase has a relatively low impact on fuzz
testing efficiency.

V. DISSCUSSION AND LIMITATION
This paper proposes a LinUCB seed scheduling algorithm
for enhancing fuzz testing efficiency. The algorithm aims to
accelerate path coverage and vulnerability discovery. How-
ever, the LinUCB algorithm utilizes matrix operations to
calculate expected rewards, which may reduce program exe-
cution efficiency. However, based on the LAVA-M dataset
and real program testing, it was found that LinFuzz can still
achieve better results in long-term fuzz testing. In comparison
to complex methods like static analysis, LinFuzz consumes
fewer resources. In actual program testing, we found that
LinFuzz has a higher path coverage rate compared to other
fuzz tools.

The method of calculating path value based on path
frequency and danger level improves the ability of fuzz test-
ing to explore low-frequency and high-risk paths. It also
enhances performance in terms of path coverage and the
quantity of vulnerability detection. The path value calculation
method proposed in this article relies on dynamic program
instrumentation technology and is suitable for greybox fuzz
testing. For black box fuzz testing without source code, it is
still essential to develop a method for calculating path values
based on program execution.

This paper proposes a path-sensitive energy alloca-
tion strategy to allocate higher energy to seeds executing
low-frequency and high-risk paths. However, the efficiency
improvement of fuzz testing through energy allocation is
limited. In the future, it will still be necessary to integrate
seed execution information and program analysis to develop
seed-directed mutation algorithms. This will enable seeds

VOLUME 12, 2024 74857



Y. Su et al.: LinFuzz: Program-Sensitive Seed Scheduling Greybox Fuzzing Based on LinUCB Algorithm

to explore more paths with the fewest mutations, thereby
enhancing the efficiency of fuzz testing.

VI. RELATEDWORK
A. COVERAGE-GUIDED GREYBOX FUZZING
As one of the most widely utilized methodologies in software
testing, fuzzing has experienced significant advancements in
recent years, particularly in the domain of coverage-guided
greybox fuzzing. In the conducted fuzzing campaign [23],
[26], [28], [29], [30], [31]. Numerous techniques have been
introduced to enhance the effectiveness of fuzzing across
various domains since its inception in the 1990s.

Several research studies employ static analysis and sym-
bol execution techniques to enhance the efficacy of fuzz
testing. QSYM [32] presents a novel approach that inte-
grates dynamic symbol execution with fuzz testing in
order to reduce superfluous program execution branches
and enhance the efficiency of vulnerability detection. Pro-
fuzzer [33] employs static analysis techniques to analyze
the correlation between input bytes and program execution.
GreyOne [34] employs stain analysis technology to analyze
input data and execute program branches, thereby enhanc-
ing the efficiency of the fuzz testing procedure. Meanwhile,
numerous studies have employed deep learning techniques
to enhance the effectiveness of fuzz testing. NEUZZ [25]
employs a neural network model to identify significant
bytes in the program input and generates test cases using
the gradient model. Zong et al. [35] have developed deep
learning algorithms to filter out use cases that are unable
to achieve program objectives, thereby enhancing testing
efficiency.

Several studies have addressed the optimization of seed
scheduling problems by introducing fitness objectives. Hong-
fuzz [4] adopts a strategy of selecting seed files in order,
which is simple and intuitive, but may lack targeted optimiza-
tion. LibFuzzer [5] prioritizes selecting seeds that can trigger
more uncovered program blocks, emphasizing expanding
code coverage to discover more potential problem areas.
VUzzer [6] prioritizes deep exploration in seed scheduling
by focusing on seeds with longer execution paths, includ-
ing error handling blocks, and high-frequency execution
paths. This strategy helps identify deep paths that are diffi-
cult to reach with conventional methods while minimizing
ineffective exploration on common error-handling paths.
Entropic [36] proposes an entropy-based power schedule that
aims to allocate more energy to seeds that possess more
information. Angora [27] exhibits a preference for specific
seeds that have the potential to initiate conditional statements
with unexplored branches.

In terms of improving seed energy scheduling efficiency of
fuzzing, AFLfast [7] employs a systematic exploration of the
Markov chain state space as coverage-based greybox fuzzing
modeling. This model defines the execution path of an input
seed as a state and calculates transition probabilities based
on the variation time of paths during fuzzing. This guides

the energy allocation during the fuzzing process. VUzzer [6]
treats basic blocks of the program’s control flow graph as
states, and state transitions are jumps from one basic block to
another. Transition probabilities are calculated using Monte
Carlo methods, and the fitness value of executing testcase
is computed to guide seed energy allocation. The Markov
chain model determines seed fitness based on transition prob-
abilities, but this approach suffers from efficiency issues due
to the exploration of many low-probability states, leading to
reduced decision-making efficiency.

B. MAB MODEL IN FUZZING
The MAB model addresses the challenge of maximizing the
cumulative reward in a finite number of trials while mak-
ing decisions. In the field of fuzzing, there exist numerous
scenarios in which it is necessary to optimize the reward.
Therefore, numerous studies have been dedicated to utilizing
MAB models as a means to address challenges encountered
in fuzz testing.

EcoFuzz [8] proposed a VAMAB model to address the
issue of seed energy allocation, specifically focusing on the
challenge of scaling the number of seeds with the increasing
number of tests. This model introduces the concept of seed
reward probability and utilizes the Self-Transfer Probability
Estimation Method (SPEM) to estimate the value of seeds.
AFL-HIER [10] transforms the given path into a multi-armed
bandit problem. However, compared to EcoFuzz, AFL-HIER
utilizes multi-level coverage metrics, including functions,
edges, and basic blocks encountered during test case exe-
cution, to assess the efficacy of new seeds. In addition,
AFL-HIER addressed the issue of single antagonism by
employing the UCB1 algorithm. SLIME [9] integrates rel-
evant attributes obtained from fuzz processes, determines
the most suitable attribute queue, and selects the optimal
seed based on attribute features [5]. SLIME determines the
selected seed energy through the UCB algorithm. Mob-
Fuzz [37] has formulated the seed allocation problem as a
multi-objective optimization problem and has introduced a
multi-player multi-armed bandit (MPMAB) model to effec-
tively schedule optimal seed scheduling.

Patil and Kanade [38] employed a contextual multi-armed
bandit machine model to ascertain the allocation of seed
energy in the fuzzing process. Additionally, they utilized rein-
forcement learning techniques to attain the optimal energy
allocation. CMFuzz [39] formulates the issue of seed muta-
tion as a contextual multi-armed bandit machine model.
CMFuzz dynamically adapts the seed mutation strategy by
employing the LinUCB algorithm, which utilizes testcases
execution information to modify the uniform mutation strat-
egy employed by AFL.

Unlike previous research that has utilized the MAB model
for fuzzing tests, LinFuzz adopts a contextual multi-armed
bandit machine model to address seed scheduling issues.
It selects the most suitable seed for each round of fuzz testing
by leveraging historical data, thereby enhancing the overall
efficiency of the fuzz testing process.

74858 VOLUME 12, 2024



Y. Su et al.: LinFuzz: Program-Sensitive Seed Scheduling Greybox Fuzzing Based on LinUCB Algorithm

VII. CONCLUSION
In this paper, we propose a path sensitive greybox fuzz
testing program called LinFuzz. LinFuzz integrates a seed
scheduling algorithm based on LinUCB. This algorithm
addresses the issue of current seed scheduling strategies
overlooking the influence of seed execution information on
program fuzz testing efficiency and the inability to priori-
tize the selection of appropriate seeds based on historical
fuzz testing results. Meanwhile, LinFuzz integrates a seed
energy allocation algorithm and a queue cull algorithm
based on path frequency and danger. Mainly addresses
the issue of current fuzz testing tools consuming a sig-
nificant amount of energy in high-frequency and low-risk
paths. We compared our method with other state-of-the-
art fuzz testing tools in the open-source test set. The
findings indicate that our tool outperforms other tools in
terms of path coverage and the number of vulnerabili-
ties discovered, thereby demonstrating the efficacy of our
approach.

REFERENCES
[1] P. Godefroid, ‘‘Fuzzing: Hack, art, and science,’’ Commun. ACM, vol. 63,

no. 2, pp. 70–76, Jan. 2020.
[2] C. Beaman, M. Redbourne, J. D. Mummery, and S. Hakak, ‘‘Fuzzing vul-

nerability discovery techniques: Survey, challenges and future directions,’’
Comput. Secur., vol. 120, Sep. 2022, Art. no. 102813.

[3] X. Zhu, S. Wen, S. Camtepe, and Y. Xiang, ‘‘Fuzzing: A sur-
vey for roadmap,’’ ACM Comput. Surv., vol. 54, no. 11s, pp. 1–36,
Jan. 2022.

[4] honggfuzz. (2016). Robert Swiecki. [Online]. Available: http://honggfuzz.
com/

[5] K. Serebryany, ‘‘Continuous fuzzing with libFuzzer and AddressSan-
itizer,’’ in Proc. IEEE Cybersecur. Develop. (SecDev), Nov. 2016,
pp. 157–157.

[6] S. Rawat, V. Jain, A. Kumar, L. Cojocar, C. Giuffrida, and H. Bos,
‘‘VUzzer: Application-aware evolutionary fuzzing,’’ in Proc. Netw. Dis-
trib. Syst. Secur. Symp., 2017, pp. 1–14.

[7] M. Böhme, V.-T. Pham, and A. Roychoudhury, ‘‘Coverage-based greybox
fuzzing asMarkov chain,’’ inProc. ACM SIGSACConf. Comput. Commun.
Secur., Oct. 2016, pp. 1032–1043.

[8] T. Yue, P. Wang, Y. Tang, E. Wang, B. Yu, K. Lu, and X. Zhou, ‘‘EcoFuzz:
Adaptive energy-saving greybox fuzzing as a variant of the adversar-
ial multi-armed bandit,’’ in Proc. 29th USENIX Secur. Symp., 2020,
pp. 2307–2324.

[9] C. Lyu, H. Liang, S. Ji, X. Zhang, B. Zhao, M. Han, Y. Li, Z. Wang,
W. Wang, and R. Beyah, ‘‘SLIME: Program-sensitive energy allocation
for fuzzing,’’ in Proc. 31st ACM SIGSOFT Int. Symp. Softw. Test. Anal.,
Jul. 2022, pp. 365–377.

[10] J. Wang, C. Song, and H. Yin, ‘‘Reinforcement learning-based
hierarchical seed scheduling for greybox fuzzing,’’ Tech. Rep.,
2021.

[11] Y. Zhang, S. Tong, and L. Cheng, ‘‘Evaluation of fuzz testing improve-
ment technology,’’ Comput. Syst. Appl., vol. 31, no. 10, pp. 1–14,
2022.

[12] Google. (2021). American Fuzz Lop. [Online]. Available: https://github.
com/google/AFL

[13] P. Whittle, ‘‘Multi-armed bandits and the Gittins index,’’ J. Roy. Stat. Soc.
B, Stat. Methodol., vol. 42, no. 2, pp. 143–149, Jan. 1980.

[14] S. Bubeck, ‘‘Regret analysis of stochastic and nonstochastic multi-
armed bandit problems,’’ Found. Trends Mach. Learn., vol. 5, no. 1,
pp. 101–122, 2012.

[15] T. Lu, D. Pál, and M. Pál, ‘‘Contextual multi-armed bandits,’’
J. Mach. Learn. Res., vol. 9, pp. 485–492, Jun. 2010.

[16] L. Zhou, ‘‘A survey on contextual multi-armed bandits,’’ 2015,
arXiv:1508.03326.

[17] L. Li, W. Chu, J. Langford, and R. E. Schapire, ‘‘A contextual-bandit
approach to personalized news article recommendation,’’ in Proc. 19th Int.
Conf. World Wide Web, 2010, pp. 661–670.

[18] W. Chu, L. Li, L. Reyzin, and R. E. Schapire, ‘‘Contextual bandits
with linear payoff functions,’’ in Proc. Int. Conf. Artif. Intell. Statist.,
2011, pp. 208–214.

[19] Y. Wang, X. Jia, Y. Liu, K. Zeng, T. Bao, D. Wu, and P. Su, ‘‘Not
all coverage measurements are equal: Fuzzing by coverage accounting
for input prioritization,’’ in Proc. Netw. Distrib. Syst. Secur. Symp. San
Diego, CA, USA: Internet Society, 2020, doi: 10.14722/NDSS.2020.
24422.

[20] G. Choi, S. Jeon, J. Cho, and J. Moon, ‘‘A seed scheduling method
with a reinforcement learning for a coverage guided fuzzing,’’ IEEE
Access, vol. 11, pp. 2048–2057, 2023, doi: 10.1109/ACCESS.2022.
3233875.

[21] M. Böhme, V.-T. Pham, M.-D. Nguyen, and A. Roychoudhury, ‘‘Directed
greybox fuzzing,’’ in Proc. ACM SIGSAC Conf. Comput. Commun.
Secur. Dallas, TX, USA: ACM, Oct. 2017, pp. 2329–2344, doi:
10.1145/3133956.3134020.

[22] B. Dolan-Gavitt, P. Hulin, E. Kirda, T. Leek, A. Mambretti, W. Robertson,
F. Ulrich, and R. Whelan, ‘‘LAVA: Large-scale automated vulnerabil-
ity addition,’’ in Proc. IEEE Symp. Secur. Privacy (SP), May 2016,
pp. 110–121.

[23] C. Lemieux and K. Sen, ‘‘FairFuzz: A targeted mutation strategy for
increasing greybox fuzz testing coverage,’’ in Proc. 33rd IEEE/ACM Int.
Conf. Automated Softw. Eng. (ASE), Sep. 2018, pp. 475–485.

[24] A. Fioraldi, D. Maier, H. Eißfeldt, and M. Heuse, ‘‘AFL++: Combining
incremental steps of fuzzing research,’’ in Proc. 14th USENIX Workshop
Offensive Technol., 2020.

[25] D. She, K. Pei, D. Epstein, J. Yang, B. Ray, and S. Jana, ‘‘NEUZZ: Efficient
fuzzing with neural program smoothing,’’ in Proc. IEEE Symp. Secur.
Privacy (SP). San Francisco, CA, USA: IEEE, May 2019, pp. 803–817,
doi: 10.1109/SP.2019.00052.

[26] C. Lyu, S. Ji, C. Zhang, Y. Li, W.-H. Lee, and Y. Song, ‘‘MOPT: Optimized
mutation scheduling for fuzzers,’’ in Proc. 28th USENIX Secur. Symp.,
2019, pp. 1949–1966.

[27] P. Chen and H. Chen, ‘‘Angora: Efficient fuzzing by principled search,’’ in
Proc. IEEE Symp. Secur. Privacy (SP), May 2018, pp. 711–725.

[28] Y. Li, S. Ji, Y. Chen, S. Liang, W. H. Lee, and Y. Chen, ‘‘UNIFUZZ: A
holistic and pragmatic metrics-driven platform for evaluating fuzzers,’’ in
Proc. 30th USENIX Secur. Symp., 2021, pp. 2777–2794.

[29] G. Zhang, X. Zhou, Y. Luo, X. Wu, and E. Min, ‘‘PTfuzz: Guided
fuzzing with processor trace feedback,’’ IEEE Access, vol. 6,
pp. 37302–37313, 2018.

[30] Y. Zou, W. Zou, J. Zhao, N. Zhong, Y. Zhang, J. Shi, and W. Huo,
‘‘PosFuzz: Augmenting greybox fuzzing with effective position distribu-
tion,’’ Cybersecurity, vol. 6, no. 1, p. 11, Jun. 2023.

[31] Y. Chen, Y. Jiang, F. Ma, J. Liang, M. Wang, and C. Zhou, ‘‘EnFuzz:
Ensemble fuzzing with seed synchronization among diverse fuzzers,’’ in
Proc. 28th USENIX Secur. Symp., 2019, pp. 1967–1983.

[32] I. Yun, S. Lee, M. Xu, Y. Jang, and T. Kim, ‘‘QSYM: A practical concolic
execution engine tailored for hybrid fuzzing,’’ in Proc. USENIX Secur.
Symp., 2018, pp. 745–761.

[33] W. You, X. Wang, S. Ma, J. Huang, X. Zhang, X. Wang, and B. Liang,
‘‘ProFuzzer: On-the-fly input type probing for better zero-day vulnera-
bility discovery,’’ in Proc. IEEE Symp. Secur. Privacy (SP), May 2019,
pp. 769–786.

[34] S. Gan, C. Zhang, P. Chen, B. Zhao, X. Qin, and D. Wu, ‘‘GREY-
ONE: Data flow sensitive fuzzing,’’ in Proc. USENIX Secur. Symp., 2020,
pp. 2577–2594.

[35] P. Zong, T. Lv, D. Wang, Z. Deng, R. Liang, and K. Chen, ‘‘Fuz-
zGuard: Filtering out unreachable inputs in directed grey-box fuzzing
through deep learning,’’ in Proc. 29th USENIX Secur. Symp., 2020,
pp. 2255–2269.

[36] M. Böhme, V. J. M. Manès, and S. K. Cha, ‘‘Boosting fuzzer efficiency:
An information theoretic perspective,’’ Commun. ACM, vol. 66, no. 11,
pp. 89–97, Nov. 2023.

[37] G. Zhang, P. Wang, T. Yue, X. Kong, S. Huang, X. Zhou, and K. Lu,
‘‘MobFuzz: Adaptive multi-objective optimization in gray-box fuzzing,’’
in Proc. Netw. Distrib. Syst. Secur. Symp., 2022.

[38] K. Patil and A. Kanade, ‘‘Greybox fuzzing as a contextual bandits prob-
lem,’’ 2018, arXiv:1806.03806.

VOLUME 12, 2024 74859

http://dx.doi.org/10.14722/NDSS.2020.24422
http://dx.doi.org/10.14722/NDSS.2020.24422
http://dx.doi.org/10.1109/ACCESS.2022.3233875
http://dx.doi.org/10.1109/ACCESS.2022.3233875
http://dx.doi.org/10.1145/3133956.3134020
http://dx.doi.org/10.1109/SP.2019.00052


Y. Su et al.: LinFuzz: Program-Sensitive Seed Scheduling Greybox Fuzzing Based on LinUCB Algorithm

[39] X. Wang, C. Hu, R. Ma, D. Tian, and J. He, ‘‘CMFuzz: Context-aware
adaptive mutation for fuzzers,’’ Empirical Softw. Eng., vol. 26, no. 1,
pp. 1–34, Jan. 2021.

YINGHAO SU received the bachelor’s degree
from Space Engineering University, China,
in 2021, where he is currently pursuing the Ph.D.
degree with the College of Aerospace Information.
His research interests include fuzzing test and
vulnerability detection.

DAPENG XIONG received the B.S. and M.S.
degrees from China University of Geosciences,
National University of Defense Technology, in
2010 and 2012, respectively, and the Ph.D. degree
in information science from Space Engineering
University, China, in 2017. He is currently a
Lecturer with Space Engineering University. His
major work has been applied to system security
and network security analysis. He has published
many papers and authored several books. His cur-

rent research interests include machine learning and vulnerability detection.

YING WAN received the M.S. degree from Space
Engineering University, Beijing, China, in 2022.
Her main research interests include network sys-
tem security and software defined network.

CHENGHAO SHI received the M.S. degree from
the College of Aerospace Information, Space
Engineering University, in 2023. His research
interests include reinforcement learning and sys-
tem security.

QINGYAO ZENG received the bachelor’s degree
from Space Engineering University, China,
in 2022, where he is currently pursuing the M.S.
degree with the College of Aerospace Information.
His research interests include fuzzing test and
system security.

74860 VOLUME 12, 2024


