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ABSTRACT In person re-identification, most prevalent models are predominantly designed for cloud
computing environments which introduces complexities that limit their effectiveness in edge computing
scenarios. Person re-identification systems optimized for edge computing can achieve real-time or near-
real-time responses, providing substantial practical value. Addressing this gap, this paper presents the
Attention Knowledge-aided Distillation Lightweight Network (ADLN), a network architecture expressly
crafted for edge computing. The ADLN enhances inference speed while maintaining accuracy, which is
essential for real-time applications. The core innovation of the ADLN lies in its dimension interaction
attention mechanism, strategically integrated into the network to boost recognition performance. This
mechanism is complemented by a self-distillation approach, transferring attention knowledge from deeper to
shallower layers, thereby streamlining the network and accelerating inference.Moreover, the ADLN employs
an optimization strategy combining cross-entropy loss, weighted triplet loss regularization, and center
loss, effectively reducing intra-class variances. Tested on Market1501 and DukeMTMC-ReID datasets,
experiments indicate that the ADLN significantly reduces the model’s parameter count and identification
latency, while largely maintaining accuracy.

INDEX TERMS Dimensional attention mechanism, edge computing, lightweight network, person re-
identification, self-distillation.

I. INTRODUCTION
Person Re-identification (Re-ID) [1], [2], [3], [4], [5], the task
of identifying individuals across a collection of pedestrian
images taken by non-overlapping cameras, plays a critical
role in applications such as criminal investigation, infectious
disease monitoring, and shopping behavior analysis. It is a
significant area of focus in the field of computer vision.

The person re-identification task presents considerable
challenges, such as variations in image backgrounds, pose
changes, viewpoint discrepancies, and occlusions resulting
from dynamic changes in the pedestrian’s environment.

Deep learning techniques are deployed by researchers to
tackle these challenges, with solutions categorized into three
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types: global feature-based [6], local feature-based [7], and
attention-basedmethods [8]. Global feature-based techniques
for person re-identification employ convolutional neural net-
works (CNNs) to represent pedestrian images as feature
vectors, which are then processed through distance learn-
ing for identification. Chen et al. [9] enhanced the triplet
loss function by introducing quadruplet loss, which effec-
tively addresses its constraints and boosts accuracy in person
re-identification. He et al. [10] introduced the Vision Trans-
former for extracting pedestrian features, combined with
triplet loss, thereby enhancing the robustness of person re-
identification. Local feature-based person re-identification
entails segmenting pedestrian images into multiple parts
and extracting features for each part, effectively address-
ing occlusion problems. Narayan et al. [11] introduced a
novel approach that expands the horizon of re-identification
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techniques by emphasizing the integration of human appear-
ance, face biometrics, and location constraints across camera
networks. Sun et al. [12] proposed horizontally partitioning
pedestrian features into six blocks and applying identity loss
for each block, showcasing the effectiveness of body part
segmentation in enhancing recognition accuracy. Luo et al.
[13] tackled misalignment of pedestrian body parts with
the AlignedReID model, dynamically aligning local features
using the shortest path method, thereby further improving
person re-identification accuracy.

Recently, attention mechanisms have shown promise
in multiple computer vision areas, notably in per-
son re-identification. Hu et al. [14] introduced SENet,
successfully implementing a lightweight channel attention
mechanism to enhance network performance. Woo et al.
[15] proposed the Convolutional Block Attention Module
(CBAM), enriching attention maps by incorporating max-
pooling features for channel attention and spatial attention.
Triplet Attention [16] improves feature quality by interacting
with three dimensions of the tensor and applying dimension
attention to each dimension. Person re-identification with
fusion attention mechanisms showcases the capability to sup-
press irrelevant features and emphasize relevant pedestrian
features. Chen et al. [17] introduced the Mixed Higher-order
Attention Network, enhancing attention discriminability and
richness, consequently improving person re-identification
accuracy. Zhang et al. [18] designed a relation-aware global
attention module, inferring relationships between each fea-
ture position and others globally, thereby determining the
importance of each feature position in aiding the network to
extract crucial pedestrian information.

Research on person re-identification has primarily focused
on cloud computing scenarios. In cloud computing envi-
ronments, video data storage and processing are centralized
in remote data centers with robust storage and computa-
tional capabilities for executing complex models. However,
in the future, person re-identification will extend to edge
computing environments. Edge computing distributes data
processing tasks to devices at the network edge, like IoT
devices, smartphones, or local servers. This decentraliza-
tion reduces latency, enhances processing speed, and fulfills
real-time or near-real-time application needs. In contrast to
prior approaches, person re-identification for edge computing
necessitates lightweight models.

Current research on lightweight person re-identification
models primarily focuses on reducing model parameters
and computational complexity. Li et al. [19] proposed the
HA-CNN model, capable of extracting multiple complemen-
tary attention features to maximize the potential complemen-
tary effects of person re-identification while maintaining a
lightweight design. Quan et al. [20] introduced the Auto-
ReID model, applying Neural Architecture Search (NAS)
technology to search for an efficient feature extraction net-
work for person re-identification. Wang et al. [21] proposed
a coarse-to-fine selection method, using short pedestrian
features for initial screening and long features for detailed

screening, employing knowledge distillation methods [22],
[23], [24] to compress knowledge from large networks into
smaller ones, thereby significantly reducing the complexity
of person re-identification in both feature extraction and dis-
tance measurement stages. Wu et al. [25] presented a novel
framework in ‘‘Distilled Person Re-Identification: Towards a
More Scalable System’’, employing aMulti-teacher Adaptive
Similarity Distillation (MASD) approach to effectively refine
the process of transferring knowledge from complex models
to simpler and more scalable systems. This work underscores
the potential of distillation techniques not only in reducing the
model size but also in enhancing the efficiency and scalability
of re-identification systems, thereby addressing some of the
critical challenges in deploying these models for real-time
applications. Zhao et al. [26] introduced the Salience-Guided
Iterative Asymmetric Mutual Hashing (SIAMH) model, uti-
lizing ReNeSt-50 as the teacher network and ResNet50 as
the student network. Through self-distillation, this model
enhanced the quality of hash features, thereby improving
person re-identification accuracy. However, these methods
currently have limitations, such as the accuracy of HA-CNN
does not meet the current state-of-the-art levels, the parame-
ter count of the Auto-ReID model still lagging behind true
lightweight models, and the use of knowledge distillation-
based models requiring pre-training of a heavyweight teacher
network, significantly increasing training costs and time.
SIAMH only improves the speed of person re-identification
in the distance measurement stage; the model still employs
ResNet50 without reducing parameter count or increasing
feature extraction speed.

To enhance speed while preserving accuracy, this paper
proposes a lightweight person re-identification network with
attention knowledge distillation, named ADLN (Attention
Knowledge Distillation Lightweight Network). In both the
training and testing stages, ADLN involves only one network,
significantly reducing model size and substantially improv-
ing inference speed while maintaining accuracy. Its specific
contributions are as follows:

(1) Introducing a Dimension Interactive Attention mecha-
nism (DIA) embedded in deep networks to enhance the
accuracy of person re-identification.

(2) Employing self-distillation during training to distill
attention features as prior knowledge into shallow net-
works. During testing, reducing the parameters of the
network skeleton containing attention mechanisms to
significantly decrease inference time for Re-ID.

(3) Jointly optimizing network parameters using cross-
entropy loss, weighted regularization triplet loss, and
center loss to alleviate intra-class differences.

II. ATTENTION KNOWLEDGE DISTILLATION
LIGHTWEIGHT NETWORK
Figure 1 illustrates the training stage of ADLN, which
consists of four steps. In the first step, the Dimension Inter-
active Attention mechanism is integrated into a network
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FIGURE 1. Lightweight person re-identification feature extraction network.

with ResNet50 as the backbone to enhance Person Re-
identification accuracy. The second step adds a bottleneck
to the last layer of the first three layers to address different
output feature dimensions across network layers, facilitating
subsequent self-distillation. The third step involves training
the network by treating the entire network as the teacher
network and the shallow network (shown as the first two
layers in the figure, but practically, it can be the first or
first three layers) as the student network. Self-distillation
compresses attention knowledge from the teacher network to
the shallow network. Distillation methods include Attention
Transfer Knowledge Distillation (AT) andDecoupled Knowl-
edge Distillation (DKD). AT uses a layer-by-layer distillation
approach, transferring knowledge from deep networks to
shallow networks. DKD uses the entire output features of the
teacher network to distill knowledge into the student network.
The fourth step involves reducing the deep network with
attention to only use the shallow student network for testing,
as shown in the dashed box in Figure 1.

A. DIMENSION INTERACTION ATTENTION MECHANISM
The purpose of introducing the dimension interaction atten-
tion mechanism is to enhance the recognition rate of the
teacher network, thereby improving the performance of the
student network it trains. The dimension interaction attention

proposed in this paper is extracted from the first two branches
of the Triplet Attention, specifically the interaction branch
between the channel dimension and the spatial dimension.
The third branch of the Triplet Attention is dedicated to
spatial attention. However, after the interaction between the
C and H dimensions, as well as the C and W dimensions,
in the first two branches, spatial attention has already been
effectively achieved. For person re-identification, the third
branch can be considered redundant, and better results are
obtained by removing this redundant branch.

Figure 2 illustrates a schematic diagram of the Dimension
Interaction Attention mechanism. In the figure, ‘‘Permu-
tation’’ represents the tensor rotation operation, ‘‘Pool’’
indicates pooling operations (both average and max pool-
ing), ‘‘Conv’’ denotes convolutional operations for dimension
interaction with a 7× 7 kernel, and ‘‘Sigmoid’’ is the activa-
tion function. We choose sigmoid as the activation function
because it inherits several advantages from the Triplet Atten-
tion mechanism and offers several advantages in the context
of our dimensional interaction mechanism. For an input fea-
ture tensor x ∈ RC×H×W , where C represents the numbers
of channels, and H and W represents spatial dimensions,
the first branch undergoes five operations, as illustrated in
the branch below Figure 2. First, the feature x1 undergoes
a rotation operation, resulting in rotated features x̂1 with a
shape of H × C × W. Next, a pooling operation is applied to
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FIGURE 2. Dimensional interactive attention mechanism.

the rotated features along the H dimension, producing pooled
features x̂∗

1 with a shape of 2 × C × W. Then, a kernel
size 7 × 7 standard convolutional operation ψ1 is used to
learn the relationship between the C and W dimensions,
interacting between the C andW dimensions to obtain inter-
active features with a shape of 1 × C × W. These features
pass through a sigmoid activation function σ to generate
activation maps, which, when multiplied with the rotated
features x̂1, yield attention features with a shape of H ×

C × W. Finally, a rotation operation is applied to match the
input feature’s shape, obtaining attention features of the same
shape.

Similarly, the second branch mirrors the operations of
the first branch, allowing interaction between the C and H
dimensions.

After the two branches are processed, the outputs from two
branches are aggregated using simple averaging. The process
to obtain the refined attention-applied tensor y ∈ RC×H×W

from dimension interaction attention for an input tensor x ∈

RC×H×W can be represented by (1)

y =
1
2
(⌢x1σ (ψ1(

⌢x
∗

1)) +
⌢x2σ (ψ2(

⌢x
∗

2))) (1)

Where σ represents the sigmoid activation function; ψ1 and
ψ2 represent the standard two-dimensional convolutional lay-
ers defined by kernel size 7 in the two branches of DIA.
Simplifying (1), y becomes:

y =
1
2
(⌢x1ω1 +

⌢x2ω2) =
1
2
(y1 + y2) (2)

Where ω1 and ω2 are the two-dimension interaction attention
weights computed in DIA. The y1 and y2 in (2) represents the
90◦ clockwise rotation to retain the original input shape of
C × H ×W .

The dimension interaction attention exhibits characteristics
such as cross-dimensional interaction and the establishment
of dependencies between dimensions. Moreover, it simul-
taneously achieves channel attention and spatial attention
through dimension attention, this approach significantly
improves the discriminability and robustness of pedestrian
features by leveraging dimension attention.

B. KNOWLEDGE DISTILLATION
This method employs self-distillation to transfer attention
knowledge from the deep layers of the network to the shallow
layers, thereby enhancing the recognition capability of the
student network. The advantage of self-distillation is that it
allows training the student network concurrently with the
teacher network during online distillation. This eliminates the
need for offline distillation, where one would have to first
train the teacher network and then use the trained teacher net-
work to train the student network, thereby reducing training
costs.

Attention transfer knowledge distillation utilizes atten-
tion as the carrier for knowledge transfer, transferring the
knowledge from the teacher network to the student network.
Specifically, by taking the output of a certain layer of the
network, represented as a three-dimensional tensor A ∈

R(C×H×W), where C is the number of channels, and H × W
is the size of the tensor. Attention transfer involves mapping
A into a 2D spatial attention map, where the size of the 2D
spatial attention map is H × W. Subsequently, knowledge
transfer is performed through the spatial attention map, and
the processing of the spatial attention map is described by (3).

T =

∑c

i=1
|Ai|p (3)

In the equation, Ai = A(i, :, :) represents the i-th feature map
among C feature maps, T is the spatial attention map, p is
the power, set to 2 in this paper, and |•| denotes the absolute
value. During training, the l2 loss is calculated between the
spatial attention map of a certain layer in the network and
the spatial attention map of its subsequent layer, as described
in (4).

LAT =

∑
j∈I ,j>1

∥∥∥∥∥ Qj∥∥Qj∥∥2 −
Qj−1∥∥Qj−1

∥∥
2

∥∥∥∥∥
2

(4)

Here, Qj = vec(T j) represents the vectorized form of the
spatial attention map for the j-th layer, and LAT is the final
loss function for attention migration knowledge distillation,
where I ∈ {1, 2, 3, 4}.

Decoupled Knowledge Distillation involves splitting the
fundamental knowledge distillation into two parts for sepa-
rate distillation. One part focuses on distilling the similarity
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between the probabilities of the target class and the non-target
classes, while the other part concentrates on distilling the
similarity within the probabilities of the non-target classes.
Given a training sample belonging to a total of M classes with
the target class being t , during training, its logits obtained
through the network and Softmax function are denoted as
P = [p1, . . . , p(t−1), pt , . . . , pM ] ∈ R(1×M). These log-
its are divided into two parts: the first part, denoted as
b = [pt , p\t ] ∈ R(1×2), represents the probability vector
of the target class, and the second part, denoted as P̂ =

[p1, · · · pt−1, pt+1, · · · , pM ] ∈ R1×(M−1), represents the
probability vector of the non-target classes. The traditional
knowledge distillation loss is modified as shown in (5).

LKD = KL(bT ||bS ) + (1 − pTt )KL(P̂
T
||P̂S )

bT =

[
pTt , p

T
\t

]
∈ R1×2

bS =

[
pSt , p

S
\t

]
∈ R1×2

P̂T =

[
pT1 , · · · , p

T
t−1, p

T
t ,L, p

T
M

]
∈ R1×(M−1)

P̂S =

[
pS1 , · · · , p

S
t−1, p

S
t ,L, p

S
M

]
∈ R1×(M−1) (5)

Where KL represents the Kullback-Leibler divergence, pTi
denotes the probability of the sample being classified as the
i-th class in the teacher network, pSi denotes the probability of
the sample being classified as the i-th class in the student net-
work, pT

\t represents the probability of the sample not being
the target class in the teacher network, and pS

\t represents the
probability of the sample not being the target class in the
student network.

Decoupled Knowledge Distillation aims to reduce the cou-
pling between the two parts and increases the emphasis on
distilling non-target class information. Its distillation loss is
defined as shown in (6).

LDKD = αKL(bT ||bS ) + βKL(P̂T ||P̂S ) (6)

The two distillation methods were inspired by references [22]
and [23].

C. LOSS FUNCTION
To better learn the parameters of the model, this paper pro-
poses the joint training of the network using a combination
of cross-entropy loss, weighted regularized triplet loss, and
center loss. These three loss functions are commonly used in
the field of person re-identification. The cross-entropy loss is
expressed as the following equation:

Lcls = −
1
N

∑N

i=1

∑K

k=1
yi,k log(pi,k ) (7)

Where yi,k represents whether the identity of the i-th image is
k , N is the total number of pedestrian classes in the dataset,
and pi,k represents the probability that the identity of the i-th
image is k . To overcome the problem of model overfitting,
this paper employs cross-entropy loss with label smoothing
to enhance the model’s generalization ability.

Weighted regularized triplet loss is also one of the com-
monly used loss functions in pedestrian re-identification.
It inherits the advantages of triplet loss in optimizing the
distance between positive and negative samples and avoids
introducing margin parameters. Its expression is as follows:

Lwrt (i) = log(1 + exp(
∑

j
wpijd

p
ij −

∑
k
wnikd

n
ik ))

wpij =
exp(dpij)∑

dpij∈Pi
exp(dpij)

,wnik =
exp(dnik )∑

dnik∈Ni
exp(dpik )

(8)

In the equation, i represents each anchor image in the batch,
Pi denotes the set of positive samples, Ni represents the set
of negative samples, and dpij and d

n
ij respectively represent the

distance between the anchor image and the positive sample
image and the negative sample image.

To make intra-class features more compact, this paper
introduces center loss. Center loss achieves the goal of reduc-
ing intra-class distance by learning a central feature point
for each class during training, continually pulling together
samples from the same class. The calculation formula for
center loss is as follows:

Lcenter =
1
2

B∑
i=1

∥∥fi − cyi
∥∥2
2 (9)

In the formula, fi represents the feature extracted from the
deep network for the i-th sample, yi represents the label of the
i-th sample, and cyi represents the high-dimensional feature
center corresponding to the class of yi. The B represents the
batch size.

As shown in Figure 1, the output of each layer of the
network needs to be constrained using the three mentioned
loss functions. Therefore, the final loss function is as follows:

L =

4∑
i=1

(L icls + L iwrt + L icenter ) + LAT + LDKD (10)

Where L icls,L
i
wrt and L

i
center respectively represent the cross-

entropy loss, weighted regularized triplet loss, and center loss
for the i-th layer.

III. EXPERIMENT
A. DATASET AND METRICS
To validate the effectiveness of our proposed method, ADLN,
experiments were conducted on the widely used Market1501
[27] and DukeMTMC-ReID [28] datasets.

The Market1501 dataset was obtained using the DMP
pedestrian detection method, collected from six cameras,
and comprises 32,668 images from 1,501 pedestrians. The
dataset is divided into a training set with 12,936 images from
751 individuals and a test set with 19,732 images from the
remaining 750 individuals. The test set includes 3,368 query
images and 19,364 gallery images.

The DukeMTMC-ReID dataset is a subset of the
DukeMTMC dataset designed specifically for person re-
identification. It consists of data from eight cameras capturing
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TABLE 1. Comparison results on Market1501 and DukeMTMC ReID datasets.

1,404 pedestrians detected by two or more cameras. The
training set comprises 16,522 images from 702 individuals,
while the test set contains 19,889 images from the same
702 individuals. The test set includes 2,228 query images and
17,661 gallery images.

To ensure fairness in the experiments, the evaluation
metrics used are the Rank-1 accuracy and mean Average
Precision (mAP), which are commonly employed in person
re-identification. Additionally, the network size is repre-
sented by the number of parameters (Params), and the deep
neural network’s inference speed is measured in terms of
floating-point operations per second (Flops).

B. EXPERIMENTAL SETUP
This paper utilizes a ResNet50 network pretrained on the
ImageNet dataset as the fundamental backbone for the
experimental network. The stride of the last bottleneck
block is set to 1. During the training process, three data
augmentationmethods are considered: random cropping, hor-
izontal flipping, and erasing. The margin for triplet loss and
label-smoothed regularization rate are set to 0.3 and 0.1,
respectively. The input image size is set to 256 × 128, and
a learning rate with a warm-up strategy is employed. The
learning rate linearly increases from 4 × 10−6 to 4 × 10−4

in the first 10 epochs, followed by exponential decay with
a factor of 0.1 at the 40th, 80th, and 120th epochs. The
total number of training iterations is 160, and the Adam
optimizer is used to optimize model parameters with an L2
regularization weight decay factor of 5 × 10−4.

During testing, the average features between original and
horizontally flipped test images are used. The features after
the Batch Normalization (BN) layer serve as the pedestrian
retrieval features, and cosine distance is employed to measure
the distance between features. This experiment is imple-
mented using the PyTorch 1.8 deep learning framework and
accelerated on an NVIDIA 3090 GPU.

C. COMPARATIVE EXPERIMENT
This experiment compared the proposed method with
selected mainstream person re-identification (Re-ID)
approaches to validate its effectiveness. The comparative
results are presented in Table 1, where methods based
on local features include PCB, AlignedReID++, MHN-
6(PCB); attention-basedmodels include RGA-SC, AGW, and
lightweight person re-identification networks include HA-
CNN, Auto-ReID. The last four rows in the table represent
the results of the proposed method, ranging from a one-layer
network backbone to a four-layer network backbone. Res4
denotes the four-layer network configuration, wherein the
DIA mechanism is implemented within the last two layers
of the ResNet50 backbone. Res1 represents the one-layer
network configuration, comprising solely the first layer of
ResNet50. In all experiments in this paper, a single-frame
querymode is used. Except for lightweight networks, all other
networks use ResNet50 as the backbone.

Based on the Market1501 dataset, the comparison results
are shown in the left two columns of Table 1. The four-layer
skeleton model proposed by ADLN achieves Rank-1 and
mAP of 95.8% and 89.2%, respectively. Compared with the
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attention models RGA-SC and AGW, Rank-1 decreases by
0.3% and increases by 0.7%, and mAP increases by 0.8% and
1.4%, respectively. Compared with the local feature method
MHN-6(PCB), Rank-1 and mAP increase by 0.7% and 4.2%.
Compared with other models, there are improvements in both
metrics to varying degrees. The three-layer skeleton model
of ADLN achieves a reduction of 0.6% in Rank-1 and 0.2%
in mAP, with a nearly 50% reduction in network parameters
and computations. Compared with the lightweight model
Auto-ReID, it outperforms in both parameter quantity and
accuracy. The two-layer skeleton model of ADLN achieves
a reduction of 3.4% in Rank-1 and 6.7% in mAP, with only
1/10 of the original network’s parameters and approximately
1/3 of the computation. Comparedwith the lightweight model
HA-CNN, it outperforms in parameters, computations, and
accuracy. The one-layer skeleton model of ADLN has a
considerable loss in accuracy, but the network model and
computation are significantly reduced, making it applicable
under certain conditions.

Based on the DukeMTMC-ReID dataset, the comparison
results are shown in the right two columns of Table 1.
The four-layer skeleton model proposed by ADLN achieves
Rank-1 and mAP of 91.3% and 82.5%, respectively. Com-
pared with the attention model AGW, Rank-1 and mAP
increase by 2.3% and 2.9%, respectively. Compared with
the local feature method MHN-6(PCB), Rank-1 and mAP
increase by 2.2% and 5.3%. Compared with other mod-
els, there are improvements in both metrics to varying
degrees. The three-layer skeleton model of ADLN achieves
a reduction of 1.8% in Rank-1 and 2.3% in mAP, with a
nearly 50% reduction in network parameters and computa-
tions. Compared with the lightweight models Auto-ReID and
Faster-ReID, it outperforms in both parameter quantity and
accuracy. The two-layer skeleton model of ADLN achieves a
reduction of 8.3% in Rank-1 and 11.7% in mAP, with only
1/10 of the original network’s parameters and approximately
1/3 of the computation. Comparedwith the lightweight model
HA-CNN, it outperforms in parameters, computations, and
accuracy. The one-layer skeleton model of ADLN has a
considerable loss in accuracy, but the network model and
computation are significantly reduced.

According to the above comparison results on these two
datasets, the attention model proposed in this paper effec-
tively improves the accuracy of person re-identification, and
the self-distillation method significantly reduces the network
parameters and saves computational costs while maintaining
limited accuracy loss. In practical applications, determin-
ing the appropriate number of layers for the ADLN model
requires a careful balance between network parameters and
accuracy.

D. ABLATION EXPERIMENT
To further verify the effectiveness of the ADLN algorithm,
ablation experiments were conducted on the Market1501
dataset, and the results are presented in Table 2. The base-
line method employed in Table 2 is the Attention Pyramid

TABLE 2. Ablation experiments on dataset market1501.

networks (APNet). The student networks in these ablation
experiments consist of the first two subnetworks of the net-
work backbone.

After incorporating the dimension interaction attention
module into the baseline, there are improvements of 0.8%
in Rank-1 and 3.1% in mAP, with no significant increase in
network parameters and computational complexity, demon-
strating the effectiveness of the attention module. After
knowledge distillation with attention transfer, the Rank-1 and
mAP improve by 0.6% and 1.1%, respectively. Furthermore,
with decoupled knowledge distillation, the Rank-1 and mAP
continue to improve by 0.4% and 1.6%. These results indicate
the effectiveness of both knowledge distillation methods.
If the attention mechanism is added to the teacher net-
work’s deeper layers, the student network’s Rank-1 and mAP
increase by 0.9% and 3.4%, respectively, demonstrating that
both knowledge distillation methods effectively compress the
deep attention knowledge of the teacher network into the
shallow student network.

IV. CONCLUSION
This paper introduces the ADLN (Attention-based Distilla-
tion for Lightweight Network) method to tackle challenges
in existing deep learning models for person re-identification,
such as high parameter count, slow inference speed, and dif-
ficulties in deployment on edge devices. The ADLN method
integrates a dimension-interaction attention mechanism to
improve person re-identification accuracy. During training,
a self-distillation approach is employed, progressively distill-
ing attention knowledge from deep layers to shallow layers.
During testing, the deep layers with attention are discarded,
reducing network parameters and enhancing the speed of
person feature extraction.

Experimental results on theMarket1501 and DukeMTMC-
ReID datasets demonstrate that the proposed method sig-
nificantly reduces the model’s parameter count while main-
taining accuracy, making it suitable for edge computing
applications.

Despite its notable contributions, this work is not without
limitations. One of the main constraints lies in balancing the
lightweight nature of the model with its accuracy. While the
ADLN model achieves significant reductions in parameter
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count and computational demands, the most lightweight con-
figurations (e.g., Res1 and Res2 models) exhibit a marked
decrease in accuracy compared to more complex configu-
rations. This trade-off highlights the challenge of balancing
efficiency and effectiveness, particularly in scenarios where
the highest possible accuracy is paramount.

Additionally, while the ADLN model marks a significant
step towards optimizing person re-identification for edge
computing, there remains room for improvement in further
accelerating the metric learning stage. Future work could
explore more advanced techniques for speeding up this phase
without compromising the model’s discriminative capability.
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