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ABSTRACT Real-time locating systems (RTLSs) have proven to be a practical and effective solution
for monitoring positions/status of humans and other entities in industrial environments, ensuring safe and
efficient automated operations, by responding in real-time to unexpected events, such as the proximity of
human workers to autonomous mobile robots (AMRs). This work focuses on evaluating and modeling the
performance of two complementary RTLSs targeting human localization in both static and mobile conditions
within a realistic industrial environment in operational conditions; with the aim of integrating live positioning
information into digital twins (DT) for industrial use. Both the primary RTLS examined, an ultra-wide band
(UWB) radio-based system; and the secondary RTLS, an optimized camera vision (CV)-based system with
three surveillance cameras introduced as a backup RTLS, exhibited a similar median accuracy of 12-13 cm
in static conditions, being the one of the UWB system slightly degraded down to 19 cm in presence of human
shadowing. In human mobility conditions, the median accuracy values were further debased by 4 and 13 cm
for the UWB and CV systems, respectively, indicating a limited real-time fluctuation, sufficiently bounded
to guarantee the safety of human workers based on the readings of either of the primary or secondary RTLS
systems. Based on the observed performance, a safety protocol for human detection in operational production
scenarios was established, considering operational safety margins around humans of 1-2 m, which could
be further leveraged by centralized monitoring and control entities such as industrial digital twins. The
localization accuracy of the systems is characterized by means of error functions quantifying the distance
to ground truth (GT) points through Gamma distribution functions using maximum likelihood estimates
(MLEs). The proposedmodels are practical for implementation in system level simulators or industrial digital
twin tools considering akin industrial environments. The different observations presented along the paper are
useful for advanced industrial operation planning and optimization considerations.

INDEX TERMS Smart factories, real-time locating systems, ultra-wideband, camera-vision, humanworkers,
autonomous mobile robots, digital twins, localization error models.

I. INTRODUCTION
In line with the increasing emphasis on Industry 4.0 and the
drive towards maximizing autonomous production processes,
the importance of ensuring both efficiency and safety within
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approving it for publication was Riccardo Carotenuto .

manufacturing operations becomes apparent. This becomes
particularly crucial in situations where human workers
coexist with autonomous mobile robots (AMRs), and when
unexpected events arise within the production area. To ensure
seamless workflows, it is necessary for both human and
robotic entities to have awareness of each other’s positions.
This forms the core motivation behind the adoption of indoor
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FIGURE 1. Real-time locating systems in closed control loop with industrial digital twin for real-time production planning, validation, and modification.

real-time locating systems (RTLSs) in smart factories. Indoor
industrial environments typically are global positioning
systems (GPS)-denied environments and, therefore, indoor
RTLSs are used instead to continuously monitor the produc-
tion area and provide real-time localization data, tracking
locations of human workers and objects [1], as robotic
entities such as AMRs already possess precise built-in
localization and navigation mechanisms typically based on
light detection and ranging (LiDaR) and inertial measurement
unit (IMU) sensors technology [2]. Although AMRs are
equipped with on-board sensors to construct internal maps
of their surroundings, they often struggle to detect humans
and other non-stationary objects in advance due to non-line-
of-sight (NLOS) situations. Consequently, this can result
in unnecessary delays, interruptions, or the risk of getting
stuck in deadlocks. By leveraging real-time localization data,
RTLSs empower AMRs to accurately perceive their sur-
roundings in a timelymanner to adapt their paths accordingly,
ensuring smooth and efficient navigation [3], [4].

The increasing complexity of industrial systems and pro-
duction processes in smart factories is pushing towards oper-
ational optimization strategies based on the centralization and
integration of available information [5]. This information is
gathered from the multiple control and monitoring systems
available at all levels of the manufacturing process as defined
by the automation pyramid [6]: from top management and
planning levels, at which enterprise resource planning (ERP),
manufacturing execution system (MES), or warehouse
management system (WMS) information is available; to
bottom control and field level, at which operational control
data from shop floor machinery is directly collected from
controllers, sensors, and actuators. In general, until now, the
higher management layers considered only summaries of
the specific information from lower layers for monitoring

purposes or to make high level control decisions. However,
the introduction of digital twin (DT) technologies [7], [8], [9],
[10] is changing this paradigm, as there is an aim of providing
a virtual replica of the physical environment, enabling real-
time monitoring, analysis, and optimization of production
processes, which requires information and data from all
layers.

Here, the inherent capability of the RTLSs to deliver
continuous and precise localization data, becomes the
fundamental driver behind the ability of optimizing industrial
production processes, and swiftly responding to changing
circumstances. Therefore, in this paper, we set out the focus
on our vision, described in Fig. 1, of integrating multiple
RTLSs as inputs within closed control loops, having an
industrial DT as the processing core. Within this DT context,
our primary goal revolves around integrating positioning
information (live data and models) into digital twins for
industrial use. To do this, we analyze, characterize, and
model the outputs of the selected indoor RTLS targeting
human worker localization and tracking in a reference
industrial scenario under realistic operational conditions.
In this case, a primary one based on ultra-wideband (UWB)
radio and a secondary one based on camera vision (CV)
serve as inputs to the DT for performing the advanced
control computations for run-time optimization, as well as
for carrying out emulated/simulated operational performance
predictions based on realistic values and models [11], [12].
As depicted in Fig.1, this corresponds to the evaluation of the
potential inputs to the ‘‘monitoring and data collection’’ and
the ‘‘analysis and prediction’’ DTmodules, which will enable
the possibility of doing ‘‘simulations and visualizations’’
based on realistic human and AMR system dynamics. The
combination of the available online and offline information
at these modules will allow the DT to ‘‘control’’ (adjust
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dynamically and optimize) the overall production operations
by ‘‘tuning missions or issuing commands’’ to the robotic
elements and/or ‘‘issuing visual/audio alarms’’ to humans in
advance case of potential dangerous situations.

At this point, the crucial role of RTLS data as a primary
source of information for an industrial DT for analysis
and control decision-making should be clear. Consequently,
a verified RTLS with a known or predictable accuracy,
achieved through an estimated model, is a prerequisite for a
reliable DT capable of planning efficient and safe production
procedures. Therefore, themain contributions of the paper are
summarized as follows:
• Performance evaluation and mathematical modeling
of the accuracy of two human-centric RTLSs (UWB
and CV) in an operational industrial environment,
considering both static and mobile conditions.

• Quantitative assessment of the impact of the human
body on UWB RTLS performance, utilizing wearable
UWB tags.

• Optimization and integration of CV localization data
from multiple surveillance cameras for enhanced accu-
rate location estimation within key production areas.

• Establishment of environment-specific safety measures
for detecting humans without UWB tags based on the
concurrent performance evaluation of the two RTLSs.

These contributions are key to the further development of
our integrated DT vision, as the different experimental results
serve as technical performance reference for the selected
human worker tracking RTLS. Further, the extrapolated
mathematical models of the accuracy of the RTLS in the
different conditions can be used in simulations consider-
ing similar industrial deployent conditions, abstracting the
parametrization and complexity of real-time localization.

The rest of the paper is organized as follows. Section II
addresses the specific selection of UWB and CV indoor
RTLSs in the context of operational industrial scenarios,
along with a review of the state-of-the-art focused mainly
on operational accuracy and characterization/modeling of
positioning errors. Section III describes the realistic opera-
tional industrial environment used in the experimentation and
characterization, highlighting the main deployment aspects
of the different RTLSs. Section IV presents the RTLSs
performance evaluation, along with the accuracy modelling
aspects and the discussion of the results, for different
operational configurations. Finally, Section V provides the
conclusion and a future outlook discussion.

II. RELATED WORKS
Among the numerous indoor RTLS technologies that rely
on radio frequency (RF) signal exchange, such as Wi-Fi,
Bluetooth, Infrared, and RFID; UWB stands out due to its
exceptional combination of accuracy, reliability, scalability,
real-time tracking capabilities, and low power consump-
tion [13], [14]. These attributes have made of UWB a
preferred choice for an efficient location tracking solution in
industrial settings, achieving an operational accuracy in the

range of 20 cm to over 100 cm, depending on the factory
conditions [15].

While UWB transmitters are often utilized as wearable
devices by human workers on factory floors [16], [17], it is
noteworthy that no previous studies conducted in industrial
environments have explored the impact of the human body
on UWB RTLS performance. So far, research endeavors that
have providedmodels for UWB inaccuracies in industrial set-
tings have primarily focused on the effects caused by fixtures,
such as multipath effects stemming from metal structures
or the shadowing or NLOS effects induced by walls [18].
To the best of our knowledge, the studies addressing the
influence of the human body on UWB performance have
been conducted mainly in non-industrial environments [19],
[20], [21], [22] and, therefore, further evaluation in industrial
scenarios is needed to validate whether non-industrial results
and models still apply in environments with such distinct
layouts, system topologies, and overall radio propagation
conditions [19]. In general, the effect of the human body on
UWB accuracy reported in the literature for non-industrial
environments is found to be dependent on the relative heading
angle (RHA) between the UWB transmitter and receiver
devices, leading to UWB ranging errors of up to 160 cm [20],
with the forehead and the chest being the most and the least
favorable device positions on the body, respectively [19].
In terms of ranging error modelling the literature considers,
typically, a combination of low-sigma Gaussian and Gamma
distributions, representing the line-of-sight (LOS) and NLOS
situations, respectively [19], [20], [23], [24].

Despite the peerless features of UWB RTLS, one potential
drawback is the reliance on individuals wearing UWB tags
for accurate localization. If individuals forget to wear their
tags or if the tags run out of battery, their location cannot
be tracked using the UWB RTLS system, which is often
ignored in related studies [25]. This limitation can introduce
challenges in maintaining consistent tracking coverage and
thus require backup RTLS systems, to mitigate the impact
of missing or inactive tags. In this context, CV-based RTLSs
offer distinct advantages over other tracking technologies
used as the backup system [26], [27], [28]. These include:
no reliance on additional equipment, precise identification
and tracking through advanced algorithms, comprehensive
coverage using multiple cameras, additional insights through
behavior analysis and anomaly detection, and seamless
integration with existing infrastructure [29], [30], [31].
The accuracy of CV-based RTLSs highly depends on

the camera type/position, coverage area, calibration method,
detection algorithm, and type of detected elements (i.e.
artificial markers or real features); as it can vary from
meter ranges even to millimeter ranges in strictly controlled
environments [32]. Generally, studies that are somewhat
analogous to our research, involving the utilization of static
surveillance cameras in indoor settings for human detection
based on physical characteristics, have reported distances
ranging from 15 cm to 60 cm [30], [33], [34], [35], [36].
A majority of studies addressing the sources/models of

75368 VOLUME 12, 2024



S. Valiollahi et al.: Experimental Evaluation and Modeling of the Accuracy of RTLSs for Industrial Use

localization error in CV systems have focused on stereo
systems [37], [38], as contrary to monocular CV systems. The
authors in [39] utilized an object detection algorithm with
a thermal imaging dataset of an infrared camera to assess
pixel-wise localization errors for detected objects. They
modeled these errors as normal distributions, varying with the
distance of the objects from the camera. This information was
then used to create a spatial error distribution, projected onto
the world coordinate system using the camera transformation
matrix. This process resulted in an elliptical error distribution
around the object, with a more significant error in the y-pixel
direction than the x-pixel direction, highlighting that the
uncertainty of localization measurement depends on both the
sensor and the processing algorithm.

Specifically in human surveillance applications covering
extensive areas, such as factory floors, the utilization
of multiple cameras is crucial to ensure comprehensive
coverage [40]. However, this introduces the challenge of
either consolidating their individual outputs or establishing a
cohesive network among them [41]. Various approaches are
employed to tackle this challenge. Some methods, known as
pre-processing approaches, integrate cameras during frame
processing, utilizing all captured frames from each camera
while applying detection/tracking algorithms [42], [43].
Although these approaches may result in more accurate
human localization, achieving precision up to 5 cm, they
demand significant processing power proportional to the
number of cameras and often require overlapping fields of
view. Conversely, post-processing approaches, which involve
the fusion of detection/tracking outputs from individual
cameras [44], [45], offer greater flexibility. These methods
are more adaptable to different setups and better suited for
real-time applications, though they typically achieve slightly
lower accuracy, around 20 cm. Additionally, post-processing
camera fusion algorithms that operate independently of
specific camera setup knowledge, such as model or position,
exhibit superior generalization capabilities. This indepen-
dence allows them to incorporate more cameras effectively
or be applied to varied setups, enhancing their utility across
diverse surveillance scenarios. A concise summary of the
literature discussed is presented in Table 1.

III. MEASUREMENT SETUP AND METHODOLOGY
As mentioned earlier in Section I, to guarantee a high
level of safety and efficiency for both humans and mobile
robots, complementary RTLSs are needed in order to backup
each other in case of one’s failure in sending real-time
localization/positioning data. Stemming from our motivation
to leverage this paradigm, we evaluate and model localization
data from the two operational RTLs (UWB and CV) deployed
in our industrial research lab, the AAU 5G Smart Production
Lab. [46], with the aim of integrating the outputs in our digital
twin framework for data simulation/prediction/synthesis.
In the following we describe the physical experimental setup,
the realistic operational test conditions, as well as the data
processing and modeling approaches.

FIGURE 2. Layout of the main hall of the AAU 5G Smart Production Lab,
illustrating the position of the indoor RTLS deployments (UWB: green
crosses, CV: camera icons), as well as the target key production area
(yellow rectangle) and the reference GT points (blue dots).

A. REALISTIC INDUSTRIAL TESTBED AND OPERATIONAL
INDOOR RTLS DEPLOYMENTS
The experimentation took place in the main hall of the AAU
5G Smart Production lab, which is a small realistic factory
hall of 14m× 40m, equipped with production lines, robotic
cells, AMRs and other industrial automation equipment.
Here, a key production area of 12m × 20m was defined
around a production line, as this is a corridor-intersection
traffic-intense area where mobile robots and human work-
ers typically coexist and, therefore, efficiency and safety
enhancements are of importance [48]. This target area is
highlighted in yellow in Fig. 2 over the factory hall layout.
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FIGURE 3. UWB RTLS data processing flow, including trilateration
between end devices (tags) and infrastructure nodes (anchors), and
centralized processing and storage at gateway server.

As also described in the figure, the lab is equipped with an
UWB positioning system based on 16 anchors deployed at
5-6 m height, close to ceiling level (green crosses in the
figure), and a CV-based system composed of 3 cameras (cam-
era icons in the figure) which are constantly monitoring
from aerial next-to-the-ceiling positions the target shop-floor
aisles around the production line. The figure also displays
the 11 ground truth (GT) points (blue dots in the figure)
that were selected for positioning performance evaluation
over the key production area. These points were marked on
the floor, with an inter-point distance of approximately 2 m,
to obtain relevant statistics spanning over the whole main
aisle intersection at the key production area. These reference
points were measured with mm accuracy using a total station
theodolite [49]. Both positioning systems were configured
and calibrated to the same Cartesian coordinate system with
origin (0,0) position located in the south wall of the research
lab as indicated in Fig. 2. Physically, this reference position
corresponds an wall-installed charger device for industrial
AMRs.

1) UWB RTLS
UWB RTLSs are typically based on battery-powered trans-
mitters (tag) deployed over the localization targets that
emit short-duration UWB RF pulses, and also multiple
receivers (anchors or reference nodes) which are strategically
placed at known locations throughout the environment.
The operational UWB RTLS deployed in our factory
hall was an industrial-grade system based on enterprise
anchors by pozyx [50]. Prior to operation, the system
was fully-calibrated in the horizontal domain (information
about exact anchor 3D position with mm precision is
logged by the system and combined with its own auto-
over-the-air calibration routines). The UWB transceiver (tag)
deployed for measurement and evaluation was based on
commercial DecaWave DW1000 equipment [51]. The UWB
RF positioning signal was configured as per the following
settings: UWB channel 2 (3774-4243.2 MHz), 500 MHz
bandwidth (enabling a timing resolution of 1.6 ns), data
rate of 110 kbps, a preamble length of 1024 bits, a pulse

FIGURE 4. CV RTLS data processing flow, including video detection by the
infrastructure elements (cameras), and centralized data processing at
gateway server.

repetition frequency of 64 MHz, and a transmission power
of 20 dBm. The update rate of the transceiver (tag) was set
to 50 Hz. The 2D localization data from the UWB RTLS
is collected from an edge-cloud system gateway/controller
through Message Queue Telemetry Transport (MQTT) com-
munication protocol [52]. In our case, positioning estimates
of each tagged object or individual are obtained in real time
at a rate of 50 Hz positioning measurements per second by
combining trilateration results based on time-difference-of-
arrival (TDoA) from multiple anchors. Each UWB tag is
associated with an individual ID within the system, ensuring
precise identification and discrimination between different
tagged objects or individuals. The overall data flow for the
UWB RTLS is briefly summarized in Fig. 3.

2) CV RTLS
The second RTLS deployed in our industrial research lab
utilizes surveillance thermal/RGB cameras [53], comple-
mented by a customized real-time deep learning person
detection/tracking algorithm by Ambolt AI [54]. This
algorithm outputs updated floor-mapped 2D coordinates of
the target elements (humans) based on YOLOv4 detection
with bounding boxes as the key component [55]. The cameras
were mounted in next-to-ceiling locations in such a way
to cover the whole key production area, to make sure that
a human worker can always be detected and tracked by,
at least, one camera. The frame update rate of cameras is
25 fps, i.e., positions received from the CV system update
approximately every 40 ms. The frames stream are fetched
by a local server/gateway to be processed and then sent to an
edge-cloud server as depicted in Fig. 4. As in the UWB case,
MQTT is used to collect CV localization data, discriminating
the different detected human workers with different unique
IDs, from the edge-cloud server.

a: MULTI-CAMERA INTEGRATION FOR OPTIMIZED
DETECTION
The surveillance cameras operate as three separate systems.
When a person is detected by multiple cameras in the CV
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Algorithm 1 Best Camera Selection Algorithm
Input: C ← {c1, c2, . . . , cN }, R← {r1, r2, . . . , rN }
Output: cbest
1: K ← non-zero(C × R)← {k1, k2, . . . , kM }, M < N
2: S ← {s1, s2} ← SortAscending(K , dCV ,avg(·), 1 : 2)
BEST CAMERA Selection

3: if
{(

dCV ,avg(s2)
dCV ,avg(s1)

< 1.3
)

and
(
dCV ,SD(s2)
dCV ,SD(s1)

< 1
)}

or{(
dCV ,var (s2)
dCV ,var (s1)

< 1.7
)
and

(
numel(s2)
numel(s1)

> 5
)}

then
4: cbest ← s2
5: else
6: cbest ← s1
7: end if
8: return cbest

system, each camera provides a distinct coordinate for that
person. To optimize the performance of the CV system and
integrate all three cameras effectively, we defined confidence
regions for each camera. These confidence regions are
calibrated and encompass the output estimated coordinates of
the human that are considered as correct, considering NLOS
regions, potential angular and range degradation due to the
type of aperture and lens used in the camera [56].

Thereafter, an integration algorithm was developed by
taking into account the confidence regions and statistical
measures of the cameras, to fuse and optimize their
localization data into a single and more accurate and robust
final position for each detected individual. The considered
statistical measures are: mean accuracy (dCV ,avg), standard
deviation (dCV ,SD), and the number of samples (numel)
output by each camera in a given time period. The general
formulation is given in Algorithm 1 and aims at selecting
the best camera (cbest ) based on the full set of N available
camera interfaces (C) and the corresponding confidence
regions masks (R). First, the full set of cameras with available
information is filtered by the confidence region masks,
identifying the group of M < N camera interfaces with
possible correct detection (K ). Next, these interfaces are
sorted in ascending order as per their mean accuracy, and
the two cameras with the best accuracy (s1, s2) are selected
as best camera candidates. Subsequently, the best camera
selection is done by evaluating a number of conditions
comparing the performance of each of the candidate camera
interfaces. Generally, the best camera is the one with highest
accuracy, e.g., s1. However, in some cases, the mean accuracy
computation over a given interval of time can be biased
by the number of run-time available samples, impacting
also the standard deviation of the calculation and, therefore,
an empirical check of the robustness of the detection is
implemented. If the mean accuracy of second interface is
less than 30% worse than the one from the first interface,
and its standard deviation is lower than the one from the
first interface, then s2 is chosen as best camera, despite
having a lower mean accuracy. This is also the choice if
the number of detection samples of the second interface

FIGURE 5. UWB measurement setup illustrating the location of the
elevated wall-mounted anchors, tag tripod setup for non-human
reference, and the on-human tag setup for operational evaluation.

is more than 5 times larger than the one from the first
interface and still the second interface accuracy is not less
than 70% worse than the one from the first interface. The
first condition discriminates the correctness of the detection
with cameras with a similar performance, typically, in areas
with a similar distance and angular conditions between the
camera and the human target. The second condition filters
out those cases where a camera in not the best distance
and angular conditions performs sporadic lucky detections,
which are typically appearing and vanishing rapidly and not
constant in time, which leads to a clearly lower number
of samples as compared to the one from a camera in
good detection conditions. Thus, the second-best camera,
which demonstrates a higher detection success rate with
acceptable accuracy variance, is selected, prioritizing reliable
detection in industrial settings. The proposed algorithm for
integrating multiple camera outputs has a complexity order of
approximately O(M logM ), suggesting a low computational
demand. This characteristic makes it a suitable solution for
our target real-time application.

It should be noted that, our realistic industrial research lab
scenario, implements N = 3 camera interfaces to monitor the
key production area. As displayed in Fig. 2, the cameras are
strategically deployed so that the shop-floor aisles are always
in sight from two of the cameras. This facilitates the definition
of the confidence regions, which always guarantees that the
initial down-selection is done to M = 2 camera interfaces,
and direct evaluation of the best camera selection conditions
is possible. The specific choices of confidence regions will
be further elaborated in Section IV-B. Similar deployment
strategies are foreseen in real factory scenarios, as the layouts
are typically alike, which ensures that our algorithm will be
valid in those cases as well without loss of generality.

B. MEASUREMENT SETUP, TEST CONFIGURATIONS, AND
DATA PROCESSING PROCEDURES
The evaluation of the two selected RTLSs considered both
static and mobile human operational conditions. The static
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FIGURE 6. A frame captured by the ceiling-mounted camera 1, illustrating
the output of the CV system with one person detected over the GT3
reference point.

condition was evaluated with a human standing at the
different GT reference positions, while the mobile condition
was evaluated with a human walking over the route defined
by the different GT reference points. In the UWB case, the
static evaluation was performed with a tag carried by a human
in a string around the neck. This is displayed in Fig. 5. The
height of the tag on the human was approximately 1.25 m
above ground floor. The figure also describes an alternative
setup for the static UWB case where the tag was mounted
on a tripod at 1.98 m height. This alternative setup was
used to collect measurements to compare with the human
case and investigate the effect of the human on the accuracy
of the RF localization system in industrial settings. For the
CV case, no tag or any other hardware was needed, as the
human position detection is automatically done based on
video processing. Fig. 6 illustrates a frame captured by one
of the cameras, with a detected person over GT1 in the red
bounding box.

Under these settings, and considering the calibrated GT
points as a reference as illustrated in Fig. 7, the 2D Euclidean
distance (d) was calculated from the (X ,Y ) RTLS samples as
Eq. 1 and Eq. 2 to measure the accuracy of the UWB and the
CV systems, respectively.

dUWB =
√
(XUWB − XGT )2 + (YUWB − YGT )2 (1)

dCV =
√
(XCV − XGT )2 + (YCV − YGT )2 (2)

While the applicability of Eqs. 1 and 2 is trivial for
the static case, where there is a one-to-one correspondence
between UWB/CV positioning samples and GT reference
points; in the mobile case, the human individual target
moves along the 19 m route path between GT1 and
GT11, twice (in forth and back directions) and, therefore,
synchronization/alignment of the UWB/CV measurements
to the GT points route over time is needed. To do this,
a mobile reference paths was derived by aligning the
real-time measurement to the mobile route GT points, and
interpolating GT positions, at time stamps matching the
CV/UWB data time stamps, as detailed in Fig. 8. The

FIGURE 7. Description of the computation of the 2D Euclidean distance
based on the coordinates obtained from the UWB/CV RTLSs and the
real-world GT reference coordinates of a given human worker.

FIGURE 8. Description of the measurement synchronization approach for
the mobile case, considering interpolation of GT samples according to
CV/UWB data time stamps (CV and UWB vs. GT), and upsampling of the
CV measurements to match the UWB data (CV vs. UWB); with circles and
crosses representing measured and interpolated data, respectively.

individual UWB/CV operational accuracy performance was
analyzed independently. However, additional analyses based
on concurrent measurements both in static and mobile cases
were performed to benchmark simultaneous UWB and CV
RTLS performance, in order to be able to establish potential
run-time safety measures for detecting humans without tags.
In this case, the explored metric (1) was the Euclidean
distance between the simultaneous UWB and CV positioning
data, as described in Eq. 3. In static case, 1 is computed as
the Euclidean distance between the average of all recorded
CV samples and the average of all recorded UWB samples
at each GT point; whereas in mobile case, to compute 1, the
CV samples were interpolated to match the UWB samples
time-wise, as also described in Fig. 8.

1 =
√
(XCV − XUWB)2 + (YCV − YUWB)2 (3)

In the static case, 6509, 6774, 2496 measurement samples
were collected for the UWB (tag on tripod), UWB (tag on
human), and CV RTLSs, respectively, at each GT position.
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The number of samples was larger for the UWB RTLS
evaluation, as this system has a higher acquisition rate
configured. All samples are used in the statistical analysis to
guarantee a fair comparison of the performance over a similar
operational time period of around 120 s. For the mobile
case, the 19 m route between GT1 and GT11 was walked
twice, in opposite directions, ensuring variable operational
conditions. The total number of samples collected over the
route was 2406 and 936 for the UWB and CV RTLSs,
respectively, with an average route traverse time of around
40 s (average walking speed of 1 m/s ≈ 3.6 km/h). The
discrepancy in the number of captured CV samples vs.
the expected one based on the duration and sampling rate
is attributed to two factors: first, the detection algorithm’s
occasional failure to identify a person in the captured
frames, and second, for consistency and fair comparison,
we standardized the sample count across all GT points to
match that of GT11, which had the lowest count due to the
relative position of this GT point to camera 3. The effective
number of CV synchronized samples for comparison, as per
the interpolated upsampling procedure described in Fig. 8
was, therefore, 2406.

C. ESTIMATED ERROR DISTRIBUTION MODEL
One of the main contributions of this study is the modeling
of the measured localization inaccuracies for the UWB and
CV RTLSs within our operational industrial environment.
Our ultimate goal is to employ these models for data
simulation/estimation/synthesis within the context of a digital
twin framework, which in turn facilitates making informed
decisions, leading to notable enhancements in production
processes and precise robot path planning.

To model the positioning error across different configu-
rations, we chose the Gamma distribution (see Eq. 4) for
its versatility and its ability to approximate a wide range of
asymmetric and skewed distributions. While some studies
in the reviewed literature used low-sigma Gaussian distri-
butions, primarily in scenarios with clear LOS conditions,
or a combination of Gaussian (for LOS) and Gamma (for
NLOS) distributions [19], [23], the right-skewed nature of
our experimental data justified the choice of the Gamma
distribution. This skewness is attributed to factors such as
Euclidean distance, NLOS conditions, and inherent noise
in industrial environments. Our approach was carefully
designed to maintain model independence from predefined
parameters or specific configurations, enhancing its adapt-
ability. This design ensures the model is straightforward to
interpret and apply, facilitating insights into data inaccuracy
behaviors and its application in various industrial settings.

s =
1

0(α)βα
xα−1e−

x
β (4)

Where:

0(α) =
∫
∞

0
tα−1e−tdt

In Eq. 4, x represents the random variable, α is the
shape parameter, β is the scale parameter, and 0(α) is the
gamma function evaluated at α. The mean and variance
of the gamma distribution respectively are µ = αβ

and σ 2
= αβ2. These parameters are estimated using

maximum likelihood estimation (MLE) algorithm [57] for
each experimentally measured data. To better characterize the
estimated distribution, we also measured its skewness (S) as
Eq. 5.

S =
E(x − µ)3

σ 3 (5)

where µ is the mean of x, and E(t) represented the expected
value of t . Skewness is a statistical measure that quantifies
the asymmetry of data relative to the sample mean. When
skewness is negative, it indicates that the data is more spread
out to the left of the mean than to the right. Conversely,
when skewness is positive, it suggests that the data is more
spread out to the right of the mean [58]. We also calculated
the goodness of fit (GOF) for each estimated distribution,
i.e. the error norm between the experimental and estimated
CDF usingmean square error (MSE) as the cost function [59].
A zero goodness of fit indicates a perfect fit of experimental
data to the estimated distribution. The estimated values of α,
β, along with the calculated S and GOF for each estimated
distribution are presented in IV-C3, along with the model
analysis.

IV. RESULTS
This section describes the results in perspective of the
different objectives and contributions set for this study. First,
results for the analysis of the human impact on operational
UWB positioning performance are discussed. Next, the
impact of integration and optimization of CV localization
data from multiple surveillance cameras is addressed. Later,
the individual operational positioning performance results
are presented and compared for the UWB and CV RTLSs
along with the estimated empirical error models for both
static and mobile conditions. Finally, the safety measure for
detecting humans without UWB tags is introduced based on
the simultaneous evaluation of the UWB and CV RTLs.

A. IMPACT OF THE HUMAN BODY ON UWB POSITIONING
IN INDUSTRIAL SETTINGS
Fig. 9 displays the raw measurement results obtained with
the tripod setup at the different GT positions for the static
case. As shown, the UWB localization for a given position
is accurate, as there are no large deviations of the raw
measurement data from the GT reference points. In this
non-human tripod case, the UWB localization is also stable,
as the dispersion of the raw measurement data around the
GT reference points is low. As a reference, by analyzing
the statistics of dUWB over the full data set, a median
accuracy of 12 cm and a standard deviation of 4 cm
was observed. In contrast, the raw measurement data
presented in Fig. 10 for the case where the UWB tag was
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FIGURE 9. Raw UWB positioning measurement data for the tripod setup
in static conditions.

placed on the human exhibits some deviations from the GT
points in some cases (especially around GT8) and a larger
variability as compared to the non-human tripod setup. In this
case, the median accuracy was found to be 19 cm with
a standard deviation of 14 cm. This indicates that, in the
considered experimental settings, the human body introduces
a degradation of approximately 5 cm in the UWB positioning
performance, and increases the uncertainty of the system
by a factor of 3.5. The cause of this is clear, as the results
involving the human are influenced by the shadowing induced
by the body, which obstructs, reflects, or scatters the UWB
radio signals, leading to reduced strength or delayed arrival,
which consequently introduces errors in the UWB ranging
estimation by the operational UWB locating system.

It should be noted that this study explores the impact
human shadowing on the self-positioning. However, the
conclusions drawn from the examination of a single tagged
subject can be extended to scenarios involving multiple
individuals within the work area if they are not very close
to each other (which is a fair assumption for key operational
production areas). Moreover, the impact of human workers
standing next to each other is expected to be minimal,
as the anchor density of the considered deployment should
guarantee enough links even in the presence of some extra
blockage.

In [19] and [20], the best UWB accuracy reported for an
non-industrial scenario was 20 cm, with an standard deviation
of 10 cm for UWB tags deployed in the forehead of a human
person. For tags deployed over the chest (as it is our case),
the same study reported an accuracy in the order of 246 cm,
with high variability of up to 166 cm of standard deviation.
Other studies, which even considered enhanced processing
algorithms accounting for spatial and angular deployment

FIGURE 10. Raw UWB positioning measurement data for the
tag-on-human setup in static conditions.

information [20], [22], described median accuracies in the
order of 20-50 cm. According to this, even in the presence of
human shadowing, the precision of UWB positioning in our
operational industrial scenario is comparable to that reported
in non-industrial scenarios. Despite the difference in clutter
nature and dimensions of the industrial and non-industrial
scenarios, the density of the deployment is typically larger
in industrial scenarios, which increases the LOS probability
in the UWB transmissions, reducing the potential distortion
induced by the large metal obstacles in the radio propagation,
and thus, leading to a comparable reference accuracy, even in
the presence of human shadowing.

B. OPTIMIZED CV LOCALIZATION BY MULTI-CAMERA
INTEGRATION
Fig. 11 illustrates the human localization errors (dCV ), based
on the individual processing of the raw measurement data,
for each camera at each GT position (orange dots for
camera 1, blue dots for camera 2, and red dots for camera 3).
As depicted, these errors are quite variable as they depend
on the angular and distance conditions of the GT position
towards the specific camera placements. When the GT points
are in good field of view conditions, the CV localization
error ranges consistently from 1 to approximately 20 cm.
In bad conditions, the CV positioning error for the individual
cameras is increased to up to 0.5-10 m. It should be noted
that there are GT points that fall outside the field of view of
specific cameras and, therefore, no data is available at that
particular position.

This emphasized the importance of considering the spatial
coverage characteristics of individual cameras, and motivated
the definition of confidence regions associated to the different
cameras, as described in Section III-A2. In our case, the
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FIGURE 11. CV positioning performance: individual camera accuracy and
output of the selection algorithms for each of the GT points.

confidence region for camera 1 spans over GT points 3-6.
For camera 2, the confidence region encompasses the areas
around GT points 1 and 2. The rest of the GT points 7-11 are
associated to the confidence region for camera 3. To better
understand the angular and distance camera conditions in
each of the regions, Fig. 12 can be used as a reference.
The approximate confidence regions are illustrated by the
dashed ellipses for each of the cameras. Remember that in our
setup, the cameras are strategically placed so that each of the
two perpendicular target aisles in our key production are are
covered by at least two cameras. Effectively, the best camera,
the one dominant over each of the defined confidence regions,
is that with short distance and target angular relation close the
camera boresight direction. For further reference, in respect
to the camera inaccuracies across the different GT points,
Table 2 provides information about the relative Euclidean
distances and elevation/azimuth angles of each camera with
respect to each GT point. As depicted in Figures 2 and 12,
camera 2 is slightly tilted, which explains why GT9 remains
visible to this camera. However, the production line creates a
NLOS condition for GT5 through GT8 for camera 2. GT11
is positioned directly beneath camera 3 and is only within the
field of view of this camera, which accounts for the large error
observed at this GT point.

Having such CV output performance information allowed
us to develop the best camera selection algorithm to select
the appropriate human location reading from the CV RTLs,
even in the presence of multiple detections in the different
cameras. Fig. 11 further demonstrates the effectiveness of
our proposed method in enhancing accuracy through the
integrated evaluation of readings from the three independent
cameras according to their related confidence regions (solid
green line) by comparing its performance with a baseline

FIGURE 12. CV positioning data as per the best camera selection
algorithm in static conditions including confidence regions for each of the
cameras.

selection method based on direct averaging of the human
target readings at the different cameras, without considering
any field of view quality conditions (dashed black line). For
our proposed best camera selection algorithm, the average,
median, and maximum localization errors are 12 cm, 13 cm,
and 26 cm, respectively. In comparison, these values for the
baseline method are 32 cm, 15 cm, and 142 cm. This implies
that, on average, our integration algorithm outperforms the
baseline method by 60%.

When compared to the works in the literature, [44] reported
an average accuracy of 40 cm, requiring the camera model for
data fusion, and only working with two cameras. The authors
in [45] employed three fusion methods: one with uniform
weighting resulting in an average error of 22 cm, another
selecting the best camera for accuracy with an average error
of 21 cm, and the third using error bias weighting which
assigns higher weights to cameras with higher accuracy,
resulting in an average accuracy of 18 cm. The weakness
of their first method is the loss of the benefits of more
accurate cameras, while the weakness of the latter two
methods is relying on just one statistical measure of average
accuracy, which is not robust. Therefore, our best camera
selection algorithm shows a great potential, at expense of
the requirement of prior calibration knowledge (confidence
regions), which should be easy to obtain in operational
industrial scenarios.

Apart from the information about the confidence regions
selected for each of the three cameras, Fig. 12 displays the
CV positioning data obtained as an output of the best camera
selection method with a human operator standing at each
of the GT points for the different cameras. In general, the
performance is stable and the dispersion of the CV data
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TABLE 2. Cameras Euclidean distances along with their elevation and azimuth angles with respect to each GT point.

around the GT reference points is lower than for the UWB
RTLS. This is observed from the median accuracy (12 cm),
and standard deviation (4 cm) of the integrated CV RTLs,
which are lower that those experienced in the UWB case.

C. OVERALL REAL-TIME LOCALIZATION ACCURACY AND
ESTIMATED PERFORMANCE MODELS
After exploring briefly the impact of the human body on
the UWB positioning in the industrial scenario and the
performance of our optimized CV system in static human
conditions, this section takes a closer statistical look to the
results and compares in detail the performance of the UWB
and CV RTLSs in both static and mobile conditions. The
statistical accuracy results for the different configurations are
further modeled by Gamma distributions (as explained in
Section III-C), and discussed in terms of precision at different
confidence levels.

1) PERFORMANCE IN STATIC CONDITIONS
Fig. 13 displays the empirical complementary distribution
functions (CDFs) of the positioning performance (localiza-
tion errors) for the UWB (dUWB) and CV (dCV ) RTLSs in
static human conditions (solid lines), as well as the ones from
their associated Gamma models (dashed lines). As depicted,
in static conditions, the CV performance is more robust than
the UWB one in either the tripod or the on-human setup.
At medial level, the CV localization error is 12 cm. This is
increased by 1 cm for the UWB tripod case, and by 7 cm for
the UWB on-human case. For UWB, these differences are
further increased to 25 and 117 cm at maximum level, for
the tripod and on-human setup, respectively, for a maximum
reference CV localization error of 26 cm. While these are
considered the most relevant accuracy indicators, it should
be noted that in 10% of the cases, the UWB RTLS with
on-human tag setup performed better than the optimized CV

one. A summary of key performance statics is given in Table 3
for the different configurations.

In comparison to our previous study, reported in [15],
where the UWB deployment in the same industrial opera-
tional scenario considered only 8 infrastructure anchors (half
than in this study), the UWB positioning performance has
now improved. While the median accuracy performance is
similar, the maximum ranging error is reduced by a factor
of 2. It is worth noting that these improvements were achieved
in a median industrial cluttered environment, without apply-
ing any optimization techniques, only densifying the anchor
deployment.

2) PERFORMANCE IN MOBILE CONDITIONS
Fig. 14 displays the empirical complementary distribution
functions (CDFs) of the positioning performance (localiza-
tion errors) for the UWB (dUWB) and CV (dCV ) RTLSs
in mobile human conditions (solid lines), as well as the
ones from their associated Gamma models (dashed lines).
Differently from the static case, if the human operator moves,
the UWB RTLS performs better than the CV one. In this
case, the median and maximum localization accuracy values
for UWB with the on-human tag setup are 23 and 80 cm,
respectively. The localization error is slightly higher for the
optimized CV setup, where a median error of 25 cm and
a maximum error of 89 cm. As for the static case, the key
performance statistics are summarized in Table 3.

As a further reference, in Fig.15, the spatial localization
data is compared for both RTLs. Despite the previous
statistical differences, as displayed, both the UWB and CV
RTLs are able to track the path followed by the human.
From these results, we can conclude that in operational
mobile conditions, the median accuracy of UWB exhibited
minimal degradation, establishing it as a reliable RTLS
choice. In contrast, the CV system demonstrated more
pronounced accuracy deterioration, which can be attributed to
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FIGURE 13. CDF of the human detection accuracy of the UWB (tag on
tripod/on-human) and CV RTLSs in static conditions.

the decreased performance of tracking algorithms, especially
when the human target is in motion, leading to distortions
in the CV-based measurements. The reduced maximum error
observed in the UWB mobile scenario as compared to the
static case can be attributed to the diminished influence of
regions subjected to increased degrees of shadowing. The
main differences are observed by comparing Figs. 10 and 15
in the areas around GT3 and GT4, and GT10 and GT11.
At those positions, for the UWB mobile case, the orientation
of the human while walking over the measurement route is
optimized (from a radio shadowing perspective) as compared
to the standing cases explored at the same positions during
the static UWB assessment.

3) ESTIMATED PERFORMANCE MODELS
The observed performance of the UWB and CV RTLSs in
terms of statistical distributions of accuracy/localization error
was modeled using Gamma distributions. Table 4 reports the
Gamma distribution parameters, skewness, and goodness of
fit for each estimated distribution. The statistical outputs of
these models are demonstrated in Figs. 13 and 14, to illustrate
their fits to the empirical error localization distributions
previously discussed for the different scenarios.

Previous studies [19], [20], [24] considered a mixture of
Gaussian and Gamma distributions respectively for LOS and
NLOS conditions to model human localization error data.
However, in our work, which is an operational industrial setup
(with extensive NLOS, reflections, and noises) contrary to
their non-industrial settings, the Gamma distribution effect is
more pronounced. This was especially evident in the case of
the UWB tag carried by a human, where human body played a
dominant role in shadowing phenomena. The larger and more
disperse localization errors measured in this case are obvious

FIGURE 14. CDF of the human detection accuracy of the UWB (on-human)
and CV RTLSs in walking mobile conditions.

FIGURE 15. Raw UWB positioning measurement data for the
tag-on-human setup and CV positioning data as per the best camera
selection algorithm in mobile conditions. The GT route is displayed on top
as a reference.

in Fig. 10 (highlighting data dispersion) and Fig. 13 (showing
a heavy-tailed CDF), which in turn resulted in larger β values
(and subsequently S) of the corresponding estimated Gamma
model, with similar α. In the UWB RTLS case, the estimated
Gamma models for both static and mobile measurements,
exhibit a similar degree of asymmetry (S). However, in the
mobile case, the greater variability in the data implies higher
α and β values, potentially due to the challenges introduced
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TABLE 3. Summary of key accuracy performance statistics for the UWB and CV RTLSs for human detection in operational conditions.

TABLE 4. Parameters of the human localization error models estimated as Gamma distributions for the UWB and CV RTLSs in operational conditions.

TABLE 5. Evaluation of the human localization error model outputs at 90% and 99% confidence levels for the UWB and CV RTLSs in operational
conditions.

by the mobility effects. In terms of overall fit to the empirical
data (GOF), the estimated Gamma model is approximately
10x more fitted in the mobile case as compared to the static
case.

In the case of the CV RTLS, the estimated Gamma
distribution parameters for static human conditions present a
relatively large α compared to β. This suggest that ranging
errors are predominantly concentrated around the mean
value, but low probability of large errors occurring. This
observation may be attributed to variations in the extrinsic
camera parameters, specifically in terms of height and pose.
For the mobile case, the case is opposite, a relatively large
β is estimated as compared to α. Also S is large in this case.
This is consistent with the larger variability of the CV ranging
data in the mobile case due to the inaccuracies of the CV
detection and tracking algorithm. In terms of GOF , the CV
RTLS models present similar levels.

The differences between the experimental data and
estimated data with the Gamma models are summarized
in Table 5 for various confidence levels. These results
indicate that all the proposed Gamma models for predicting
the position of a static or mobile human worker with
either the UWB or the CV RTLSs are valid within 90%

confidence level for a maximum tolerable error of 6 cm.
For a 99.9% confidence level, a maximum tolerable error of
10 cm should be considered in static conditions, increased
to 25-50 cm in mobile conditions. This level of accuracy
suffices our needs for integrating the model into DT
simulations, abstracting the parametrization and complexity
of the real systems, allowing us to integrate realistic human
localization behaviours in the more complex planning
industrial production procedures [60].

D. DETECTION OF HUMANS NOT WEARING UWB TAGS
The individual assessment of the two RTLSs indicates that,
in our operational industrial scenario, the CV system is
the best for detecting a human worker in static conditions,
while the UWB one performs better when the human worker
is moving. However, the analysis also indicated that the
performance of the UWB localization is very similar in both
static and mobile conditions. Therefore, UWB should be
a preferred choice of primary RTLS, and CV should be
considered as a backup system. Based on this, the preferred
method to guarantee safety in the industrial production
scenario would be to equip human workers with tags so that
they are constantly detected and tracked by the UWB system.
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FIGURE 16. Real-time positioning difference between CV and UWB
samples in static and mobile conditions.

However, in the eventual case a human worker forgets to wear
the tag, or the tag fails or runs out of battery, the CV detection
plays a key role.

Here, it is important to understand the potential deviations
between the main source of localization (UWB) and the
secondary one (CV) in order to better understand the potential
safety margins that need to be considered in run-time
operational safety. Fig. 16 details the CDFs of the difference
between the simultaneous CV andUWB localization data (1)
both in the static and mobile cases. The figure indicates
that the real-time discrepancies between the CV and UWB
readings exhibit a median value of 13 cm, increased to
52 cm as a maximum difference in static conditions; further
increased to 41 cm and 97 cm in mobile settings. Such
values are in good agreement with the overall UWB and CV
localization performance as in the worst-case scenario, the
discrepancy between the CV and UWB data in the static
(mobile) case does not exceed the sum of the estimated
error for the individual CV and UWB RTLSs in static
(mobile) conditions. This assertion is well supported when
reviewing the numerical data presented in Table 3, where
the summary statistics for this case are also included.
As the nature of the statistical distributions for the CV-UWB
difference is right-skewed and non-symmetrical, again, the
Gamma distribution is seen as a good model candidate,
just as before for the individual UWB and CV localization
performance. Therefore, a Gamma distribution was fitted to
the empirical data and the specific parameters, fitting metrics,
and comparison between model outputs are also included in
Tables 4 and 5.
Understanding the bounded behavior of 1 allows us to

use this metric, combined with the individual UWB and
CV performance, as a safety measure for reliably detecting

humans without UWB tags. Table 6 provides an overview of
the potential safety radius that needs to be considered around
human workers due to uncertainty in the localization in the
industrial operation environment, computed as a combination
of the different results provided in our assessment in the
worst possible conditions. This would be applicable even
in the presence of multiple humans. The two RTLSs can
discriminate/distinguish between multiple targets (human
workers) as each individual detected in our study is assigned
a unique ID (both in the UWB and CV systems). With the
known maximum distance between CV and UWB outputs
for individual tracking, we can generalize our scenarios to
include multiple individuals by mapping IDs from UWB
to CV system. In situations where one-to-one mapping
between UWB and CV is not feasible, such as when multiple
individuals are close together, the current data quality would
still support our objectives. As our primary goal is not to
identify each individual uniquely but to ensure the detection
of human presence to maintain safe distances and identify
individuals without tags, we account for the worst-case
scenario to ensure that our decisions are both cautious and
safe. For example, on a busy manufacturing floor where
workers frequently gather near machinery, the focus will be
on alerting the presence of the nearest personnel within a
hazard zone. Additionally, a CV and UWB data discrepancy
that exceeds the maximum established distance in crowded
areas can be detected, even if a one-to-one mapping between
CV and UWB data cannot be established. This approach
ensures robust safety measures are in place to handle dynamic
and densely populated environments.

In run-time operation, simultaneous readings from the
primary UWB RTLS and the secondary CV RTLS are
evaluated. If UWB samples and CV samples are separated by
less than 0.52 m (0.97 m) in static (mobile) situations, it can
be estimated that the human worker is wearing an operational
UWB tag and is also detected by the secondary CV system.
In this case, nominal safety margins relate directly to the
levels of uncertainty in the output of the primary UWBRTLS.
However, in the potential case that there is only a CV sample,
or simultaneous UWB and CV samples are separated bymore
than 0.52 m (0.97 m) in static (mobile) conditions; then this
means that one human worker is detected by the CV system
but not by the UWB system, or that one human worker is
detected by the CV system and another human worker is
detected by the UWB system. In this case, we have detected
a hazard situation where a human worker is not equipped
with an UWB tag, or is equipped with a malfunctioning
UWB tag. Therefore, an alert to the human worker should
be issued while the operational safety margins are adapted
consequently to account for the further uncertainty in the
localization.

From Table 6, it can be concluded that 1 m would be
an appropriate human localization safety margin in nominal
conditions, which should be doubled to 2 m in the presence
of a potential hazard situation. This information would be
extremely relevant in operational industrial environments in
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TABLE 6. Operational safety margins to be considered in human worker localization in different industrial conditions for 50%, 90% and 99% confidence
levels.

the case of having a centralized control entity, such as the DT
detailed in Section I, controlling and optimizing the overall
factory production flows according to the inputs fromRTLSs.
This would allow to establish tailored virtual safety radius
around human workers and identify and signal in advance,
whether a human worker could constitute a potential obstacle
in the route of an AMR; or seen from the other perspective,
whether an AMR could be a potential hazard for a human
worker.

At present, safety standards for AMRs in industrial
environments do not allow the use or integration of external
RTLSs in any of the safety decision-making procedures [61].
This means that, currently, an autonomous robotic entity
should react to the presence of a human in the environment
based only on the readings from its own onboard sensors,
configured according to the adaptive protective field settings
set by the regulations [62], [63]. Current protective field
ranges for human detection are AMR speed-dependent, and
vary between 0.08 m and 1.35 m when driving backwards
at 0.1 and 1 m/s, respectively. When driving forward, the
values are variable between 0.08 m and 2.85 m at 0.1 and
2.1 m/s, respectively [64]. In the most challenging case,
which corresponds to AMRs operating at the highest speed,
these values are at the same level of our estimated safety
margins in human localization. This means that, if in the
future, regulations for operational safety in presence of
mobile robotic elements are updated to allow for the use
of external up-to-date information from the location of
other entities (including humans), simplified protective field
measures could be implemented in the AMRs, enhancing
global safety in the operational environment while reducing
the onboard sensors computing needs and overall power
consumption (thus, enlarging the autonomy of the mobile
robotic entity, and increasing production throughput).

V. CONCLUSION AND FUTURE WORK
This paper evaluated and modeled the accuracy of two Real
Time Location Systems (RTLSs), one based on Ultra Wide-
band (UWB) radio, and one based on Computer Vision
(CV) in an operation industrial setup, where human workers
and autonomous mobile robots (AMRs) operate in close
proximity, with the primary objective of enhancing safety
and efficiency in production procedures. The experimental
results demonstrated that, in the considered scenario, both
RTLSs can achieve comparable levels of median accuracy

in the order of tenths of cm (12-19 cm) in human static
conditions, which are degraded to 23-25 cm if the worker is
moving. The empirical performance (accuracy) by the two
RTLSs in the different operational conditions was modelled
by means of Gamma distributions of the resulting error
functions, with a maximum tolerable error of 5 cm at 90%
confidence levels. The observed levels of accuracy are similar
to those achieved by the commercial AMRs’ built-in locating
systems, which demonstrates that the deployed RTLSs are
an effective and reliable source of human worker positioning
information, useful for utilization in centralized monitoring
and control entities (e.g., industrial digital twins) for overall
runtime production process optimization. The experimental
data also indicates that utilizing UWB as the primary source
of human detection in the production environment, and CV
as a backup, assuming operational safety margins of 1 m in
nominal conditions and 2 m in case of hazardous situations
(e.g., a human worker is not wearing the UWB tag, or the
UWB tag is missing or malfunctioning) would result at levels
similar to those from the protective fields ranges stated in
current safety standards for AMRs in proximity of humans.

Future research will focus on extending the accuracy
performance analysis by considering different industrial
scenarios with different clutter topologies and RTLSs
deployment configurations, and potentially developing a
generalized positioning accuracy model. The use of RTLS
data in industrial digital twins will be leveraged further by
optimizing the operational AMR routes and overall path
and mission planning based on human worker locations and
behaviours (e.g., dynamic route adjustments based on up-
to-date location information, offering potential for collision
reduction, deadlock prevention, and minimizing slowdowns
in industrial environments).
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