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ABSTRACT Massive jellyfish outbreaks have put human lives and marine ecosystems in great danger. As a
result, the jellyfish detection methods have drawn a lot of attention, following two directions optical and
sonar imaging. This work focuses on using optical imagery and CNN-based deep-learning object detection
models to detect jellyfish. While labeled data of jellyfish play an important part in training deep learning
models, there are a few open and available labeled datasets. Hence, we create our dataset to train these
models using our model-assisted labeling method with over 11 thousand images of underwater jellyfish
and corresponding annotation files in PASCAL VOC format. Our model-assisted labeling method saves
the work of classical manual labeling by 70 percent, which is developed into application with YOLOv5.
However, the YOLOv5 baseline suffers from the trade-off between real-time performance and low accuracy.
Hence, an improved YOLOv5-nano is introduced based on adding GAM and replacing conventional Conv
with CoordCov modules into the backbone of the conventional structure. The experiment results show
that our improved model increases the accuracy of the conventional one by 1.3% and outperforms others
including RetinaNet, SSD, Faster R-CNN, YOLOv6, and YOLOv8 at 89.1% mAP@0.5. On generalization
performance, we verify the effectiveness of our work by conducting a test set of 15 different types of
jellyfish with various shapes, colors, resolutions, and backgrounds. To conclude, our work establishes a
comprehensive system from labeling the data, improving object detectors, and developing a feasible real-time
jellyfish detector.

INDEX TERMS Jellyfish detection, deep learning, YOLOv5, coordinate attention, GAM, CoordCov.

I. INTRODUCTION
Jellyfish, which make up a significant portion of marine
plankton biomass, are mostly carnivorous and eat a variety
of different foods. As a result, the outbreaks of jellyfish
frequently result in a dramatic reduction in zooplankton
density, which causes fish to starve to death and a decline
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in fish stock density [1]. Many maritime locations, for
example, Masan Bay in Korea, have had a jellyfish outbreak
in recent years as a result of a significant number of jellyfish
breeding, which has severely damaged the local ecology and
economy [2]. These jellyfish outbreaks have a significant
impact on both the sustainability of the maritime economy
and the ecological security of the coastal region. Therefore,
it is essential to monitor the jellyfish species, location, and
jellyfish bloom distribution.
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Optical imaging and sonar imaging are the most advanced
underwater imaging techniques. By sending and receiving
sonar waves, underwater acoustic imaging enables the
identification of jellyfish but has the drawback of having
limited picture quality. Because optical imaging has a better
resolution than underwater acoustic imaging, it has quickly
advanced in detecting underwater objects. According to
literature reviews, the current trend of detection method is
a convolutional neural network (CNN)-based deep learning
objection detection, which has progressively become a
cutting-edge method to research marine species (i.e., fish,
shrimp, and jellyfish).

Hence, in this work, we focus on the jellyfish detection
approach using optical underwater images and CNN-based
deep-learning object detectors. In [3], [4], [5], [6], and [7],
the development of object detection has passed by two
milestones: before 2014 as the traditional models’ period, and
after 2014 as the deep learning models era. Deep learning
object detection can be categorized into two groups: region
recommendations as ‘‘two-stage detector’’ (i.e., Recurrent
Convolutional Neural Network (R-CNN) (2014) [8], Fast
R-CNN (2015) [9], and Faster R-CNN (2015) [10]) and
regression-based algorithms as ‘‘one-stage detector’’ (i.e.,
You Only Look One (YOLO) (2016) [11], Single Shot
Multi-Box Detector (SSD) (2016) [12], Retina-Net (2018)
[13]). YOLO-family has a long history of development, and
the most popular versions up till now include YOLOv4-
Darknet (2020) [14], YOLOv5 by Ultralytics [15], YOLOv6
by Meituan (2023) [16], YOLOv8 by Ultralytics [17].
In the case of jellyfish detectors, these two approaches

have drawn the attention of many researchers. Since 2016,
CNN-deep learning-based object detectors have been applied
for jellyfish detection. During the period from 2016 to 2021,
Faster R-CNN with different kinds of backbone (i.e., Incep-
tion, ResNet, AlexNet, GoogleNet) showed their dominance
compared to YOLO-models (i.e., YOLO, YOLOv2). How-
ever, after its release in 2020, YOLOv4 and advanced YOLO
versions have gradually replaced the dominance of Faster
R-CNN with its real-time performance and high accuracy.
There were previous studies related to improved YOLOv3
[18], YOLOv4, and its lightweight version YOLOv4-Tiny for
jellyfish detection. Apart from detectors, labeled training data
play an important part in the success of deep learning-based
object detectors. However, there are a few open datasets
with annotations [19] because the manual annotation process
takes a lot of time and labor to label thousands of images.
As in [15], to get a better classification result, each class
consists of over 2 thousand images in case of a single label
per image (a total of 2 thousand labels per class).

As a result, instead of following classical manual anno-
tation methods, we introduce a model-assisted annotation
method with auto-labeling, which we published in [20],
to create our jellyfish dataset to save time and labor of
annotation task. Therefore, the model deployed into the
auto-labeling module requires fast detection time with an
accurate detection rate without missing, over-detection, and

better localization of bounding boxes around jellyfish. In this
work, we focus on the latter YOLO models and their
lightweight version, particularly YOLO version 5 nano
(YOLOv5n). The main idea of applying the nano version is
to keep fast inference speed, but there is a drawback of low
accuracy that needs to be solved. To solve the accuracy issue,
adding an attention mechanism module into the baseline
network or replacing the conventional module with advanced
ones are the most preferable solutions. The contribution of
our work is presented as follows:

• We introduce a new dataset with a total of
14376 images and corresponding labels by applying
our model-assisted annotation application.

• Wepropose an improvedYOLOv5n by adding a Global
AttentionMechanism (GAM) into the baseline network
to enhance its feature extraction capability boost the
small object and overlapping object detection rate
and replace the Convolutional layer with Coordinate
Convolutional layer (CoordConv) to improve its IoU
localization accuracy.

II. RELATED WORKS
With the development of science and technology, researchers
use various methods to detect underwater creatures, such as
optical imaging, sonar imaging, remote sensing sensors, etc.
Table 1 describes our summary of significant breakthroughs
in jellyfish detection, classification, and segmentation using
CNN-based deep learning models.

TABLE 1. Related works.
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FIGURE 1. The deep learning system for jellyfish detection: (a) System design, (b) Network structure of improved YOLOv5-based model.

In 2016, a jellyfish removal system was proposed by
Kim et al. [21], which utilized unmanned aerial vehicles
(UAV) to segment jellyfish on the water surface using
their proposed CNN-based deep learning model. In 2017,
a jellyfish distribution recognition system was developed
by Koo et al. [22] employing an unmanned aerial vehicle
(UAV) and an unmanned surface vehicle (USV). A CNN
deep learning-based model based on LeNet5 [23] and
AlexNet [24] was proposed for jellyfish segmentation on
the surface of seawater, which outperformed the baseline
and GoogleNet [25] on experiment results. However, these
studies have constraints of jellyfish segmentation on the
water surface, which is unable to detect underwater jellyfish.
In 2018, French et al. [26] employed a CNN-based VGG-16
[27] classifier to detect jellyfish versus 5 other classes (i.e.,
background, sediment, artifacts, fish, and seaweed) using
underwater sonar imaging.

Martin-Abadal et al. [28] introduced Jellytoring a jellyfish
monitoring based on Faster R-CNN with different back-bone
of Inception-ResNetV2 [29], Inception V2 [30], ResNet101
[31], which can detect 3 types of jellyfish, and record
the existence of jellyfish for a long time. It is noted that
their dataset was open and available with labeled annota-
tions [19]. Han et al. [32] introduced jellyfish classification
and detection based on Faster R-CNN with two cases of
different backbones, namely AlexNet and GoogleNet. From
their experiment results, the Faster R-CNN algorithm based
on GoogLeNet outperformed AlexNet with an accuracy of
74.96%.

In 2021, Qiuyue et al. [33] proposed an improved YOLOv3
which classified seven jellyfish species. Gao et al. [34],
[35] proposed an improved YOLOv3 and YOLOv4-Tiny for
jellyfish classification and detection respectively. As can be
seen from previous studies, from 2021, there is a shifting
trend from a two-stage detector (i.e., Faster RCNN with
GoogleNet, AlexNet, ResNet101 models) to a one-stage
detector (i.e., YOLOv3, YOLOv4 models). The previous
studies provide some insights into our work but there is still

room for improvement. For example, the previous versions
of YOLO (i.e., YOLOv3 and YOLOv4) are quite out of date
with the recent release of YOLOv5, YOLOv6, and YOLOv8.

The parameter of network and computation load FLOPs
of YOLOv5 are the smallest compared to other YOLO
models such as YOLOv6 and YOLOv8. Therefore, in this
work, we propose an improved YOLOv5 model for jellyfish
detection and creating a labeled jellyfish dataset. Our
model-assisted annotation application is first developed
based on customized YOLOv5 version 6.0 source code.
In addition, adding attention mechanism modules into
the YOLO conventional baseline network is a preferable
approach.

However, apart from adding the Convolutional Block
Attention Module (CBAM) in [36], there are some other
noticeable algorithms and there is no evaluation of them for
jellyfish detection task. Hence, to verify the effectiveness of
adding an attention module, we deploy various modules into
YOLOv5n baseline, including Coordinate Attention (CA)
[37], CBAM, Triplet Attention Module (TAM) [38], Effi-
cient Channel Attention (ECA) [39], and Global Attention
Mechanism (GAM) [40] and conduct ablation studies. While
the recent studies focused on multiple categories of jellyfish
classification and detection, i.e., 10 types of jellyfish and
1 type of fish in [32], [34], and [35], our work aims to
detect multiple jellyfish only without classification. In our
training/evaluation set, there is only one class, ‘‘jellyfish’’.
Our testing set consists of 15 different jellyfish species
to verify our improved YOLOv5n model generalization
performance.

III. METHODOLOGY
A. MODEL-ASSISTED ANNOTATION METHOD
A jellyfish dataset with a target number of images of about
10 thousand images is created in our work. Following the
classical annotation methods, open-source LabelImg [41] is
used to draw bounding boxes around jellyfish and set labels
manually. However, labeling a thousand images task requires
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a lot of time and labor, to solve these issues, we introduce a
model-assisted annotation method as shown in Fig. 1(a).
Firstly, the unlabeled images are split into 10 parts

following the 80/20 percentage of training and validation
set. The first part with 10 percent of training set (about
1400 images) will be labeled manually using labelImg tool
to create 1st trial small-scale jellyfish dataset. There are five
steps of annotating with labelImg as can be seen in Fig. 2.
After opening the direction of image folder in the first step,
all the images inside folder are loaded into labelImg tool as
shown in file list in the bottom right corner of GUI. To fasten
the manual annotation, it is preferable to label images with
a single big jellyfish first and utilize a model-assisted auto-
label application to process images of multiple or small
jellyfish in the next phase. Then, the most important step
is step 2 ‘‘S2. Select annotation format’’. The labelImg tool
supports three types of annotation formats, including YOLO,
PascalVOC, and CreateML format. It is recommended to save
annotation files as XML files in PascalVOC format to easily
convert to other formats, including YOLO as txt files and
COCO as json files. In step 3, it is better to draw the bounding
boxes around the jellyfish as fit as possible. In ‘‘Edit labels’’
step, there is one label as ‘‘jellyfish’’ in our work, thus it is
an easily set label. It is noted that there is a default label set
consisting of all the names of labels, which are stored in label
txt file in labelImg tool folder. Hence, in case of labeling a
dataset with multiple classes, it is better to edit this file with
the names of all classes in advance to fasten the set label
process. In the last step of manual label ‘‘Saving’’, the XML
files will be saved in the same folder as image directory.

FIGURE 2. Manually annotate the image with LabelImg.

Secondly, the XML annotation files will be converted to
YOLO format as txt files to train with pre-trained YOLOv5n
weight ‘‘yolov5n.pt’’ using transfer learning. A single GPU
RTX3050 is utilized on our deployment system, thus a
lightweight model such as YOLO version 5 nano (YOLOv5n)
is used to process this annotation task. After that, the trained
weight will be used as the input of our model-assisted
annotation application to label the remaining images. The
remaining nine parts of unlabeled images will be fetched
into YOLO jellyfish detector. Then, the bounding boxes and
labels detected by YOLOv5 jellyfish detector are written
automatically into ‘‘.xml’’ files using auto-labeling module.
It is noted that the confidence threshold in YOLO jellyfish

detector is set from 0.6 to 0.7. According to different inputs,
in the GUI application, the detection results will be displayed
so we can adjust the confidence threshold for better results.
The motivation for setting high confidence is to reduce false
detection. Only images consisting of detection results with
high confidence and the corresponding XML files will be
saved in the output directory.

However, the most common type of error using
model-assisted labeling method is the mismatch of bounding
boxes fitting to an object and the miss detection due to
the overlapping of multiple objects or small objects. Hence,
subsequently, these annotation files will be revised and
corrected manually using labelImg tool. Fig. 3(a) and (b)
present examples of before and after the process of revision
and correcting in case of two common errors respectively.
As can be seen in Fig. 3, the auto-label bounding boxes are
re-drawn to fit the jellyfish in case of mismatch, and new
bounding boxes are drawn in case of miss detection. Besides,
labelImg supports duplication of existing bounding boxes
instead of drawing a new one. In some cases of similar sizes
of jellyfish, it is better to duplicate the bounding boxes.

FIGURE 3. Example of revising and correcting manually in case of
(a) bounding boxes mismatch fitting and (b) miss detection due to
overlapping.

Finally, after revising and correcting the phase, the images
and annotations files will be added to existing dataset to
re-train again to update the trained weights following active
learning. To fasten the re-training process with new images,
it is recommended to load input data of training/validation
set for YOLO model from reading existing files in folder
instead of reading lines in txt files. For example, the training
and validation set is configured in ‘‘data.yaml’’ file with
the input ‘‘train: basepath/images/train/’’ instead of ‘‘train:
basepath/train.txt’’. After each active learning with re-train,
the updated weights will be deployed to YOLO detector
to auto-label the remaining images. It is noted that after
each round, the confidence threshold of YOLO detector
will be reduced from 0.7 to lower confidence by 0.05 or
depending on input data as our model-assisted labeling
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app supports adjusting confidence threshold and displaying
real-time detection results on GUI. Due to the remaining
images with many small or overlapping jellyfish, reducing
the confidence threshold, increases the detection rates. Also,
due to experience with some drawbacks of YOLO baseline,
we introduce an improved YOLO version to solve these
issues. Then, the process of revising and correcting will be
processed several times until completion of our dataset.

The UML of our model-assisted annotation application is
presented in Fig. 4, including threemain steps: optional selec-
tions (model, keyword, data file), trained model detection
(YOLOv5 detector), and auto-labeling. It is noted that the
YOLOv5 jellyfish detector source code is customized based
on Ultralytics [15], while auto-labeling module and other
parts are developed by our previous work [20]. As can be seen
on the optional selections, there are several functions to select
the inserting YOLOv5 jellyfish detector, including selection
model, data collection, and the selection of a single file or
multiple files. After finishing selecting the input data and
model, the YOLOv5 jellyfish detector will start detecting and
fetching the output data (detected bounding boxes and labels)
to the auto-labeling module. Our auto-labeling module has
several functions, the most important feature is the function
to write down the information of bounding boxes and labels
into existing annotation files or new brand ones. Another one
is a function for extracting annotation files. For example,
when the existing dataset such as [19] has existing annotation
files with several classes (labels), this model can extract
annotation files consisting of the ‘‘jellyfish’’ class and edit the
existing classes to a new name (i.e., ‘‘jellyfish’’). Besides, this
method can also support searching and downloading videos
automatically with desired keywork from YouTube in.mp4’’
format, and inferencing videos to create annotation files by
Youtube_Scapper functions.

FIGURE 4. UML of our YOLOv5-assisted annotation application.

B. IMPROVED YOLO-BASED MODELS
1) GAM ATTENTION
Applying attention mechanisms to improve the performance
of image detection and classification has been widely used

in many previous studies. Several dominant methods in
the development of attention mechanisms are listed. The
first method to combine channel attention and channel-
wise feature-fusion to bypass the irrelevant channels is
Squeeze-and-Excitation Networks (SENet) [42]. It is less
effective, nevertheless, at suppressing irrelevant pixels. The
latter attention mechanisms took both channel and spatial
factors into account. In detail, while the Bottleneck Attention
Module (BAM) [43] performed the channel and spatial
operation simultaneously, the Convolutional Block Attention
Module (CBAM) did so sequentially.

Nevertheless, as a result of their ignorance of channel-
spatial interactions, both attention modules lose the cross-
dimension information. In contrast, the TAM took into
account the importance of cross-dimension interactions,
which increased efficiency by using the attention weights
between each pair of the three dimensions, including channel,
spatial width, and height. Therefore, TAM is only applied on
two of three attention weights, instead of always applying
attention operations on all three dimensions. Liu et al. [44]
introduced a Global Attention Mechanism (GAM) that can
catch important information in all three dimensions to
amplify cross-dimension interactions as shown in Fig. 5.

FIGURE 5. Overview of GAM architecture: (a) GAM structure, (b) Channel
attention module, and (c) Spatial attention module.

The general methodology is represented by Equations 1
and 2, which includes the input feature map F1 ∈ RC×H×W ,
the intermediate state F2, and the output F3 as follows:

F2 = Mc (F1) ⊗ F1 (1)

F3 = MS (F2) ⊗ F2 (2)

whereMc andMS are the channel and spatial attention maps,
respectively as shown in (b) and (c) respectively; ⊗ denotes
element-wise multiplication.
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2) COORD_COV
A coordinate convolution (CoordConv) layer performs simi-
lar functions as a standard conventional layer, but it achieves
the mapping by first concatenating additional channels to
the incoming representation. In detail, Fig. 6 presents the
comparison of 2D convolutional andCoord_Conv layers [45].

FIGURE 6. Structure of convolutional layer: (a) Standard convolutional
layer, (b) Coordinate convolutional layers (CoordConv).

As can be seen in Fig. 6(a), a representation block
with the shape of h × w × c is mapped to a new form
representation with the shape of h′

×w′
×c′ by a conventional

standard convolutional layer.While in Fig. 6(b), a CoordConv
layer firstly concatenates additional channels that hard-
code i, j coordinates are contained in these channels. The
CoordConv layer preserves the effective computation and
low-parameter requirements of a conventional one while
letting the network learn whether to retain translation
invariance or reject it depending on the learned task. This is
helpful for problems involving coordinate transforms when
the conventional method might not work. When utilizing
CoordConv, a Faster R-CNN detection model trained on
MNIST detection demonstrated a 24%better IOUwhen using
CoordConv. In this work, we verify the benefits of using
CoordConv on the localization task of jellyfish with better
IOU.

IV. EXPERIMENT AND ANALYSIS
A. DATASET
Using the model-assisted annotation method, we created a
jellyfish dataset including 14,376 images with corresponding
labeled annotations in VOC format. Fig. 7 illustrating some
typical jellyfish images in our dataset. Table 2 presents
the dataset configuration, including training, validation,
and testing sets. Our dataset is utilized in training and
validation sets to train SOTA models, which are divided

into 80/20 percentages with 11500 images and 2876 images,
respectively. The open-source dataset [19] is used as a testing
set to verify the generalization of our improved YOLOv5n
model and baseline with 842 images and 976 labels.

FIGURE 7. Some images are examples of training/evaluation sets.

TABLE 2. Dataset configurations.

Besides, alternative testing images are extracted from
YouTube videos [45] for comparison of SOTAmodels. Fig. 8
presents the testing images with 15 different species of
jellyfish. It is noted that the testing data is not included
in the training/validation set. The shape, appearance, color,
and size of jellyfish are significant variations according to
different types, which presents the diversity of the dataset
and enhances the challenges of the detection task. Moreover,
the testing images are recorded in two ways: normal cameras
underwater, and on the surface of the water.

FIGURE 8. Jellyfish species of testing set: 15 species.
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In addition, many factors impact images such as ambient
noise, the background, the light, and the appearance of other
marine species that burden the detection task of models.
Thus, apart from YOLOv5 default hyperparameters data aug-
mentation like a mosaic, copy_paste, we apply some image
processing techniques (i.e, motion blur, random brightness
contrast, CLAHE, To Gray) while training YOLOv5 model
using albumentation library [46] as can be seen in Fig. 9.

FIGURE 9. Image pre-processing methods during training YOLOv5.

It is noted that in the previous work in [47], their dataset
images were applied to image pre-processing methods and
then used to train models. While in our work, YOLOv5
framework natively supports applying albumentation library
while training by customizing the image processing methods
and the probability of occurrence in YOLOv5 training
options.

B. EXPERIMENTS SETUP
To verify the efficiency of our improved YOLO model, vari-
ous ablation experiments are conducted. Firstly, to improve
the detection rate and bounding boxes localization of
the model, we evaluate the feasibility of adding atten-
tion mechanisms into the YOLOv5n baseline, including
Coordinate Attention (CA), Convolutional Block Attention
Module (CBAM), Triplet AttentionModule (TAM), Efficient
Channel Attention (ECA), Global Attention Mechanism
(GAM), and replacing Convolutional layer (Conv) with Coor-
dinate convolutional layer (CoordConv). Besides, we further
optimize our improved YOLOv5n model by fine-tuning
with pre-trained weight. Secondly, we compare the best
model of our work (YOLOv5n-GAM-CoordConv) versus
other models including SSD, Retinanet, Faster R-CNN, and
YOLO series in the same environment. To fairly evaluation,
these models are trained from scratch without using their
pre-trained weights and with the same number of 30 epochs
and other default settings of their models without any
hyperparameter optimization. The model training frame-
work is included Ultralytics for YOLOv5, Meituan for
YOLOv6, and open-mmlab (mmdetection) [48] for Faster
R-CNN-R50 (Resnet50_FPN) and SSD300, and Retinanet
(Resnet50_FPN).

Our environment is equipped with NVIDIA RTX
3050 GPU, CUDA 11.6, and Pytorch 2.0. The precision,
recall, average precision (AP), and mean average precision

with IoU of 0.5 (mAP@0.5) [49] are used for the evaluation
of these models.

C. ABLATION STUDY
The ablation experiments are performed by adding different
attention modules and replacing Conv with CoordConv into
the YOLOv5n baseline consisting of 7 models: YOLOv5n-
CA, YOLOv5n-CBAM, YOLOv5n-ECA, YOLOv5n-TAM,
YOLOv5n-CoordConv, YOLOv5n-GAM, YOLOv5n-GAM-
CoordConv models. The results of the ablation study are
presented in Table 3.

TABLE 3. Ablation study.

Following the timeline of the attention module release,
the parameter and computational cost are higher than
the previous. As a result, the complexity of the network
and computational cost contribute to the improvement of
accuracy and increased precision and recall rate on jellyfish
detection. Our work (YOLOv5n-GAM-CoordConv) achieves
the highest increase in detection accuracy by 1.3 percent
(with @mAP0.5 of 87.8 percent for YOLOv5n baseline
and 89.1 percent for the YOLOv5n-GAM-CoordConv).
This increased accuracy comes at the trade-off of doubling
the network parameters and over 1.5 times the FLOPs
computation cost of the baseline model. Achieving a balance
between precision and recall is crucial in deep-learning
object detection. A minimal gap between precision and recall
indicates that the model achieves high-accuracy detection.
In this ablation analysis, the YOLOv5-GAM-CoordConv
model exhibits the smallest gap between precision and recall,
at 1.3 percent. In contrast, the YOLOv5 baseline, YOLOv5n-
GAM, and YOLOv5n-CoordConv models display larger
gaps, at 3, 1.8, and 2.7 percent, respectively.

Besides, we apply transfer learning using pre-trained
weight from a larger source dataset namely COCO dataset
to fine-tuning our improved model on custom jellyfish
dataset for further optimization. Taking advantage of
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pre-trained weight, the mAP@0.5 accuracy of our improved
model increases 0.6 percent from 89.1 percent in case
of training-from-scratch to 89.7 percent. Other evaluation
metrics including precision, recall, and mAP@0.5:0.95 also
experience the boost, which verifies the effectiveness of
fine-tuning with pre-trained weight using transfer learning.

To validate our improved model generalization abil-
ity, we perform testing on an open-source dataset with
842 images in case of training from scratch and using pre-
trained weights. Fig. 10 presents the evaluation results, which
verify the generalization ability of our improved model.
While training-from-scratch, our improved model gets the
inference result mAP@0.5 accuracy at 66.9 percent on
842 testing images, which is quite a promising result for
inferencing new images. By leveraging pre-trained weights,
it boosts the mAP@0.5 accuracy by 7.9 percent. By fine-
tuning the model with pre-trained weight, our improved
model is better adapted to specific features and patterns
in our custom jellyfish dataset, leading to improvement of
performance and generalization ability.

FIGURE 10. Evaluation results on a testing set of 842 images of our
improved models in case of training-from-scratch and pre-trained
weights.

D. ANALYSIS
In this work, we compare our work (improved YOLOv5n-
GAM-CoordConv) with other models, which are frequently
used in object detection tasks. Together with the YOLOv6n,
YOLOv8n, SSD, and Retina are the most famous one-stage
detectors; and Faster R-CNN is the most well-known two-
stage detector.

As shown in Table 4, apart from the YOLOv5n baseline,
our work has the smallest computation cost FLOPs at 7.0 with
the highest accuracy in terms of mAP@0.5 at 89.1 percent.
Compared to the YOLOv5n-baseline, our work solves the
problem of low precision and even increases the recall
rate. From 81.4 up to 83.5 percent for Precision, and from
84.4 reaches to 84.8 percent for Recall. Low precision
in object detection refers to a situation where the model
identifies many objects, but a significant portion of those
identifications are incorrect. A higher recall rate in object
detection indicates that the model is effectively finding a
larger proportion of the actual objects present in the images.

The quantitative values of precision and recall indicate that
our improved YOLOv5n-GAM-CoordConv model feasibly
detects jellyfish precisely without over-detection with errors
(low precision) and miss detection of the correct jellyfish
(high recall). Besides, F1-score is the combination of
precision and recall, which also states the outperform of
our improved model compared to other models with 84 and
83 percent respectively. It is noted that F1-score is not
reported by native openmmlab training platform, so we note
it as ‘‘./.’’

TABLE 4. Models comparison.

The visual qualitative results on the testing images also
verify this indication. As can be seen in Fig. 11, the testing
images are very challenging generalization verification,
including the small resolution of the whole jellyfish (a),
the top-down of jellyfish with many stings (b), only a big
part of jellyfish showing in the image (c), a jellyfish with
long tails (d), a crystal jellyfish and human background (e),
a jellyfish with long tails with water bubble background (f),
a jellyfish with long tails and other small fishes back-
ground (g), another jellyfish with long tails and other small
fishes background (h), a mushroom shape jellyfish with light
reflection background (i), a jellyfish with a similar color to
ambient background (j), an upside-down jellyfish with light
reflection background (k), many jellyfish overlapping with
each other and bubble ambient background (l), a jellyfish on
the surface of water (m).
It can be seen that our work overperforms other models

in the case of these testing images. YOLOv6 and YOLOv8
prove to be very good jellyfish detectors, only failing behind
our work in the case of images: (b), (e), (l), and (m) for
YOLOv6; images (d), (e), (f), (i), and (m) for YOLOv8.
Especially, in the case of image (e), the color of the jellyfish
is crystal and the human diving equipment looks like jellyfish
making it very difficult to distinguish correctly. And our work
can detect precisely without wrong over-detection.
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FIGURE 11. Qualitative Visualization Results of Different Models.

In the case of the overlapping of jellyfish in the image (l)
and the jellyfish captured on the surface of the water in image
(m), our work proves the benefits of utilizing GAM attention
to correctly detect jellyfish. However, there is still some room
for improvement. For example, our dataset consists only of
the underwater capturing of jellyfish, which can be extended
to the approach of jellyfish captured by drones or UAVs.
Following this direction, we can develop the jellyfish bloom
detector using deep learning with images from drones or
UAVs.

In this work, we focus on improving the detection rate
and the accuracy of localization of some underwater jellyfish.
In the case of detecting jellyfish on the surface of water or
captured by drones, the small resolution of jellyfish versus

the big scene of sea background, the ambient noise, and
the lightning reflection will be different problems that need
to be considered. Our comprehensive system is deployed
into the application that can be easily customized into other
categories, i.e., fishes, marine species, and marine waste [50],
[51], [52]. Our work specializes in underwater imaging
which can be extended to UAV-capturing images for jellyfish
distribution (or jellyfish bloom) detection [53]. Besides,
the deployment of a deep learning-based object detection
system on embedded devices (Nvidia Jetson devices) on
USVs and UAVs also will be a considerable approach.
In our previous study in [54], we experienced the deployment
on Nvidia Jetson Nano and Xavier, which provided some
insight into our further work on jellyfish project. It is worth
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considering that Ultralytics, the YOLOv5 and YOLOv8
development platform, fully supports the exportation of
training weight from native Pytorch training platform to
TensorRT to boost inference time on Nvidia Jetson devices.
However, the mismatch of Pytorch, ONNX, and TensorRT
versions between the training GPU device RTX3050 and
Nvidia Jetson devices may cause exportability problems.
Another issue of deployment is resource constraints in limited
computational resources on embedded devices. Compared
to YOLOv8, the latter version released by Ultralytics, our
improved YOLOv5nmodel has less computation complexity,
which is a good point. However, adding an attention module
into default source code needs further optimization while
exporting to TensorRT and deploying into Nvidia Jetson
devices. With the release of Orin [55] the new generation
of Nvidia Jetson devices, compared to our work with older
generation devices, it is quite promising to achieve nearly
real-time performance.

V. CONCLUSION
This paper presents a YOLO-based deep learning model
assisted-annotation system for real-time jellyfish detec-
tion from underwater video/image recordings. Our system
deploys a YOLOv5n pre-trained model to detect jellyfish and
auto-labeling to generate annotations automatically based on
YOLOv5-detected bounding boxes and labels, which can
save a lot of manual time and labor.

To increase the auto-labeling effectiveness, it is essential
to improve the accuracy of detection and localization of
jellyfish. Therefore, we improve the YOLOv5n baseline
network structure by adding a GAM module and replacing
conventional Convwith CoordConv tomaintain fast detection
time and enhance generalization performance. From the
quantitative experiments results, our improved YOLOv5n
model achieves the highest accuracy of mAP@0.5 at 89.1%,
which outperforms other SOTA models, including Faster
RCNN, YOLOv6, and YOLOv8. The qualitative testing
experiments also verify these indications, as our models can
accurately detect jellyfish in many difficult cases, including
small, occupied, and big portions of jellyfish, and noisy
ambient backgroundswith fish, human, and diving equipment
which surpass the performance of other models. Further work
will focus on the deployment of our system on embedded
devices (i.e., Nvidia Jetson) as well as the customiza-
tion of our application back-end code to YOLOv6, and
YOLOv8.

VI. AVAILABILITY OF DATA AND MATERIALS
Please contact the corresponding author for data requests.
We use Visual Studio Code as a coding IDE and Jupyter
Notebook as a training IDE, which includes support for
Python programming. Our model-assisted annotation appli-
cation is developed with Python language as the back-end
and PyQT5 as the front-end GUI. We provide the demo
video of our model-assisted annotation application in a

GitHub repository [56] together with training experiment
results, model weights, and testing image results in a GitHub
repository [57].
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