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ABSTRACT The performance of hybrid multi-radio access technologies depends on the sufficiency of
the multi-user detection (MUD) at the receiver. For optimal performance of the hybrid power-domain
sparse code multiple access (PD-SCMA), robust detection strategies are necessary to alleviate MUD
complexity and reduces computational time. Deep learning (DL) based MUD techniques are the most
promising as they can detect all symbols of an overloaded PD-SCMAwithout requiring additional operations
of channel estimation and interference cancellation. This work proposes a deep neural network (DNN)
aided MUD scheme (DNN-MUD) for an uplink PD-SCMA system supporting near users (NUs) and far
users (FUs) multiplexed in power-, and code-domain, respectively. The proposed DNN-MUD features a
unified framework that jointly performs successive interference cancellation (SIC) and message passing
algorithm (MPA)/expectation propagation algorithm (EPA) operations to overcome interference propagation
of SIC and computational complexity of MPA/EPA. The DNN training is enhanced by batch normalization
to reduce the internal covariant shifts, thus enhancing the efficiency of detection. Performance results show
that the average symbol error rate (SER), complexity and computational time of the proposed DNN-MUD
significantly outperforms the conventional joint SIC-MPA/EPA schemes.

INDEX TERMS PD-SCMA, deep learning, multi-user detection, batch normalization, SER.

I. INTRODUCTION
Amongst the key enablers of beyond 5G (B5G) networks,
hybrid multi-radio access technologies are fundamental
players in satisfying the ubiquitous quality of service (QoS)
demands of the ever explosively growing number of wireless
devices. Non-orthogonal multiple access (NOMA) is a pow-
erful transmission technique developed to enhance spectral
efficiency compared to orthogonal multiple access (OMA)
schemes [1]. Besides, hybrid NOMA allows overloading and
massive connectivity by multiplexing in both power (PD)
and code domains (CD) at the expense of increased
receiver complexity. In particular, at the transmitter, power
domain sparse code multiple access (PD-SCMA) enhances
capacity by co-multiplexing near users equipments (NUs)
and far user equipments (FUs) using PD-NOMA into a
codebook by allocation of distinct power levels, while
exclusively assigning codes to the NU-FU clusters. At the
receiver, a joint multi-user detection (MUD) featuring suc-
cessive interference cancellation (SIC) and message passing
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algorithm (MPA) is deployed to iteratively decode the user
symbols [2], [3], [4], [5].

In PD- NOMA, the application of deep learning (DL)
techniques for SIC is gaining traction due to the practical
limitation of SIC resulting from lack of perfect channel
state information (CSI) statistics and error propagation
due to cumulative interference. The belief propagation and
expectation propagation based detection schemes deploying
maximum likelihood exhibit high computational complex-
ity [6]. A hybrid deep neural network (HyDNN) - SIC model
for multi-user uplink channel estimation (CE) and signal
detection (SD) is proposed in [7] to optimize system loss.
To optimise SIC, an intelligent SIC sorting and detection
scheme (I-SIC) that learns the implied characteristics in
the received signal, channel state information (CSI) and
power information via DL is proposed in [8]. In [9],
a convolutional neural network (CNN) based SIC is proposed
to solve SIC imperfections and mitigate losses therein,
hence improving the sum rate of the decoded signal.
In MIMO-NOMA, a deep neural network (DNN) aided SIC
is proposed in [10] to jointly optimize the precoder and SIC
decoding by minimizing the mean square error (MSE) at
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each step. Although it outperforms the conventional SIC,
the proposed DNN-SIC at each step suffers high compu-
tational complexity. Further, such a scheme is deployed
for MIMO-NOMA in [11]. A DL-SIC scheme for Faster-
than-Nyquist (FTN) modulated NOMA utilizing the sliding
window detection is proposed [12]. Generally, DL techniques
are applied in PD-NOMA due to their faster computational
time, easily configurable, more consistent and reliable
performance indices [13]. Furthermore, DL can significantly
reduce the computational complexity at the training and
testing stages of encoding, resource management and decod-
ing [14]. Additionally, DL can potentially provide significant
system-level improvements as compared to the conventional
model-based approach for solving highly dimensional, non-
convex optimization problems [15]. Therefore, this work
intents to harvest the advantages of DL techniques by
extending them to the PD-NOMA access scheme.

For the SCMA, DL has demonstrated great competence in
enhancing the bit error rate (BER) performance compared
to generic decoding algorithms [16]. The work in [17]
unfolds the MPA procedure and converts it to a sparsely
connected NN treating the weights as the parameters of
the NN. A DL SCMA decoder trained based on the mean
square error (MSE) loss function is proposed in [18]
and [19]. Authors in [20] regard the decoding strategy
as a non-mutually exclusive classification problem and
deploy the sigmoid function in the decoder’s output layer
as the activation function. Differently, [21] flips the SCMA
decoding strategy as a multi-output classification problem,
rather than a single-output classification problem. This flip
eases the NN training, consequently, achieving a better
BER performance with reduced computational complexity.
A jointly designed and trained denoising auto-encoder (DAE)
and DNN for SCMA signals decoding over an additive
white Gaussian noise (AWGN) channel is proposed in [22].
The proposed DAE-DNN detection strategy outperforms
the previously modelled DL schemes albeit exhibiting
under-performance compared to the conventional MPA.
Unlike MPA, the DAE-DNN detector assumes unavailability
of SCMA codebook knowledge at the receiver end, making
the comparison unfair. In contrast, the application of DL in
SCMA results in assumes codebook knowledge availability is
proposed, providing a fair comparison to theMPA and indeed
presenting a better BER performance than MPA.

Generic MUD’s have been applied on hybrid NOMA [2],
[3], [4], [5], [23], [24]. Although there has been signifi-
cant effort to improve signal detection and reconstruction
strategies at reception, generic algorithms still exhibit sub-
optimality. Besides, with increased resource overloading,
generic algorithms saturate thereby limiting the multiplexing
potential of a hybrid NOMA scheme. In addition, the
generic MUDs based architectures exhibit error propagation,
increased computational complexity and longer computa-
tional time as the number of user equipment’s in the system
bulge. Significant research on DL aided detection is carried
out for SCMA and PD-NOMA detection independently,

and only a few works have focused on DL deployment for
hybrid NOMA. The blends of MUDs for hybrid NOMA
detection that combine PD-NOMA’s parallel interference
cancellation (PIC) and SIC with SCMA’s expectation
propagation algorithm (EPA) and MPA are still devoid of
a unified signal processing framework. By using DL to
improve the MUD, a more unified architecture exhibiting
better SER, shorter computation times and reduced com-
plexity is realizable [25]. In [26], an uplink hybrid NOMA
scheme (HMAS) that jointly adopts OFDMA and SCMA
to support NUs and FUs respectively is developed. The
proposed detector significantly outperforms the conventional
joint MPA-SIC detector. In [27], a hybrid NOMA (HNOMA)
is proposed using both PD and CD NOMA for multiple
access of grouped users. A DNN-based demodulator trained
offline then deployed online is proposed in [28] to recover
transmitted bit streams for PDSCMA- VLC. Given the
potential performance associated with DL aided detection
schemes in PD-NOMA, SCMA and hybrid NOMA, this work
considers the deployment of DL based decodingmodel for the
multidimensional new hybrid PD-SCMA NOMA scheme.

The PD-SCMA scheme exhibits significant potential in
enhancing capacity and allowing overloading of the spectral
resources [3], [5]. However, the complexity of the SIC-MPA
based detection, increased signal distortions and the need for
higher signal to noise ratio (SNR) to counter the bulging
interference in both domains as the number of layers and
codebooks increase, necessitates a paradigm shift in theMUD
technology. To the best of our knowledge, the full potential of
a unified DL aided architecture for a hybrid NOMA detection
performance has not yet been exploited. This work proposes
a deep neural network aided MUD scheme (DNN-MUD) for
an uplink PD-SCMA system featuring;

• A network model where Near users (NUs) and far
users (FUs) are multiplexed in power-, and code -
domain, respectively.

• A unified DL-MUD architecture utilizing a deep neural
network (DNN) model that jointly performs the SIC
and MPA, and overcome the limitations of the con-
ventional MUDs. Unlike the works of [26] and [28],
the DNN-MUD features a fully connected structure
utilizing stochastic gradient descent for iterative updates
of weights and biases via back-propagation.

• A DNN training enhanced by batch normalization to
reduce the internal covariant shifts. Unlike in [28], the
training learning rate is increased, thus enhancing the
efficiency of detection.

• Performance results illustrating that the average symbol
error rate (SER), computational time and complexity
of the proposed DL-MUD significantly outperforms the
joint SIC-EPA schemes.

II. SYSTEM MODEL
A. UPLINK PD-SCMA SYSTEM
The uplink PD-SCMA transceiver model illustrated in
FIGURE 1 supports sets of J NUs and K FUs operating
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FIGURE 1. PD-SCMA block with D = J + 1, J ∈ JCB superimposed NUs,
L = K layers/codebooks and N = 4 REs.

L = K layers (of set L) and N orthogonal resource
elements (REs), with N ≪ L. Each layer spreads its data
over dv, (dv < N ) REs. A layer is constructed by drawing
select codewords from each user equipment (UE) of FU setK,
|K| = K and clustered NU set JCB, (|JCB| = J ,JCB ∈ J ).
This implies that a layer constitutes D = (J + 1) users
symbols. Under the constraint that no two layers should be
assigned all the same resource units (RUs) for an affordable
complexity order, a system is fully loaded if λ = D ×

(L
dv

)
,

where λ denotes the overloading factor.
At the PD-SCMA transmitter, J−NUs (K−FUs) map

Q−ary modulated symbols bJ (bK) =
{
bJj

}J
j=1(

{
bKk

}K
k=1)

into
{
xJj

}J
j=1(

{
xKk

}K
k=1), where the column vectors xJj (xKk ) ={

xJjn
}N×1
n=1 (

{
xKkn

}N×1
n=1 ) ∈ CN

∈ Xj(k) is the N−dimensional
sparse codeword with K − N zeros and transmit them over
the N−resource elements. Denote by ak,j the pairing policy.
While in SCMA, a constraint

∑
j∈J ak,j ≤ 1,∀k holds true,

that is, a codebook can be assigned to at most one user
equipment, in PD-SCMA,

∑
j∈J ak,j ≤ J ,∀k allows pairing

upto J users with distinct power levels.
At the receiver, the received signal vector r is given by

r =

K∑
k=1

√
PK diag(hKk )x

K
k +

K∑
k=1

J∑
j=1

√
PJ diag(hKj )x

J
j

+ v, (1)

where PJ and PK denote the NUs and FUs transmission
powers. hKj (h

K
k ) =

{
hKj,n

}N
n=1(

{
hKk,n

}N
n=1) ∈ C1×N denote the

channel gain vectors from the jth(k th) NU (FU) to the receiver.
It is assumed that ∥hKj ∥ ≫ ∥hKk ∥,∀j, k . v ∼ CN (0,N0IN )
represents additive white Gaussian noise (AWGN) vector.

B. JOINT EPA-SIC BASED PD-SCMA DETECTION
The received signal over the PD-SCMA block given by (1)
is iteratively decoded through EPA and SIC. EPA is selected
over MPA for the code-domain decoding since it exhibits a
lower complexity [5]. Firstly, the EPA decodes all the user
signals that are superimposed in the codebooks r̂CB, based
on a factor graph. Secondly SIC is deployed to obtain the
power distinct NU and FU groups, then lastly, after signal
reconstruction and cancellation, MPA is deployed to decode

FIGURE 2. PD-SCMA EPA-SIC detection for two near and far user groups.

Algorithm 1 Joint EPA-SIC Detection

1: Input: hJ , hK, PJ , PK, J , K , N .
2: Initialization: Iteration number, τ
3: Average PJ |hK|

2, PK|hK|
2.

4: Apply EPA r eqn. (1).
5: Output: r̂CB.
6: Apply SIC on r̂CB.
7: Output: r̂CB = r̂CB −

∑
j∈J

√

PJ diag(hJj )xJj .
8: if τ = D then
9: Employ EPA on r to obtain user-specific symbols.

10: else
11: Set τ = τ + 1
12: Set PJ |hJ |

2
= PJ |hJ |

2
− Pτ |hτ |2

13: end if
14: Go back to 4.

the user-specific symbols in each group as illustrated in
Figure 2 for a simplified scenario of two near and far user
groups. With SIC, a user detects the signals of all other
users that are worse than itself according to the metric used
and removes them from the received signal. This user treats
the signal of all users better than itself as interference plus
noise. Without loss of generality, it is assumed that users on
different codebooks do not interfere with each other and only
users with the same codebook produce interference over each
other. Therefore by sorting users, we mean sorting users that
are using the same codebook. The joint EPA-SIC iterative
decoding process is summarised in Algorithm 1.

Based on the channel information and given thatPK ≫ PJ

and, SIC treats (2) below as interference plus noise term and
thus detects the FUs from r in (1).

K∑
k=1

J∑
j=1

√
PJ diag(hKj )x

J
j + v (2)

Consequently, the jth NU detects the worse NUs (i > j) and
removes them from the received signal while treating (i < j)
NUs as noise. The resultant available signal r̂ is then given as

r̂CB =

K∑
k=1

√
PK diag(hKk )x

K
k +

∑
i∈J

PJi >P
J
j

√
PJ diag(hKi )x

J
i

+ v. (3)

After detecting all the J NUs, the resultant available signal at
the receiver r̂CB consist of the FUs signals and can be given by

r̂CB =

K∑
k=1

√
PK diag(hKk )x

K
k + v. (4)
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FIGURE 3. Block diagram for PD-SCMA system with a DNN.

The receiver complexity orders of PD-NOMA and SCMA
are individually analysed in [29] and given as O((2D3) +

(2D2)(C)(D − 1)) and O(IT |M |
dv ), respectively, where D

denotes the number of user equipments (UEs) superimposed
on a codebook, C is the number of codebooks assigned
to a user, IT denotes the total number of iterations, M
is the codebook set size and dv is the codebook sparsity
degree. In PD-SCMA, each codebook is assigned to D UEs
simultaneously, each UE performs EPA D−times and SIC
D−1 times. Consequently, if a PD-SCMA utilizes C number
of codebooks per UE, then the complexity order can be given
by O(IT |M |

dv (C)(D)).

III. PROPOSED DEEP LEARNING AIDED PD-SCMA
DETECTION SCHEME
The block diagram of the PD-SCMA NOMA with the
proposed DNN based MUD is given in FIGURE 3. At the
transmitter, the NUs and FUs are first encoded, allocated
resources and clustered into the SCMA blocks prior to
being combined and applied to the inverse Fast Fourier
transform (IFFT) module. The FUs and NUs in the same
cluster i.e. in the same power-domain multiplexing level
(PDML), are allocated the same power level. A cyclic prefix
is added in front of each symbol and frame to combat
inter-symbol interference (ISI) and then a preamble added for
channel state information and synchronization. The symbols
are then transmitted in a AWGN channel. At the receiver,
frame synchronization is applied to the PD-SCMA received
signal vector prior to applying to the channel equalizer. Frame
synchronization identifies incoming frame/cluster alignment
symbols while channel equalization tries to revert the many

channel impairments thereby enhancing theMUD’s detection
capability.

From (1), we can write the recieved signal r given as

r =

√
PKXKHK +

K∑
k=1

√
PJXJHJk + v, (5)

where XK =
∑K

k=1 x
K
k , XJ =

∑J
j=1 x

J
j , HK =

diag[hK1 h
K
2 · · · hKN ] and HJk = diag[hJ1kh

J
2k · · · hJNk ]. The

NUs have higher channel gains compared to the FUs and
therefore allocated lower power levels i.e., ∥hJj ∥ ≫ ∥hKk ∥

and therefore ∥PK∥ ≫ ∥PJ ∥,∀j, k and that ∥PJ1 ∥ >

∥PJ2 ∥ > · · · > ∥PJJ ∥. Given that power allocation and
treating

∑K
k=1

√

PJXJHJk + V as the interference plus
noise term, based on r, the receiver will detect FUs data
f̂K = {f̂ Kk }

K
k=1. The receiver then re-encodes the decoded data

f̂K to {x̂Kk }
K
k=1 and cancel it from r to yield

r̂ =

K∑
k=1

√
PJXJHJk +

√
PKHK(XK − X̂K) + v︸ ︷︷ ︸

Interference+Noise

. (6)

As observed in subsection II-B, the joint EPA-SIC exhibits
high computational complexity and is prone to SIC-induced
error propagation. Using the proposed deep learning
aided MUD, the data of the D × L users can be directly
be decoded following frame synchronization and channel
equalization. All the clusters and their clustered NUs and
FUs use the same trained DNN to recover the transmitted
bit streams.
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FIGURE 4. The network structure of the proposed DNN.

A. PROPOSED FULLY CONNECTED DNN STRUCTURE
The proposed DNN based MUD structure illustrated in
FIGURE. 4 features a fully connected DNN comprising of an
input layer with A0 input neurons, M hidden layers with Am
neurons in each layer and an output layer with AM+1 output
neurons. The DNN input layer are the data streams from
the N resource elements. Denote by W1 the weight matrix
A1×A0 containing the relationship between the input neurons
and the first hidden layer neurons, Wm the weight matrix
Am+1 × Am between the hidden layer units and WM+1 the
weight matrix AM+1 × AM relation between the last hidden
layer neurons and the output neurons. Likewise, the input
biases, mth hidden layer biases and output biases are stored
respectively, in the A1 × 1, Am × 1 and AM+1 × 1 bias
vectors b1, bm+1 and bM+1. The input, hidden and output
layer nodes are fully connected with each node at hidden and
output layer being a computing unit given by,

y = f
( N∑

i=1

wixi + b
)

(7)

where y and xi are the output and the input of the ith node,
respectively, and f(·) is the activation function that introduces
a non-linearity which is important for the so-called expressive
power of the DNN.

The DNN framework works as a functional estimator to
map the input vector s = s0 into the output vector r̂.
In the proposed DNN-MUD structure, a leaky rectified linear
unit (ReLU) activation function given by eqn. (9) is applied

in the input layer and hidden layers. Starting from the input
layer, the entries of s are fed to the first hidden layer and
the neurons of the mth hidden layer compute their activated
values sm as [30]

sm = ReLU (Wmsm−1 + bm),m = 1, 2, · · · ,M . (8)

The sm is then fed into the next hidden layer.

ReLU (s) =

{
s, s ≥ 0
0, s < 0

. (9)

At the output layer, the output mapping is given by

r̂ = χ (WM+1sM + bM+1). (10)

Here, the output layer utilizes the Sigmoid function denoted
as χ (·) given by (11).

fsig(s) =
1

1 + exp(−s)
. (11)

The ReLU activation is employed since it saves and
maps the features of the activated neurons besides mitigating
gradient dispersion thereby solving the vanishing gradients
issue. The ReLU function is computational cheaper as it
requires only the max(·) function and easier to optimize
even while implementing in a large DNN structure. Due
to its piecewise linear functionality, ReLU will output the
input directly if it is positive, otherwise, it will output zero,
hence suitable for DNN’s ease of training and improved
performance.
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B. DNN - MUD
In this proposed DNN-MUD structure, batch normaliza-
tion (BN) is added for each node of the hidden layers.
For every neuron (activation) in a particular layer, we can
force the pre-activations to have zero mean and unit standard
deviation. With BN, at each training iteration, this can be
achieved by first subtracting the mean from each of the input
features across the mini-batch and dividing by the standard
deviation, where both are estimated based on the statistics
of the current mini-batch. Secondly, a scale coefficient and
an offset are applied to recover the lost degrees of freedom.
Denoting by B a mini-batch and letting x ∈ B, be an input
to batch normalization (BN).The batch normalization can be
given as

BN (x) = λ⊙
x − µB
σB + ε

+ α (12)

where µB and σB is the mean and standard deviation of
the mini-batch B [20]. After applying standardization, the
resulting mini-batch has zero mean and unit variance. The
elementwise scale parameter λ and shift parameter α adopt
the same shape as input x and are applied to recover the degree
of freedom. The λ and α are learnable such that it’s possible
to go back from the normalized pre-activations to the actual
distributions that the pre-activations follow. A small constant
ε > 0 is added to the variance estimate σB to ensure that
we never attempt division by zero, even in cases where the
empirical variance estimate might be very small or vanishes.

1) TRAINING STAGE
At the training stage, the learning process is formalized as
a minimization of the cost function. To train the proposed
DL-MUD with the aim of optimizing the trade-off between
the overall complexity and the link performance, stochastic
gradient descent is selected to update the weights and biases
iteratively via back-propagation as follows;

θτ+1 = θτ − η∇θJ(θ ), (13)

where θτ , τ , η, ∇θ and J(θ) respectively denote the
parameter (SER) to be optimized, the iteration number, the
scalar-valued step size, the derivative with respect to θ and
the MSE cost function expressed as

J(θ) ⇒ MSE =
1
D

D∑
i=1

(ri − r̂i)2. (14)

To ensure a fast training process, an approximation of
the MSE criterion in (14) is computed by using random
mini-batch training samples at each iteration τ , given by

Jτ (θ ) =
1
Dτ

Dτ∑
i=1

(
r(τ−1)Dτ+i − r̂(τ−1)Dτ+i

)2

. (15)

with Dτ denoting the mini-batch size. Consequently, the

training samples are split into B =
D
Dτ

which are shuffled

before every epoch, where each epoch has both one forward

and one backward pass of all the training samples. In the
training phase, the transmitted signal vectors xKk and xJj ,
the channel gains hKk and hKj and the noise vector V are
uniformly and independently drawn from the codebook as
illustrated in subsection II-A.

2) DETECTION STAGE
The implementation of the detection phase is illustrated in
Algorithm 2. The received signal vector r and the channel
gain vectors hKk and hKj are utilized in computing the

belief propagation and equivalent probabilities for EPA [31].
Consequently, these available data is employed as the input
labels for the DNN to approximate the received signal. The
decoding process is then performed using a low complexity
iterative process same as one within the joint EPA-SIC
proposed in Algorithm 1.

Algorithm 2 DNN Approaching Joint EPA-SIC Detection
Algorithm

1: Input: r, hKk and hKj , V, Wm, bm
2: Output: LLRs
3: Initialization: Perform batch normalization.
4: for j=1:J, k=1:K, n=1:N and l=1:L do
5: for µ = 1 to training epoch do
6: for ψ = 1 to num batch do
7: Perform belief propagation and equivalent prob-

abilities of EPA [31].
8: Reconstruct the received signal rn and the

channel gains hKk and hKj into the form of DNN
input vector.

9: Perform SIC
10: Obtain the approximated belief interval via the

DNN
11: for m=1:M do
12: sm = ReLU (Wms + bm)
13: end for
14: r̂ = χ (WM+1sM + bM+1)
15: DNN training to approximate joint EPA-SIC by

minimizing eq. (14) and eq. (15).
16: end for
17: end for
18: end for
19: DNN Data Testing: Normalizing outputs for at each

iteration.
20: Log-Likelihood ratio (LLR) Computation same as the

one in Algorithm 1.

C. COMPUTATIONAL COMPLEXITY ANALYSIS
The complexity analysis of EPA algorithm is primarily
computed based on messages passing between the variable
nodes (VNs) and the function nodes (FNs), plus the
calculations of the posterior likelihood ratio after algorithm
convergence. It can be observed that the complexity of EPA
linearly scales both the codebook size Q and the degree
of signal superposition df on a given RE. Considering
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single antenna UEs, MPA exhibits a complexity O
(
NQdf

)
.

Conversely, the modified EPA [31] reduces the number of
messages passing by employing the QR decomposition and
increases the parallelism of the algorithm. The resultant
complexity exhibited from FNs to VNs reduces to O

(
NdfQ

)
while message passing from VNs to FNs reduces toO

(
Ndf

)
.

The complexity of SIC is primarily in the computation of
the decoding order metric for each user multiplexed in the
layer, and is given as O(b3) for a minimum mean squared
error (MMSE) transformation weight matrix of b × b.
Consequently, the overall J-EPA-SIC receiver complexity can
approximately be given by O

(
NQdf + QNLb3

)
.

The complexity of the DNN is generally analysed using
floating point operations (FLOPs). TheDNN-SIC complexity
is given asO

(
A0A1+A1A2+· · ·+AmAM+1

)
[8] while that of a

DNN-SCMA is given asO
(
M ·A2m

)
[20]. The fully connected

DNN based MUD complexity can be approximated to
O

(
D

(
A0A1 + M · A2m + AmAM+1

))
. The DNN based MUD

greatly reduces the exponential and multiplication terms
despite having more additive terms, thereby exhibiting a
reduced complexity compared to Joint EPA - SIC.

O
(
NQdf + QNLb3

)
≫ O

(
D

(
A0A1 +M · A2m + AmAM+1

))
(16)

IV. RESULTS AND DISCUSSIONS
A. SIMULATION PARAMETERS AND SETUP
The performance evaluation and comparison of the proposed
DL-MUD, SIC-MPA [3], hybrid SIC-log-MPA (HSLM)
MUD that employs Log-MPA on the code-domain [5],
Joint Modified SIC-EPA receiver algorithm considering
single transceiver antenna [31], HMAS receiver system [26]
and DNN-based receiver for PD-SCMA - visible light
communication (VLC) system [28] is investigated. Resource
allocation for the PD-SCMA system is performed based on
the dual-parameter ranking (DPR -RA) [5]. The IFFT and
CP sizes are 256 and 8 respectively. The detailed system
parameters and assumptions for the uplink PD-SCMA are
presented in Table 1 while the DNN model simulation
parameters for the uplink PD-SCMA system are presented in
Table 2.

TABLE 1. Simulation parameters.

In order to evaluate the loss function performance, the
batch size 32, 64, 96 and 128 on the validation set is
adopted. It is observed in FIGURE 5 that the DNN converges

TABLE 2. DNN model simulation parameters.

FIGURE 5. MSE versus Epoch for different validation batch sizes.

within 300 iterations. The convergence rate reduces as the
batch size enlarges. In this model, the smallest MSE for
the validation set is arrived at a batch size of 64, hence its
selected. Very small and very large batch sizes makes the
learning process noisier and fluctuating, essentially extending
the time it takes the algorithm to converge [32]. Thus it can be
observed that below 64, the MSE performance reduces due to
noise. Furthermore, the learning rate affects the convergence
on the training and validation set. FIGURE 6 presents the
system MSE system with respect to the number of iterations.
A higher learning rate causes the NN to learn faster while
a very small learning rate results to the NN falling into a
local optimum. From FIGURE 6, beyond 300 iterations, the
MSE stabilizes and when the learning rate is 0.001, the MSE
becomes the smallest. The performance drops beyond this
rate. These parameters are hence adopted for this DNNmodel
application.

B. AVERAGE SYMBOL ERROR RATE (SER) PERFORMANCE
The average SER versus SNR for diffrent schemes considered
for comparison purposes illustrated in FIGURE 7. It can
be observed that the average SER for all the considered
schemes decreases with increasing SNR. Besides, it is
observed that the SER decreases gradually at low SNR but
significantly rapidly at higher SNR values. This can be
attributed to the ability of PD-SCMA system to mitigate

75142 VOLUME 12, 2024



S. Chege, T. Walingo: Deep Learning Multi-User Detection for PD-SCMA

FIGURE 6. MSE versus Epoch for different learning rates.

FIGURE 7. Average SER versus SNR for different PD-SCMA receiver
schemes.

inter-symbol interference at high SNR. The DNN based
schemes exhibit significant BER performance compared to
the SIC-MPA related MUD schemes with the proposed
DL-MUD outperforming the others. This is attributed to the
fact that the DNN based MUD effectively learns the mapping
relationship of the PD-SCMA user symbols in both code-
and power-domains. Besides, the interference propagation
associated with SIC-MPA detection scheme deteriorates the
SER performance.

The effect of the number of layers/codebooks on the
average SER as the SNR increases is illustrated in FIGURE 8.
With the clustered users utilizing the same PDML, it can be
observed that fewer layers result to better average SER, since
the inter-symbol interference is relatively lower compared to
deploying larger number of layers. The designer’s choice on
the number of layers is a trade-off between the overloading
factor and the achievable average SER for optimal Quality of
Service (QoS) requirements.

The average SER against SNR for the NU and FU user
clusters/groups is illustrated in FIGURE 9. Since the FUs
are allocated the highest power, by nature of SIC operation,

FIGURE 8. Average SER versus SNR for DL-MUD same PDMLs.

FIGURE 9. Average SER versus SNR for the different NU and FU user
PDML clusters.

FU group will be detected first while regarding the J NU
groups as interference plus the channel noise. The FU
group experiences the largest interference from all users
and will exhibit lower average SER performance, while
the lowest power allocated NU group effectively enjoys
interference-free transmission. In this simulation, we consid-
ered J = 5 NU groups with ∥PJ1 ∥ > ∥PJ2 ∥ > · · · > ∥PJ5 ∥.
Consequently, NU group 5 will be decoded with minimal
interference and hence the significant average SER perfor-
mance compared to the other NU user clusters.

C. COMPUTING PERFORMANCE
FIGURE 10 presents a comparison of the execution times
for different PD-SCMA detection schemes with a fixed
number of NUs per codebook and fixed number of codebooks
at J = 2 and C = 6 respectively. Though the
computational time increases with increasing test data, the
joint MPA-SIC [2], [3] exhibits the highest. The proposed
DNN based detection, compared to joint log MPA-SIC [33]
and joint EPA-SIC [31], exhibit greatly reduced execution
times due to the reduced resource exchanges iterations
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FIGURE 10. Execution time for different RA schemes.

FIGURE 11. Execution time for the RA in the uplink PD-SCMA with
different number of paired NUs, J .

before convergence. The proposed DNN detection that learns
to approximate the proposed joint EPA-SIC has an execution
time that is approx 35% lower than EPA-SIC.

FIGURE 11 shows a comparison of the execution times in
a DNN based aided PD-SCMA detection with varied number
of the clustered NUs, D and the number of layers fixed at
L = 6. It is observed that as the number of clustered NUs
increases, the execution time grows exponentially. Since a
PD-SCMA with D = 0 is equivalent to a SCMA, then the
execution time is lower as the elements of user clustering is
eliminated. Besides, additive layer, user clustering and the
resulting interference computations drastically increases the
execution time.

V. CONCLUSION
A Deep Learning based multi-user detection scheme named
DL-MUD is proposed in this work for an uplink PD-SCMA
system consisting of NUs and FUs. The fully connected
DL-MUD structure utilizes batch normalization to cancel
the internal covariate shifts thus reducing the effects of
overfitting. Consequently, the DNN structure improves the

efficiency and reliability of neural network model to perform
detection of the power distinctive NU and FU groups.
Simulation results exhibit the significant advantage of the
proposed DL-MUD scheme in terms of the average SER
performance compared to the conventional SIC-MPA based
detection schemes, due to its because of high accuracy
learning of the mapping relationship of the PD-SCMA signal
in both power and code domains. Besides, the proposed
DL-MUD is shown to greatly perform better at high SNR
values compared to low SNR values. Further work is
recommended to enhance spectral efficiency and explore
other machine learning based MUDs for multi-antenna
hybrid NOMA techniques to enhance achievable SER.
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