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ABSTRACT The agricultural sector is still a major provider of many countries’ economies, but diseases
that continuously infect plants represent continuous threats to agriculture and cause massive losses to the
country’s economy. In this study, a faster and lightweight tomato leaves diseases detection model was
proposed for tomato disease classification based on a soft attention mechanism with a depth-wise separable
convolution layer. With a model size of 2.5 MB and 221,594 trainable parameters, the proposed model
achieved 99.5%, 99.10%, 99.04% for training, validation and testing accuracy respectively, and 99 % for
each of precision, recall, and f1-score, it also achieved 99.90% for ROC-AUC with average inference time
of 2.06924 µs. The proposed model outperformed Ulutaş and Aslantaş (2023) by 2.2% in terms of accuracy,
precision, recall and f1-score. Additionally, it performed better than Agarwal (2023), Abbas (2021), and
Verma (2020) in terms of accuracy, precision, recall, and f1-score by 8%, 2%, and 6%, respectively. It also
outperformed Arshad (2023) by 4.77%, 8.92%, 35.18% and 5.11% in terms of accuracy, precision, recall and
f1-score, respectively. Furthermore, the proposed model is 90 times smaller than Verma (2020) and 2.5 times
smaller than Ulutaş and Aslantaş (2023) in terms of model size. All this makes the proposed model more
suitable for low-end devices in precision agriculture.

INDEX TERMS Convolutional neural networks, soft attention, deep learning, tomato, classification,
precision agriculture.

I. INTRODUCTION
Tomato or Solanum lycopersicum as they are called, is one
of the most popular vegetables and one of the cash crops
that is grown all over the world. Tomatoes in Egypt are
considered one of the most important food sources; Egypt is
the fifth largest producer around the world, with an annual
production of 6.62 million metric tons [1]. However, its
production is deteriorating owing to the exposure of the crop
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to various diseases such as early blight, late blight, leaf mold
and other diseases. For example, early blight is responsible
for significant yield losses worldwide and accounts for up
to 78% of the yield declines [2]. So, in order to meet this
urgent need, it is crucial to enhance agricultural yields and
safeguard crops [3] by continuously monitoring plants as it is
very important to detect plant diseases at their earlier stages
to avoid huge losses in our production [4]. The conventional
method to detect the plant disease requires manual examina-
tion of infected leaves by visual cues or chemical analysis
of affected areas to note the differences on the leaf such as
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brown or black holes, which is performed under low detection
efficiency and with high error as it requires good professional
knowledge [5].

Owing to the continuous development of artificial intel-
ligence techniques over the past few years, the process
of automatic plant disease detection has become more
flexible and is commonly used in smart farming. These AI
systems do not require human intervention and are fast,
inexpensive, and more accurate than traditional techniques
and are currently applied to many agricultural applications
on Smart farming [6]. Recently, one of the mostly used deep
learning algorithms for classification and recognition tasks is
Convolutional Neural Network (CNN) algorithm which can
avoid complex preprocessing of traditional machine learning
algorithms by automatically extracting features directly from
the input images without our supervision [7], [8]. AI systems
used in precision agriculture usually require a small model
size that recognizes diseases in the least possible time for low
computational power devices with small memory but this can
lead to non-satisfactory inference accuracy. Therefore, in this
research article, we seek to achieve the trade-off between
model accuracy and complexity by developing a customized
CNN model called FL-ToLeD which stands for faster and
lightweight tomato leaves diseases detection.

Whereas the main contributions are as follows:

1. A faster and lightweight convolutional neural network
model called FL-ToLeD is developed for tomato disease
classification.

2. Acheiving the trade-off between model performance and
computational complexity which makes it a more suitable
choice for low-end devices.

3. Using a soft attention-based mechanism with a test
accuracy of 99.04%, making it more suitable in case of
early stages of disease with small lesions.

4. Using only 0.221 million of trainable parameters with a
model size=2.5 MB, through using depth-wise separable
convolution layers with batch normalization layers.

5. Performing a study to evaluate the reliability of the
FL-ToLeD model and the individual impact of each
component within it. Qualitative analysis and quantitative
analysis were performed for the FL-ToLeD model.

6. Outperforming most of the existing tomato disease
classification’ models across seven different evaluation
criteria.

The rest of this paper is organized as follows. Section II
provides a summary of related work. Section III elaborates
the proposed convolutional neural network model for tomato
plant disease classification. The experimental results of the
proposed model are presented in Section IV. Section V
provides a summary of the original contributions, limitation
and discusses future work.

II. RELATED WORK
Ahmed et.al [9] proposed a transfer learning-based strategy to
identify diseases in tomato leaves using PlantVillage dataset.

This method’s initial step involves enhancing the leaf images
with illumination correction using a powerful preprocessing
technique in order to improve classification. The illumination
issue that persisted in the dataset has been resolved with
the use of the adaptive contrast enhancement technique.
Following that, a hybrid model made up of a classifier
network and a pre-trained MobileNetV2 architecture was
used for feature extraction. To prevent data leakage and
address the problem of class imbalance, they applied a
runtime augmentation instead of applying the traditional data
augmentation. Their model achieved an accuracy of 99.30%
over 2.4 million training parameters with a model size about
9.60MB. The main drawbacks of using transfer learning are
overfitting and negative transfer.

Amreen et.al [10] suggested a deep learning approach
for tomato plant disease detection. They created synthetic
images using Conditional Generative Adversarial Network
(C-GAN) as a data augmentation action to increase the
size of their dataset and to prevent their model from the
problem of overfitting. They applied a transfer learning
model called DenseNet121 to classify their dataset which
consisted of ten different types of real and synthetic tomato
disease images. The accuracy of this model, which can be
divided into five classes, seven classes, and ten classes, was
tested on the PlantVillage dataset and was 99.51%, 98.65%,
and 97.11%, respectively. The over-fitting issue is avoided
by the suggested data augmentation technique (C-GAN),
which also increases the generalizability of the network.
There are 1,735,904 trainable parameters in this model. The
accuracy is good but not the best one compared to other
models.

Trivedi et al. [11] proposed a CNN classification model
for tomato diseases. The images were subjected to some
preprocessing, as well as image segmentation. Secondly,
varying hyper-parameters of the CNNmodel were applied for
processing the images in a further way. Finally, the proposed
model extracted additional characteristics from the images,
such as texture, color, and edges, etc., which will then be
classified. The suggested model performed with a 98.49%
accuracy utilizing 1,422,542 training parameters after being
tested and trained on a dataset of 3000 photos of tomato
leaves. It is not a good choice for embedded low-end devices
as it takes up a large size of the disk space. Alhaj et al. [12]
employed transfer learning to identify tomato leaf disease
using the InceptionV3 model. It said that transfer learning
cuts down on execution time and that it obtained a 99.8%
accuracy rate, but it made no mention to time, complexity or
the amount of training parameters that were used the model
was made available as a cloud-based web application. The
main drawbacks of using transfer learning are overfitting and
negative transfer.

Khamparia et al. [13] proposed a hybrid model that
consisted of a convolutional Auto-encoder and convolutional
neural network to detect the disease on (tomatoes, potatoes,
and maize). They used convolutional auto-encoder for
reducing the number of features on the final features map
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to reduce the number of trainable parameters. Their model
achieved a training accuracy of about 100% but on the other
hand, the testing accuracy was about 86.78% in which their
model was over-fitted on the training data. They trained
their model on a dataset consisting of 900 images divided
into 6 classes and finally, they said that their model had a
97.50% accuracy rate and used about 3.3 million training
parameters.

Agarwal et al. [14] developed a convolutional neural
network model which consisted of three convolutional layers,
three max pooling layers and two fully connected layers
to identify the disease of tomato plants. Before training
their model, they used data augmentation techniques to
balance the data in each class as the class’s images aren’t
balanced. After that, they trained and tested their model
using 17500 images from PlantVillage dataset which was
divided into 10000 images for training, 7000 for validation
and 500 for testing. Their model achieved a testing accuracy
of 91.2% with a model size of about 1.5 MB and about
208802 training parameters. The problem of this model was
the low accuracy compared to other models.

Verma et al. [15] employed a three well known con-
volutional neural networks i.e. SqueezeNet, Inception V3
and AlexNet for the purpose of evaluating the severity
of the late blight disease on tomato plants using feature
extraction and transfer learning techniques. For evaluating
the severity of the disease, they separated the images into
the PlantVillage dataset based on their disease stage. They
selected 355 colored images in their early stage, 347 colored
images in their middle stage and 382 colored images in their
end stage. They applied the model based on only transfer
learning and by using a multiclass support vector machine
as a classifier algorithm after extracting the features from
images. AlexNet outperformed the other two networks in
both approaches, with accuracy rates of 89.69% and 93.4%,
respectively. Their model used about 61 million training
parameters and the size of the model is about 227MB.The
drawback of this model was the low accuracy compared to
other models, high computational complexity and it takes up
a large size of disk space which is not suitable for low end
devices.

Karthik et al. [16] proposed two deep learning approaches
for detecting the type of three diseases on the tomato leaves
plants namely leaf mold, late blight, and early blight. For
better classification they needed to learn or extract the
significant features so that they applied residual learning
CNN. To improve the accuracy of residual CNN and
specifically learn significant feature maps, they employed an
attention mechanism on top of it as the attention mechanism
to give more weightage to the significant features for accurate
classification. This was the first attempt to implement an
attention based residual CNN. Their model was trained on
95999 augmented images from the PlantVillage dataset after
applying a central zoom and random crop & zoom techniques
to focus only on the leaf and not the background information.
Their model achieved an accuracy of 98% on the validation

sets in the 5-fold cross-validation and used around 600K
training parameters.

Elhassouny et al. [17] developed a smart mobile appli-
cation embedded with a deep convolutional neural network
based on a well-known model called MobileNet to identify
the most ten common types of tomato leaf diseases. The
model accepted a colored images of size 224 × 224 as
an input and it consisted of a set of 3 × 3 Depth-wise
separable convolutions layers for reducing the number of
computations followed by batch normalization and ReLU
activation function and ended by average Pooling layer, dense
layer with SoftMax function for 10 diseases classes. They
trained their model on a PlantVillage dataset consisting of
7176 images of tomato leaves and achieved an accuracy of
90.3%. This model also suffered of low accuracy compared
to other models.

Costa et al. [18] proposed a modified deep learning
model based on well-known InceptionV3 and CNN using a
hierarchical approach for the purpose of identifying 16 types
of diseases in tomatoes, apples, and peaches. They trained
their model on a PlantVillage dataset consisting of 24,000
images of tomato, apple, and peache leaves and achieved an
accuracy of 97.74%.

III. PROPOSED MODEL
Model performance and computational complexity are
always trade-offs because if detection performance is assured,
the model must fully understand the features of the image,
which increases the computational complexity and slows
down the detection speed [19]. Therefore, in our work,
we designed a lightweight convolutional neural network
model called FL-ToLeD for tomato disease classification
based on a soft attention mechanism with depth-wise
separable convolution layers. FL-ToLeD achieves a good
performance with minimum trainable parameters and low
computational complexity and thus will be more suitable for
low end devices.

FL-ToLeD consists of four blocks for feature extraction
as shown in the conceptual pipeline of the FL-ToLeD
model in Figure 1; the first two blocks consist of standard
convolutional layers with a pooling layer, followed by a
dropout layer of a rate 0.15%. The third block consists of two
depth-wise separable convolutions layers followed by a batch
normalization layer, the last block of the feature extraction
phase is a soft attention-based mechanism. These four blocks
will be discussed in the following sections in details.

Instead of using standard fully connected layers in the
classification phase, we used a globalaveragepooling2D
layer [20] as it can reduce the amount of trainable parameters.
After that, a SoftMax layer [16] with ten classes is applied to
assign decimal probabilities to each class.

Finally, a mathematical function called argmax [9] is
applied to return the index of maximum value among the ten
values to be the predicted class label. FL-ToLeD applied each
of data augmentation and data normalization techniques [12],
[21]. We applied runtime image augmentation to expand the
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FIGURE 1. The conceptual pipeline of the FL-ToLeD model.

training dataset used such as random-flip, random-rotation,
random-zoom with an input image size of (224 × 224×3).
We also normalize inputs by changing the range of pixel
intensities to bring values into a common range, and it is
typically implemented by scaling all pixel values to range
between 0 and 1. This is done by dividing all pixel values
in each image by 255.

A. STANDARD CONVOLUTIONAL LAYERS (BLOCK 1 &
BLOCK 2)
Three dimensions of each image - two spatial (width and
height) and one channel - are used to extract features during a
standard convolution operation. Therefore, the convolutional
kernel must simultaneously describe cross-channel correla-
tions and spatial relations as shown in (1). FL-ToLeD’s Block
1 consists of two convolutional layers [22] with two pooling
layers [23], the first convolutional layer applies learnable
filters on the images with a size of 32 × 32, After that
a ‘same’ padding operation and Relu activation function
have been applied. These learnable filters [24] are a smaller
matrices (K) that moves through the input image (x) from left
to right from top to bottom and calculates the dot product
of the filter weight (w) and the corresponding input image
patch. Relu activation function [25] is one of the mostly used
activation functions for convolution layers which is applied
after each convolution operation to add some nonlinearity to
our model, this is done by converting any negative values into
the extracted feature map. The second convolutional layer
uses a filter of size 64×64. Block 2 consists of the same layers
of block 1 with different filter size on the first convolutional

layer. To limit the amount of parameters the network must
employ by reducing the spatial size of the convolutional
output; FL-ToLeD applied a max pooling layer [23] with a
size of 2×2 after each convolutional layer as a pooling layer.

Conv(W, x)(i,j) =

M ,N ,K∑
m,n,k

w(m,n,k) · x(i+m,j+n,k) (1)

where,W is the trainable weight matrix of the convolutional
kernels, (i, j) is the coordinate point of the output feature
maps, and x is the input feature map of the convolutional
layer. The three convolutional kernel’s dimensions are
(m,n, k).

B. DEPTH-WISE SEPARABLE CONVOLUTIONAL LAYERS
WITH BATCH NORMALIZATION (BLOCK 3)
Block 3 of FL-ToLeD consists of depth-wise separable
convolution layers followed by a ‘same’ padding operation
and Relu activation function which has a great impact on
reducing the number of trainable parameters and computa-
tional complexity and batch normalization layers after each
depth-wise separable convolution operation for improving the
model performance.

On the above section, we mentioned that during the
standard convolution operation, the three dimensions of
each image, which are one channel dimension and two
spatial dimensions (height and width), are used to extract
features. But in the case of depth-wise separable convolution
operations, the spatial correlations and cross-channel corre-
lations can be extracted separately as shown in Figure 2.
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FIGURE 2. Two stage of depth-wise separable convolutions operations.

A depth-wise convolution is the initial stage of a depth-wise
separable convolution. Each input channel receives only one
filter, allowing each channel to output one feature map.
The number of channels remain the same after depth-wise
convolution operation [26].
There are two stages of depth-wise separable convolution;

depth-wise convolution (filtering stage) as shown in (2) and
point-wise convolution (combination stage) as shown in (3)

DConv(W, x)(i,j) =

M ,N∑
m,n

w(m,n) · x(i+m,j+n) (2)

where,W is the trainable weight matrix of the convolutional
kernels, (i, j) is the coordinate point of the output feature
maps, and x is the input feature map of the convolutional
layer. The convolutional kernel’s spatial dimensions (height
and width) are (m and n).

The outputs of the depth convolution operation are
combined in the second stage using a 1× 1 convolution (also
known as a point convolution). In order to extract spatial
features, pointwise convolution operation is performed.
Although the channel number can changed, the spatial size
of feature maps is not altered [27].

PConv (W , x)(i,j) =

K∑
k

Wk · x(i,j) (3)

where, W is the trainable weight matrix of the convolutional
kernels, (i, j) is the coordinate point of the output feature
maps, and x is the input feature map of the convolutional
layer. The convolutional kernel’s spatial dimensions (height
and width) arem and n for all feature maps k.

In image classification, depth-wise separable convolution
operations have been shown to be effective; It can avoid

extracting some redundant features and greatly reduce the
necessary ones, as by using these two depth-wise separable
convolution operations, the complexity of the model and
its parameters are significantly reduced compared to the
standard convolutional layers.

In case of standard convolutional layers according to (1),
the total required parameters are (m × n × k × o) if the
number of output channel is o, while the total required
parameters in case of depth-wise separable convolutional
layers according to formula (2,3) are (m × n × k + k × o).

Assume that we have an input feature map of size 10 ×

10×3 and the desired output tensor is of size 10 × 10×256
with filter of size 7 × 7×3. If we use the normal 2D
Convolutions, then the number of multiplications required is
(10 × 10) x (7 × 7×3) x (256) = 3,763,200, but in our case
we split into single channels, so 7 × 7×1 filter is required in
place of 7 × 7×3, and since there are three channels, so the
total number of 7× 7×1 filters required is 3, so that we need
(10×10) x (7×7×1) x (3)= 14,700 for filtering and (10×10)
x (1 × 1×3) x (256) = 76,800 for combining as the total
number of feature maps k required is 256 so that the total
number of multiplications = 14,700 + 76,800 = 91,500.
So, a 2D convolution will require 3,763,200 multiplica-

tions, while a Depth-wise Separable convolution will require
only 91,500 multiplications to reach the same output. Finally,
3,763,200 / 91,500 = 41x less multiplications are required.
Since the depth separable convolution has a lower trainable
parameter number than a typical CNN, the risk of overfitting
on small datasets is minimized [28].

Moreover, the time complexity of standard con-
volutional layers applied in block 1 and block 2
is ∼ O(M2

∗K2
∗C in∗Cout) while the time complexity of the

depth-wise separable convolution layer applied in block 3 is
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Algorithm 1 Soft-Attention Mechanism
Input: Feature maps xInp from the Depth-wise Separable
Convolutions block.

1. Applying max-pooling operation with kernel size =

2 on input feature map xInp

xMP = MaxPooling2D(xInp)

2. Applying a 3D convolution operation with kernels or
weightsWk where, k= 16 is the number of 3D weights
on input feature map xInp.

3. The output of this convolution operation is normalized
using SoftMax function to generate K-attention maps.
SoftMax is commonly used to transform the raw
attention scores obtained from the dot product into a
valid probability distribution, with all values between
0 and 1 ensuring that the sum of the attention weights
equals 1. This normalization allows the model to
effectively focus on certain parts on the input image.

K − attentionmaps =

K∑
k=1

softmax(Wk ∗ xInp)

4. These k-attentionmaps (softmax scores) are aggregated
to produce a unified attention map that acts as a
weighting function α.

α = ⊕(K-attention maps)

5. This α is then multiplied with input feature map xInp
to attentively scale the salient feature values, which is
further scaled by a learnable scalar γ = 0.01. This
scaling process helps the model learn faster.

f sa = γ (α∗ xInp)

6. These scaled features f sa are concatenated with the
input feature map xInp to produce a new feature map
x′Inp

7. Applying a max-pooling operation with kernel size=2
on this new feature map x′Inp to down sample the
feature map.

x′MP = MaxPooling2D(x′Inp)

8. Concatenate this feature map x′MP with xMP that was
generated on step 1 to create the final feature map xCon

9. Applying a Relu activation function on xCon to set any
negative value to zero to produce the final attention
feature map xattention

10. Passing xattention to the globalaveragepooling2D layer
to start the classification process.

Output: Attention Feature map xattention passed forward to
the classification layer.

∼ O(M2
∗K2

∗C in + M2
∗C in∗Cout) where M is the size of

feature map,K is the size of kernel,Cin is the number of input
channels, Cout is the number of output channels.

One the other side, to make the training of FL-ToLeD
faster and more stable we use an algorithmic technique
called batch normalization [29] which is applied after each
depth-wise separable convolution operation. However, batch
normalization increases the computational cost and memory
usage, it improves the performance of the model. Finally,
the combination of depth-wise separable convolution layer
with batch normalization layers has a high significance
on reducing computational complexity and increasing the
performance of the model.

C. SOFT ATTENTION-BASED MECHANISM BLOCK
Attention mechanisms are a layer of neural networks
added to deep learning models to focus their attention on
specific pieces of data based on different weights assigned
to different parts. It enhances deep learning models by
selectively focusing on important input elements, improv-
ing prediction performance and computational efficiency.
It prioritizes and emphasizes relevant information, and serves
as a highlight to improve the overall performance of the
model.

Soft attention mechanism is one of the important classes
of attention mechanism, and it has been used in many fields
of computer vision, such as classification, segmentation,
detection, video processing, etc. The primary goal of
Soft-Attention is to enhance the value of important features
and suppress noisy features.

Lesions of small size on the leaves are not visible in
the early stages of the disease. Additionally, it is quite
challenging to extract the lesions features. However, the
important patterns for differentiating several types of tomato
disease are these very subtle differences in color and texture
of the lesions. So, to extract and focus more on these lesions’
features accurately, soft attention is implemented.

Instead of processing the entire image equally, Soft
Attention-based mechanisms [30], [31] highlight or pay
attention to a specific area of interest, increasing the value
of relevant features and suppressing distracting features.
By multiplying input feature maps with low weights,
it invalidates the irrelevant regions of the image. As a result,
the low attention regions have weights that are closer to
zero. With more focused features, the model performance is
enhanced.

In the attention-based mechanism, each feature in the
image is assigned an attention score. Higher attention scores
indicate greater importance, while lower scores indicate less
importance.

The procedure of soft attention-based mechanism with
the contribution of the individual components on it is
discussed in details in Algorithm 1. FL-ToLeD applies soft
attention-based mechanism on the feature maps produced
from Depth-wise Separable Convolutions block as shown in
Figure 3.
Last but not least, the soft attention method will improve

the performance of our model, especially in early disease
cases, and it will also reduce the bias caused by noise present
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FIGURE 3. Soft attention-based mechanism operations.

FIGURE 4. The ten classes of the tomato leaf diseases.

in the leaf image as it helps suppress noisy features. We’ll go
into more depth about all of this later.

IV. EXPERIMENTAL RESULTS AND DISCUSSION
A. DATASET
Tomato leaf disease images from the Plant Village
dataset [32] are used to train and test FL-ToLeD. The
PlantVillage dataset is the most comprehensive, open-access
collection of plant leaf imagery used for disease diagnosis
comprising 54,309 images of healthy and diseased leaves
belonging to 14 crops, which have been categorized by plant
pathologists as tomato, potato, apples, soybeans, grapes,

corn, etc. We extracted tomato leaf images from it as our
target crop which was divided into one healthy category
and nine disease classes: 1) Bacterial spot (BS), 2) Early
blight (EB), 3) Late blight (LB), 4) Leaf Mold (LM), 5)
Septoria leaf spot (SLS), 6) Target Spot (TS), 7) Spider mites:
Two-spotted spider mite (TSSM), 8) Yellow Leaf Curl Virus
(YLCV), 9) Mosaic virus (MV) as shown in Figure 4. The
potential sources of bias on Plant-Village are; showing an
unbalanced nature in terms of the number of images available
for different plant diseases [33]. These unbalanced data can
significantly impact any model performance in which the
model in this case, focuses on the accuracy of the dominant
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FIGURE 5. Training vs. validation accuracy and loss curves of experiment 1.

TABLE 1. Hyper parameters for FL-ToLeD model.

class over the minority classes biasing them towards the
majority class. As a result, the model’s ability to generalize
and predict underrepresented groups is reduced, leading to
poor training and evaluation performance. Another source of
bias in PlantVillage is noise because it has noise associated
with labels and deep learning models, we can easily exploit
this bias to make prediction [34]. FL-ToLeD addresses these
problems as we will see in the next sections.

B. EXPERIMENTS
FL-ToLeD was trained under a Python environment with
TensorFlow, Keras, and other necessary libraries in Jupyter-
Lab under Windows 10, 64-bit operating system. FL-ToLeD
was trained with an initial learning rate of 0.001 for at
most 50 epochs with early stopping to control overfitting
problem and improve generalization of neural networks;
other hyper-parameters are described in Table 1. These
hyperparameters are selected manually and by using gride
search algorithm [35].

TABLE 2. Dataset distribution (Train, Validation and Test).

Our initial dataset contains 25,127 images of tomato leaves
that were distributed as described in Table 2. Next, wemerged
them all together into one list with their corresponding label,
shuffling them randomly with state_random = 42 to avoid
any bias that could occur in the classes of our dataset,
we finally splitted them using two methods. In the first
method, we split it 75:15:10 between the training, validation
and testing dataset. The second method, we split using a
5-fold stratified cross-validation strategy of 80% for the
training dataset with a validation split of 0.20 and 20% for
testing the dataset. Two experiments were performed using
25,127 of tomato images.

1) EXPERIMENT 1
In this experiment, FL-ToLeD was fitted after splitting our
images using the traditional split approach. With 18,845
training images, 5,653 validation images, and 629 test
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FIGURE 6. Confusion matrix of experiment 1.

images, the dataset was split in this proportion: 75%
for training, 15% for validation, and 10% for testing.
After we finished training and testing FL-ToLeD based on
these hyper-parameters mentioned in Table 1, we observed
that FL-ToLeD achieved 0.982, 0.059, 0.9872, 0.99, 0.99,
0.99 for validation accuracy, validation loss, testing accuracy,
precision, recall and f1-score respectively with a model size
of 2.5 MB and 221.594 of trainable parameters. Moreover,
it takes about 3056.66 seconds to train and about 1.4 seconds
in inference time. Training vs. validation accuracy and
loss curves are shown in Figure 5. The best classification
performance of FL-ToLeD is visualized using confusion
matrix as shown in Figure 6. The worst validation accuracy
occurred was 0.20 on epoch no. 3.

2) EXPERIMENT 2
In this experiment, we used a 5-fold stratified cross-validation
strategy to split our images to fit FL-ToLeD. The dataset was
divided as follows: 80% for training with a validation split
of 0.20, 20% for testing, with 20,101 training images and

5,026 test images. After training and testing FL-ToLeD with
the hyper-parameters listed in Table 1, we found that the best
performance and complexity on the fold no. 1 with 0.995,
0.991, 0.028, 0.9904, 0.99, 0.99, 0.99 for training accuracy
(TRA), validation accuracy (VA), validation loss (VL),
testing accuracy (TA), precision (PRE), recall (REC) and f1-
score (F1S) respectively with a model size of 2.5 MB and
221,594 of trainable parameters. Additionally, the training
time (TRT) is 4209.65 seconds, and the inference time or test
time (TET) is 10.40 seconds.

FL-ToLeD used ReduceLROnPlateau callback to reduce
learning rate by a factor of 0.3 when a validation loss has
stopped improving. This callbackmonitors the validation loss
and if no improvement is seen for a ‘patience=4’, number of
epochs, the learning rate is reduced automatically.

The best learning rate at which FL-ToLeD achieved its best
accuracy on fold no. 1, epoch no. 34 is 0.00009 as shown in
Figure 7.
The results for the remaining folds are shown in Table 3.

The training versus validation accuracy and loss curves
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TABLE 3. The results of 5-fold cross validation approach.

FIGURE 7. Learning rate per epochs.

for fold1, fold2, fold3, fold4 and fold5 are shown in
Figure 8, Figure 9, Figure 10, Figure 11 and Figure 12
respectively.

C. PERFORMANCE ANALYSIS
In this section, we display the best classification performance
of FL-ToLeD under a 5-fold stratified cross validation
split. Table 4 displays precision, recall and f1-score for
each individual class. Figure 13 displays the confusion
matrix of the best model performance which has been
achieved in fold no. 1. Figure 14 displays the AUC-ROC
Curve for each of the classes with a weighted ROC score
of 0.9998.

Finally, we applied a comparative study between our
proposed model and seventeen of (CNN and Transfer
learning) models in the terms of the used model architecture
(MARCH), number of used images (NOI), image size (IS),
dataset distribution (DIS), test accuracy (ACC), F1-Score
(F1S), Precision (PRE), Recall (REC), no. of trainable
parameters (NOTP) per million, model size (MS) per
megabytes, Training time (TRT) per minutes as shown in
Table 5. Our model is the best among the other models listed
in Table 5, as it is the only one that achieves the trade-off
between performance and computational complexity of the
model, and this is the unique strength and main superiority
of FL-ToLeD. Figure 15 also shows the superiority of
FL-ToLeD over four CNN models.

TABLE 4. Report of performance on each class after evaluating FL-ToLeD.

All previous comparison studies used the Plant Village
dataset, the number of tomato plant disease images in the
Plant Village dataset is equal to 18160 images, but in our
study, we expanded the dataset using data augmentation
technique to improve the model performance so that the
number of images used is 25127. Furthermore, we split our
dataset in two ways (75:15:10 ratio and 5 SK-Fold) using a
224-pixel image which varies from study to study. All these
differences (NOI, IS, DIS) in the input dataset from one
study to another affect the performance of the model. On the
other hand, we divided the comparison into two groups, the
first containing six transfer learning studies and the second
containing eleven CNN studies. The potential strengths of
our model as shown in the previous table are; it is the most
lightweight model with 2.5 MB with the best performance
with 99.04%, it is the only model between these compared
models which proves the robustness and the generalizability
of the model as we will discuss later. Individual contributions
of each of the main components are also discussed in the next
section.
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FIGURE 8. Training & validation (Loss & Accuracy) for Fold 1.

FIGURE 9. Training & validation (Loss & Accuracy) for Fold 2.

D. ABLATION STUDY
In this section, we analyze the impact or contribution of
both depth-wise separable convolutional layers and soft
attention-based mechanism on FL-ToLeD performance.

The depth-separable convolution layers (block no. 3) have
a significant impact on the performance of FL-ToLeD such
that by removing them from FL-ToLeD, we observed the
best performance achieved on fold no. 1, epoch no. 37 with
0.9723, 0.972, and 0.08 for test accuracy, validation accuracy,
and validation loss respectively as shown in Figure 16.
This proves the validity of what we discussed previously

in section III-B about the extent of influence of depth-wise
separable convolution layers with batch normalization layers

on our model which has a high significance in reducing
computational complexity and increasing the performance of
the model.

Also, the soft attention block in FL-ToLeD has a great
impact on FL-ToLeD performance as by removing it from the
model, we observed that the best performance was achieved
on fold no. 1, epoch no. 23 with 0. 9727, 0.981, 0.063 for
test accuracy, validation accuracy, validation loss respectively
as shown in Figure 17. This also proves the validity of what
we discussed previously in section III-C about the extent
of influence of soft attention operation on our model which
has a high significance in increasing the model performance
through highlight or paying attention to a specific area
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FIGURE 10. Training & validation (Loss & Accuracy) for Fold 3.

FIGURE 11. Training & validation (Loss & Accuracy) for Fold 4.

of interest, increasing the value of relevant features and
suppressing distracting features.

Moreover, by removing each of the depth-separable
convolution layers (block no. 3) and soft attention block from
FL-ToLeD, we observed the best performance achieved on
fold no. 1, epoch no. 12 with 0.8927, 0.893, and 0.324 for test
accuracy, validation accuracy, and validation loss respectively
as shown in Figure 18. The total results are shown in
Table 6.

E. QUALITATIVE ANALYSIS
The trade-off between the True Positive Rate and False Posi-
tive Rate by using various probability thresholds is described
by the AUC-ROC curve, which may be used to evaluate
the performance of a prediction model [46]. When the

graph reaches 100% true positives and 0 false positives, the
classifier is considered to be flawless. In general, we count
the positive classifications by increasing the rate of false
positives. We observed that FL-ToLeD performed admirably
for all 10 classes since the AUC-ROC curves intersect each
other in the upper left corner, as shown in Figure 13. This
indicates that our proposed model classification performance
is flawless in which it can accurately identify between all
Positive and Negative class points with 0.998 weighted ROC
score.

To qualitatively evaluate and analyze our model and
explain why our model predicts what it predicts, we use Grad-
CAM.

Grad-CAM which stands for Gradient-weighted Class
Activation Mapping [47] is a localization of model decisions
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FIGURE 12. Training & validation (Loss & Accuracy) for Fold 5.

FIGURE 13. Confusion matrix of the best model performance occurred in Fold 1.

approach. It creates a coarse localization map that highlights
the key areas in the image for concept prediction by using

gradients of any target concept, this localization map helps
understand the specific features or areas in an image that
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FIGURE 14. AUC-ROC curve for each of class.

FIGURE 15. Comparison classification performance of our proposed FL-ToLeD with other CNN models.
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TABLE 5. Comparative study of FL-ToLeD with existing tomato diseases classification models.

the model focuses on when making predictions and provides
visual explanations and helps understand how CNNs arrive at
their predictions.

Grad-CAM uses the spatial data (feature map) produced in
the last convolutional layer to produce the localization map
to identify salient regions of tomato images that were useful
in the classification process.

The last convolutional layer in FL-ToLeD which it used
to generate the heatmap is called ‘‘separable_conv2d_2’’.
We observed that FL-ToLeD focuses more on the relevant

regions of tomato leaves that have the greatest impact on
classification. Figure 19 displays FL-ToLeD ‘s performance
on unseen random tested images from the tested dataset with
the prediction heatmap for the most important features or
regions for each prediction in which ‘‘TLAB’’ stands for True
Label or class and ‘‘PLAB’’ stands for Predicted Label or
class.

Generalizability is one of themost challenging issues when
it comes to model performance. It mainly comes down to
how well the model performs on unseen data. There are many
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FIGURE 16. Model performance without depth-separable convolution
layers.

FIGURE 17. Model performance without soft attention-based mechanism.

ways to increase the generalizability of CNNmodels [48] but
there are two most common solutions: data augmentation and
data normalization and FL-ToLeD used both as we discussed
later.

Another technique used to standardize the inputs to a
layer for each mini-batch is called batch normalization as
we discussed later. It not only provides regularization and
reduces generalization error, but also speeds up training and
reduces model complexity.

F. QUANTITATIVE ANALYSIS
When we tested the model with different splits on the
plantvillage dataset, we discovered that the model using
five stratified cross validation outperforms the model using
traditional split (75%, 15%, and 10%) by 0.5%. Hence,

FIGURE 18. Model performance without both of depth-separable
convolution layers and soft attention-based mechanism block.

TABLE 6. Impact of depth-separable convolution layers and soft
attention blocks on FL-ToLeD performance.

we selected five stratified cross validation split for running
our experiments as we test FL-ToLeD on 5 different unseen
folds.

Furthermore, the proposed model is compared with state-
of-the-art models for tomato leaves diseases classification on
the plantvillage dataset. We discovered that our depth-wise
separable convolutions with the soft Attention based mecha-
nism outperforms H. Ulutaş et al. [20] by 2.2% in the terms of
accuracy, precision, recall and f1-score. It also outperformed
Khamparia et al. [13] by 8% in the terms of accuracy,
precision, recall and f1-score.

Furthermore, from the ablation study, we observed that
the proposed model has lost about 10% of the accuracy
by removing depth-wise separable convolutions layers and
soft Attention based mechanism layers together from the
base model as it achieved about 0.8927% of test accuracy.
From the aspect of model complexity, we observed that
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FIGURE 19. The visual explanations of the relevant regions of the leaves that have the greatest influence on classification using Grad-Cam.

FIGURE 20. The performance of FL-ToLeD on Grape diseases leaves images dataset (Confusion matrix, grad-cam, accuracy curves and loss curves).

there is only one model that outperformed FL-ToLeD as
Khamparia et al. [13] built their model with size=1.5 MB
but achieve non satisfactory performance as it achieved about

91% performance, this validates what we discussed earlier in
Section III-B and Section III-C about how depth-separable
convolution layers combined with batch normalization layers
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FIGURE 21. Effect of using Gaussian noise on the robustness of FL-ToLeD.

and soft attention operation impact the complexity and
performance of our model.

Experimental results show that FL-ToLeD works more
accurately and efficiently than the comparative models
presented in Table 4 as FL-ToLeD achieved an accuracy of
99.04% with a model size of 2.5 MB.

Moreover, in order to verify the practical application
performance of the FL-ToLeD, we conducted experiments
on grape leaf diseases. The dataset contains 4062 images
of grape leaf diseases including 3 diseases; Black_Measles’’
BM’’, Black_rot ‘‘BR’’, Leaf_blight ‘‘LB’’ and one healthy
class. After training and testing FL-ToLeD with the hyper-
parameters listed in Table 1, we found that the best
performance as shown in Figure 20 was on fold no. 4 with
0983, 0.053, 0.9852, 0.99, 0.98, 0.98 for validation accuracy,
validation loss, test accuracy, precision, recall, f1-score
respectively.

Model’s robustness [49], [50] refers to the ability of
a model to maintain its performance when faced with
uncertainties or adverse conditions such as dealing with noisy
data, shifted or modified data. Evaluating and measuring the
robustness of deep learning models is certainly one of the
most important research problems as it can help us better
understand the weaknesses of them and also form a basis for
designing a more robust neural network in the future.

In real-world applications, image quality may vary widely
depending on factors such as the capture sensor used and
lighting conditions. These scenarios should be taken into
account when performing image classification, as changing
the quality directly affects its results so that the robustness
must be certified before a neural network is deployed in real-
world applications.

The loss function plays an important role in the noise
robustness of CNN models. Loss sensitivity represents the
loss function robustness for noisy data. Here, we use the
cross-entropy loss function as it is the most robust loss
function to noises [51]. Some of the most common types
of noise that we can add to the images are; Poisson noise,
Salt and pepper noise, Gaussian noise and others. To test
the robustness of FL-ToLeD, we add a Gaussian noise
to the tested images with standard deviation=0.1 of the
noise distribution as shown in Figure 21. We observed that,
the performance of FL-ToLeD didn’t suffer so much as it
achieved about 0.98925 of test accuracy with this input noisy

images. Finally, FL-ToLeD has the ability to maintain its
performance when faced with noise.

V. CONCLUSION
In this paper, we developed a lightweight convolutional neu-
ral network model based on an attention-based mechanism
and deep separable convolutional layers that outperformed
the majority of existing models of tomato plant disease in
terms of model performance and computational complexity.
This model achieved an accuracy of 99.04% with a model
size of 2.5 MB, which makes it better suited for embedding
on low-end devices and meeting real-time requirements.
The proposed model offers a good compromise between
effectiveness and performance.

As a result, it can be used in mobile applications and
other embedded devices with limited resources, helping
spread awareness of precision farming applications. FL-
ToLeD used a runtime data augmentation method, which
improved the generalizability of the network and protected
it from the problem of overfitting. In addition, the results of
our experiment show the superiority of the proposed method
over those currently used.

The benefits of FL-ToLeD are:
- It can be used to detect tomato plant diseases in the early
stages, as small lesions can be identified in the leaves.

- It can be included on any low-end device to use in real life
scenarios since its size is very small (2.5MB).

- FL-ToLeD can identify the disease with a very high
accuracy (99.04%), which is superior to others currently
used.
The potential challenges and limitations of deploying

FL-ToLeD in real-world precision agriculture settings are:
- Due to the presence of light shadow, density of overlapping
leaves, obstruction of branches, and overlapping of leaves
in the real natural environment, identification and localiza-
tion of the disease under these conditions may be a major
challenge.

- In different monitoring and imaging equipment, the dis-
tance between plants and imaging equipment is different,
resulting in different resolution, light and perspective of
the image of plant diseases, and also different optical
characteristics of the same image of plant diseases and pests
will produce visible changes.

- The varying degree of occlusion resulting from background
and other factors leads to a large number of occlusion
problems, which may lead to poor recognition of plant
diseases.

- The main limitation or drawback of the model is that it has
been tested only on leaves of plants but in future version it
will deal with other parts of plants like stems.
Moreover, the potential future directions of our research

are:
- We plan to upgrade FL-ToLeD in terms of data privacy,
availability and transfer costs through federated learning
approach.
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- We plan to adapt our model to IoT applications.
- We would also like to improve FL-ToLeD so that it can
report disease prevalence in plants.

- We will focus more on identifying diseases at different sites
on plants and trees, such as fruits, flowers and stems.
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