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ABSTRACT In underwater robots, accurate identification of small fish is still a major challenge, because
small fish move faster and occupy less screen space, which requires higher detection flexibility and receptive
field of the model. To solve this challenge, we propose a high-precision small fish identification and tracking
method named YOLO8-FASG in this paper. Specifically, the proposed method is improved in three aspects
based on theYOLOv8 framework. First, Alterable Kernel Convolution (AKConv) is used in the neck network
of the model to automatically adjust the shape of the convolution kernel according to the size and shape
of the object. In this way, the shape and contour characteristics of rapidly changing fish can be captured
more accurately and efficiently; Second, we introduce a global attention mechanism (GAM) to broaden the
receptive field of the model by enhancing attention to fish features from the two dimensions of channel
and space; Third, we employ Simplified Spatial Pyramid Pooling-Fast (SimSPPF) to replace the standard
Spatial Pyramid Pooling-Fast (SPPF) to enhance prediction accuracy. These improvements enable the model
to effectively extract image features of small, fast fish, thereby improving the robot’s accuracy in identifying
small fish underwater. Experiments results in the public dataset Fish4Knowledge show that YOLO8-FASG
performs significantly better than traditional YOLOv8 in underwater environments. Specifically, Precision
and Recall increased by 1.6% and 3.5% respectively, while mAP50 and mAP50-95 increased by 1.3% and
6.1% respectively, and our method provides an effective solution for underwater robots to identify fish
schools.

INDEX TERMS YOLOv8, global attention mechanism, AkConv, SimSPPF, object detection.

I. INTRODUCTION
An underwater fishing robot is an autonomous robotic
system specifically designed to perform a variety of tasks
in underwater environments. Nowadays, underwater fishing
missions play an important role in marine resource develop-
ment [1], scientific research and rescue operations. However,
challenges such as the complexity of the underwater envi-
ronment and communication limitations make underwater
fishing tasks extremely difficult. In order to effectively deal
with these challenges, it is critical to improve the object
detection and recognition capabilities of underwater fishing
robot systems.

The associate editor coordinating the review of this manuscript and

approving it for publication was Sudhakar Radhakrishnan .

Currently, conventional object detection methods face a
series of problems in underwater environments, including
uneven illumination, blurred water quality [2], and diverse
object shapes. Therefore, the improvement of object detection
methods has become an urgent need in the field of underwater
fishing robots. As an advanced object detection method,
YOLOv8 [3] is fast and accurate, and has broad application
prospects in underwater fishing tasks. This article aims to
introduce the improved method of YOLOv8 in underwater
fishing robots to improve the efficiency and accuracy of
underwater fishing tasks.The diagram of identifying small
objects underwater is shown in Figure 1.

Considering the complexity of the underwater environment
and challenges of underwater fishing tasks, researchers are
committed to improving underwater object detection and

73354

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 12, 2024

https://orcid.org/0009-0006-7684-9926
https://orcid.org/0000-0002-5759-4589
https://orcid.org/0000-0002-0982-5282


X. Qin et al.: YOLO8-FASG: A High-Accuracy Fish Identification Method

FIGURE 1. Underwater vehicle object identification process schematic.

recognition technology. Initially, Rova et al. [4] proposed a
method for fish identification in underwater videos using
deformable template matching, effectively combining shape
context to enhance recognition accuracy. Matai et al. [5] then
introduced a computer vision-based method for automatic
detection and identification of fish species, significantly
improving accuracy by integrating background separation
and species recognition methods. Hsiao et al. [6] developed a
maximumprobability partial rankingmethod based on Sparse
representation (SRC-MP), which significantly improved the
accuracy of real underwater observation video data by
effectively extracting feature with Eigenfaces and Fisher-
faces. Palazzo and Murabito [7] demonstrated the efficient
application of EMK and KDES kernel descriptors for the
classification task of about 50,000 underwater images of
10 fish species under MAED 2014, significantly enhancing
recognition precision.

With the gradual development of deep learning, especially
the application of CNN in the field of vision, it has been
proven to be an effective method for fish classification and
detection. Salman et al. [8] proposed a deep learning method
for fish classification in unconstrained underwater envi-
ronments, significantly enhancing classification accuracy
through a hierarchical feature combination of convolutional
neural networks. Zhuang et al. [9] achieved a breakthrough
in the SEACLEF-2017 task using advanced deep learning
models, significantly improving marine life identification
with pre-trained networks and BN-Inception networks.
Zhao et al. [10] introduced a method combining modified
motion impact graphs and Recurrent Neural Networks
(RNN), significantly enhancing detection and recognition
accuracy for monitoring local abnormal behaviors in densely
populated aquaculture. Zhou et al. [11] proposed an auto-
matic assessment method for fish feeding intensity based on
Convolutional Neural Networks (CNN) and machine vision,
significantly improving assessment accuracy through data
augmentation and CNN model training.

As YOLO became prominent in the field of visual
detection, more researchers innovated on its basis to make
it more suitable for fish detection tasks. Cai et al. [12] put
forward a novel fish detection method integrating YOLOv3
and MobileNetv1, significantly enhancing detection preci-
sion in aquaculture through optimized feature map selec-
tion. Jalal et al. [13] introduced a hybrid scheme combining

optical flow and Gaussian Mixture Models with YOLO deep
neural networks, effectively achieving fish detection and clas-
sification in dynamic underwater environments. Yu et al. [14]
specifically proposed an improved U-YOLOv7 framework
based on the YOLOv7 model for efficient and accurate
underwater biological detection. Yu et al. [15] introduced
an improved YOLOv5 model (termed TRH-YOLOv5) for
the detection and counting of underwater fish lateral line
scales, significantly enhancing recognition accuracy through
transformer modules. Cai et al. [16] proposed an interesting
NAM-YOLOV7method for rapid detection for fishwith SVC
symptoms, which employs the NAM attention mechanism
to extract features accurately and significantly improve
detection efficiency.

Overall, identifying fish is an extremely challenging
task in underwater environments. The environment is dark
and blurry, and previous studies have performed poorly
in fish recognition, with weak detection accuracy and
weak image recognition capabilities. These studies have
common problems: First, using square convolution kernels
to process fish school images does not fully consider the
outline characteristics of fish, resulting in poor recognition
results; Then, the distance changes of underwater fish
schools are not well captured, and spatial and channel
features are not effectively extracted. In response to the
above difficulties, we put forward the YOLO8-FASG
method to effectively solve the above problems. In sum-
mary, our contributions in this article are described as
follows:

• We embed the Alterable Kernel Convolution(AKConv)
to the model to adaptively adjust the shape of the
convolution kernel and capture fish-shaped outlines
more effectively, thus improving the accuracy and
efficiency of fish recognition.

• Global Attention Mechanism(GAM) is introduced to
enhance the focus on fish characteristics from two
dimensions: channel and space, further improving the
accuracy and performance of the model.

• We also adopt Simplified Spatial Pyramid Pooling-
Fast(simSPPF) instead of the traditional Spatial Pyramid
Pooling-Fast(SPPF), which simplifies the activation
function and makes the model enhance prediction
accuracy.

The remaining parts of this paper are arranged as follows:
Section II provides a detailed description of the improve-
ments made to YOLOv8, including GAM, SimSPPF, and
AKConv, along with the presentation of the novel framework
of YOLO8-FASG. Section III presents and analyzes the
experimental results of the model on open-source datasets.
Finally, conclusions are drawn in Section IV.

II. OUR PROPOSED METHOD
In this section, we first introduce the structure of YOLOv8
framework and then describe the details of the improvements
of our proposed method.
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FIGURE 2. Structural diagram of YOLOv8 model.

A. YOLOv8 FRAMEWORK
YOLOv81 is a object detection model released by the
Ultralytics team in 2023 [17], which is a detection method
that can quickly and accurately identify objects. This model
improves the architecture based on YOLOv5 [18] and
combines the advantages of multiple object detectors. The
structure diagram of the model is as shown in Figure 2.
The backbone network is the basis of the model and is

responsible for extracting features from the input image.
In YOLOv8, the backbone network mainly adopts the CSP
Darknet [19] structure similar to YOLOv5, and introduces
cross-stage connections between different stages of the
network. It directly connects some feature maps with feature
maps at subsequent levels to enhance the network’s infor-
mation transfer and feature reuse capabilities. As depicted in
Figure 2, the convolution kernels Conv and C2f are repeatedly
stacked with each other for feature extraction. Finally, SPPF
is employed at the end of the backbone, which captures
the spatial information of objects by introducing pooling
windows of different scales. By this means, it is able to
improve the model’s detection capabilities for objects of
different scales.

The neck network is located between the backbone
network and head network, and is used to perform feature
fusion and enhancement. This network can reduce the number
of parameters while maintaining the expressive ability of the
network. Specifically, it upsamples the processed backbone
information through the Upsample layer to increase the size
of the feature map, and then combines features of different
scales through a series of concat layer splicing and C2f
layers. Graphs are fused to produce richer information and
diverse feature representations. The feature maps are finally

1https://github.com/ultralytics/ultralytics

fused to produce richer information and diverse feature
representations.

The head network is located at the top of the entire model,
and its function is to achieve the final detection task. Features
extracted through the trunk and neck are fed to the head
network for object feature decoding and result generation.
The head layer of YOLOv8 no longer uses the coupling
head of YOLOv5, but becomes the mainstream decoupling
head Decoupled-Head [20], from Anchor-Based to Anchor-
Free [21]. It no longer relies on predefined anchor boxes, but
directly locates and detects objects on the feature map. In this
way, it gets rid of the dependence on predefined anchor boxes
and reduces the number of hyperparameters that need to be
considered when designing the model. This makes the model
simpler and easier to train. At the same time, it adopts the idea
of DFL (Distributional Focal Loss) [22], focusing on difficult
samples to solve long-tail classification problem.

B. IMPROVED YOLOv8 METHOD
In this paper, we improve the basic framework of YOLOv8 to
make it more suitable for underwater fishing scenarios. The
modified framework is shown in Figure 3 and called YOLO8-
Fish AKConv SimSPPF GAM(YOLO8-FASG). Our main
improvements are as follows: (1) Introduce GAM module
in the backbone network; (2) Replace SPPF with SimSPPF;
(3) Replace the convolution layer in the neck network with
AKConv.

1) GAM MODULE
In a blurry underwater environment, the recognition accuracy
will be greatly reduced. In order to enhance themodel to more
clearly extract the characteristics of fish species at the bottom
of the water, we considered adding GAM to help to solve this
problem.

As for GAM, it aims to address the problem of insufficient
information retention in the channel and spatial dimen-
sions of traditional attention mechanisms, thereby reducing
information loss and amplifying the global-dimensional
interactive features [23]. This mechanism adopts a sequential
channel-space attention mechanism, where the channel
attention sub-module employs 3D arrangement to retain
information across three dimensions, and enhances the
channel-space dependence across dimensions through a two-
layer MLP. The internal schematic diagram of GAM is
as shown in Figure 4. In the spatial attention sub-module,
in order to better focus on spatial information, GAM uses
two convolutional layers for spatial information fusion, while
removing the maximum pooling operation that may lead to
information reduction, stably improving performance. The
specific details of integrating the module into our model
framework are above the Figure 3. We assume that the input
image feature is φin, the output result is φout , the channel
function is set to Mc, and the spatial attention function is set
to Ms. Then the formula of GAM is as shown in Formula 1.

φout = Ms (Mc (φin) ⊗ φin) ⊗ (Mc (φin) ⊗ φin) (1)
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FIGURE 3. Structural diagram of our proposed YOLO8-FASG structure.

FIGURE 4. Attention effect demonstrated by GAM submodule.

2) SimSPPF
In the original YOLOv8 model, the interior of the SPPF
module uses the SiLU activation function, which is described
in Formula 2. Although SiLU has the characteristics of
smooth curves, the price is increased computational com-
plexity. Hence, we replace SPPF with SimSPPF [24], that
is, replace SiLU with ReLU activation function inside the
network structure. This is able to achieve the effect of
reducing detection time and improving model generalization
ability through simple calculation. The improved hierarchical
parts are shown in Figure 3. Suppose that the output of the
ReLU function is σ and the input vector of the previous layer
of neural network is x, and the nonlinear output result of the
neurons after linear transformation is described in Formula 3.

SiLU (α) =
α

1 + e−α
(2)

σ = max
(
0,wT x + b

)
(3)

3) AKConv
For the convolution operation, we adopt the novel AKConv
convolution method proposed in 2023 [25], [26], and the
AKConv structure is shown in Figure 5. It provides a flexible
convolution mechanism that allows the convolution kernel
to have any number of parameters and sampling shapes,
and the size and shape can be adjusted according to actual
needs to more effectively adapt to changes in different

FIGURE 5. AKConv’s initial convolution kernel setting and processing.

datasets and objects. Based on the characteristic contours
of fish, we design the initial sampling convolution kernel
(see Figure 5), and select convolution kernels similar to fish
features for feature extraction. AKConv can also dynamically
adjust the size and shape of the convolution kernel during
the detection process, which can better extract fish features
during dynamic monitoring.

For the AKConv process, we can describe it in the
following steps: First, obtain the offsets corresponding to
the convolutional kernel through convolutional operations,
resulting in offsets of size (B, 2N , H , W ), denoted as offset.
The formula for this process is given by Formula 4. Here,
X represents the input feature map, B represents the batch
size, N represents the size of the convolutional kernel. H
represents the height of the input feature map, W represents
the width of the input feature map, and C represents the
number of channels in the input feature map. The term
2N arises because each position has both horizontal and
vertical offsets. Next, by adding the offset Pn to the original
coordinates P0, we obtain the modified coordinates Pnew,
as shown in Formula 5. Finally, interpolation and resampling
are performed based on themodified coordinates to obtain the
corresponding feature valuesΓ , as shown in Formula 6. Here,
Conv2d represents the convolution operation, and Resample
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FIGURE 6. Some examples in the A dataset from Fish4Knowledge.

represents the interpolation and resampling operation.

offset = Conv2d (X) (4)

Pnew = P0 + Pn (5)

Γ = Resample (Γin,Pnew) (6)

III. EXPERIMENTS
A. DATASETS
In this section, we use the public Fish4Knowledge dataset
to verify the effectiveness of our improved method. The
images in the Fish4Knowledge dataset are derived from fixed
cameras capturing and monitoring marine ecosystems on
Taiwan’s coral reefs. The construction process of the dataset
lasted more than 4 years, and more than 700000 underwater
images are obtained. This dataset contains two parts,
dataset A2 and dataset B. As for dataset A, it contains
27370 images of 23 fish species, and Figure 6 presents some
example images in the dataset.

The used dataset in this study is to obtain images
of 23 species of fish from dataset A, and we use data
augmentation to increase the number of each fish to 500, for
a total of 11500 images. Then, we divide the training set,
validation set and test set according to the ratio of 7:2:1.

B. EVALUATION METERICS
For testing model performance, precision and recall are
indispensable evaluation indicators. Among them, precision
refers to the proportion of samples predicted as positive by
the model that are actually positive. Recall rate refers to the
proportion of positive samples successfully identified by the
model to the total positive samples. It measures how many
true positive examples the model successfully predicted as
positive examples. The calculation formulas of precision rate

2https://www.heywhale.com/mw/dataset/5e55f7960e2b66002c245df5

and recall rate are described as follows:

P =
TP

TP+ FP
(7)

R =
TP

TP+ FN
(8)

In addition, another evaluation index F1 is the harmonic
average of precision and recall, which takes into account the
precision and recall performance of the model. The higher
the F1 score, the better the model achieves a balance between
precision and recall. The calculation formula of F1 score is
shown in Formula 9.

F1 =
2 × P× R
P+ R

(9)

Furthermore, mAP50 and mAP50-95 are the average
accuracy calculated when the IOU threshold is set to
0.50. Specifically, for each category, we first calculate
the precision-recall curve based on the IOU between the
predicted box and the true box, then calculate the area under
the curve, and finally average the areas across all categories.
We set the average precision as AP, the precision rate at the
i-th recall level as P(i), and the increment of the recall rate
as dR(i). The formulas for AP and mAP can be obtained as
follows:

AP =

n∑
i=1

P (i) dR (i) (10)

mAP =
1
n

n∑
j=1

APj (11)

C. TRAINING DETAILS
This experiment is conducted on a laptop with Windows
10 operating system. The computer is equipped with
a 13th generation Intel(R) Core(TM) i7-13700K processor
clocked at 3.40 GHz and an NVIDIA GeForce RTX 4090Ti
(24GB memory). The proposed networks are realized by the
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TABLE 1. Ablation experimental data.

FIGURE 7. Ablation experimental data results of YOLOv8-FASG.

Python 3.8.15 and deep learning framework PyTorch. During
the training process, the input image size is set to 80 × 60.
We adopt the AdamW optimizer and the learning rate is
initialized to 1e-3, and batch size is set to 32.We stop training
the model until the trained model reaches convergence on
validation set (128 epoch).

D. RESULTS AND ANALYSIS
1) ABLATION EXPERIMENT
To verify the effectiveness of the improved method, we con-
duct multiple ablation experiments on the public underwater
fish dataset Fish4Knowledge. The relevant experimental
results are shown in Table 1 and Figure 7.

Initially, it’s evident that most indicators of the improved
model on the underwater fish dataset surpass those of
other ablation methods, especially in Recall, mAP50, and
mAP50-95. Compared with the original model, the improved
model has enhanced various indicators by 1.6% to 3.5% and

1.3% to 6.1%, respectively, highlighting the advantages of our
improved method in enhancing detection accuracy.

Subsequently, when comparing the enhancements between
single-module and dual-module approaches, it becomes
evident that YOLOv8-AKConv performs the best in the
underwater fish species recognition task. This superiority
stems from the enhanced capability of fish-shaped dynamic
convolution kernels in efficiently and accurately extract-
ing features of small fish. Among dual-module models,
YOLOv8-SimSPPF+GAM emerges as the top performer,
with GAM initially aggregating the extracted spatial-channel
information, followed by SimSPPF for multi-scale feature
pooling. A comprehensive comparison of the data in the table
reveals that GAM, AKConv, and SimSPPF all significantly
contribute to the model’s predictive accuracy.

Furthermore, observing the curve in Figure 7, we notice
that the improved model exhibits superior stability in
mAP50 compared to other models. The growth trends and
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TABLE 2. Experimental data comparing multiple models.

FIGURE 8. Comparison of model indicators of yolo series.

convergence speeds on other curves are faster than those of
other improved submodules. In the initial growth stage of
the Recall curve, YOLOv8-GAM+AKConv experiences sig-
nificant fluctuations, mainly due to AKConv’s adjustment of
appropriate convolutional kernel shapes during early training.
Additionally, in mAP50, we observe that the single-module
GAM and single-module SimSPPF have similar growth con-
vergence speeds to YOLOv8n. However, with the inclusion
of AKConv in YOLOv8n-AKConv, the overall improvement
benefits significantly. These experimental results indicate the
pronounced effectiveness of variable convolutional kernels.

Finally, based on the aforementioned advantages, the
YOLO8-FASG model integrates the global feature focusing
functions of GAM and SimSPPF, as well as the spatial
and channel information focusing functions of GAM, while
employing the dynamic detection neck AKConv to adeptly
identify small objects. This integration notably enhances
detection accuracy, rendering it more suitable for underwater
fish object recognition tasks.

2) COMPARISON EXPERIMENT OF TYPICAL MODELS OF
YOLO SERIES
In the comparative experiments, we evaluated the perfor-
mance of five different versions of the model, namely
YOLOv3, YOLOv5, YOLOv6, YOLOv8, and the improved

model YOLO8-FASG, on the object detection task with
128 epochs. We focused on comparing their performance
across Precision (P), Recall (R), mAP50, mAP50-95, as well
as F1 indicators.

Firstly, upon examining the experimental data Table 1,
it is evident that the improved YOLO8-FASG model outper-
forms others across all indicators. This indicates significant
advantages of our improvement method in underwater fish
identification tasks.

Secondly, by observing the mAP50 and mAP50-95 curves
in Figure 8, we notice that the YOLO8-FASG model exhibits
a more pronounced upward trend in the first 10 rounds
compared to other models. Furthermore, in the subsequent
training process, its curve convergence speed and stability
surpass those of other models. Despite the initial fluctuations
in Precision and Recall for YOLOv3-tiny, its curve values
are higher than those of YOLO8-FASG; however, between
rounds 10 and 40, YOLO8-FASG demonstrates significantly
faster curve convergence.

A comprehensive analysis reveals that the improved
model surpasses others in terms of training speed and
stability. This can be attributed to the effectiveness of
our proposed new method in capturing fish characteristics
and optimizing model structures. Notably, the utilization of
AKConv adaptive convolutional kernel shape, GAM global
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FIGURE 9. Comparison results of real scenarios under the test set.

FIGURE 10. The detection performance of YOLO8-FASG in real oceanic
environments.

attention mechanism, and SimSPPF simplified spatial pyra-
mid pooling method collectively provide robust support for
enhancingmodel performance during training. Consequently,
the improved model demonstrates heightened accuracy and
stability in underwater fish target recognition tasks, offering
a dependable solution for practical applications.

3) MODEL COMPARISON EXPERIMENT UNDER TEST SET
To validate the model’s detection capabilities in real-world
scenarios, we reserved a dedicated test dataset within our
dataset. In this test set, we enumerated several common
tropical fish species as objects for comparative experiments,
as depicted in Figure 9 (from left to right: v3, v5, v6, v8,
v8-FASG). The results of the comparative experiments
clearly indicate that YOLO8-FASG exhibits superior per-
formance in terms of detection accuracy, with an average
detection accuracy of 0.927. Compared to the average
accuracies of YOLOv8 (0.867) and YOLOv6 (0.827),
YOLO8-FASG’s accuracy is improved by 6% and 10%,
respectively. Additionally, we subjected YOLO8-FASG to

more challenging tests using real-world datasets to sim-
ulate changing water conditions and uncontrolled marine
environments. In Figure 10, we observe that even in
dimly lit underwater environments with blurred targets and
backgrounds, YOLO8-FASG is still able to accurately locate
targets. This result further validates the effectiveness of our
proposed improvement method in underwater fish target
recognition tasks and robustly demonstrates our model’s
capability to handle real-world marine small fish detection
tasks.

IV. CONCLUSION
In this article, we propose a more flexible and larger receptive
field deep learning model, named YOLO-FASG, to address
the issue of low detection accuracy for small underwater fish
species. By introducing AKConv into the neck network of the
YOLOv8 model architecture, the model can adjust the shape
of the convolution kernel adaptively to the fish contour, and
capture the rapidly changing fish contour more accurately,
thereby improving detection accuracy. Furthermore, the
introduction of the GAM and the adoption of SimSPPF
further enhance the model’s focus on spatial-channel features
of fish and receptive field, making it more effective in
identifying small fish species in underwater environments.

Experimental results show that compared with the tradi-
tional YOLOv8, YOLO8-FASG has significantly improved
performance indicators such as Precision, Recall, mAP50
and mAP50-95, providing a more reliable solution for
underwater robots to identify fish schools. Among them,
Precision and Recall increased by 1.6% and 3.5% respec-
tively, while mAP50 and mAP50-95 increased by 1.3%
and 6.1% respectively. These data show that the proposed
method improves detection accuracy while maintaining good
performance stability, providing important technical support
for the accurate identification of small fish in underwater
environments.
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In summary, the YOLO8-FASG method proposed in
this study has achieved remarkable results in identifying
small fish by underwater robots, providing a more reliable
and efficient technical means for future underwater robot
applications. In the future, we will further optimize the
method and explore its application in other underwater
scenarios to meet a wider range of requirements.
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