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ABSTRACT Detecting insider threats is the foremost challenge in many institutions because of the abnormal
behavior of legitimate access and network crawling in the Internet of Things (IoT) environment. The insider
activities of the institution’s data are submerged in many regular activities, leading to a data imbalance
problem. Existing insider threat detection techniques often fail to address the data imbalance problem in
the insider threat data of IoT-enabled institutions, thereby causing deterioration in detection performance.
Thus, this paper presents a novel Enhanced Bidirectional Generative Adversarial Network (EBiGAN) for
adversarial sample generation and a Deep Neural Network (DNN) with the Probability of Improvement
(PI) acquisition function of Bayesian optimization to detect insiders in an IoT enabled institutions. The
proposed model involves three modules: (1) Improved PCA for extracting user functionality samples and
outlier estimators of k-means for grouping scenario-based user functional data. (2) Bidirectional GAN with
an additional discriminator to ensure the quality of the generated samples (3) The PI acquisition function
of Bayesian Optimization for tuning the hyperparameter to improve the performance of the DNN model
for insider threat detection to secure IoT-enabled institutions. The performance of the Enhanced BiGAN
and DNN-PI was evaluated using a benchmark institutional dataset. The experimental results show that the
proposed model identifies the suspicious behavior of insiders with a high detection rate and minimal false
alarm rate in an IoT infrastructure.

INDEX TERMS Data augmentation, deep neural network, insider attack, insider threat detection, outlier
estimator K-means clustering.

I. INTRODUCTION
The Internet of Things (IoT) infrastructure is a significant
part of institutional applications in educational institutions,
healthcare, and corporate enterprises. IoT devices are con-
nected through sensors to gather information from the
environment and are secured through access control manage-
ment devices, cameras and secure IoT protocols. However,
IoT-specialized institutional infrastructure is affected by
cyber threats and attacks in recent times have faced many
difficulties in detecting insider threats. An Insider threat is
a security breach enacted by authorized access of individuals
within IoT-enabled institutions [1]. Insiders may have legiti-
mate access to confidential data from employees, contractors,
or business partners within an institution. Insiders intend to
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exfiltrate data, sabotage, fraud, and espionage. Insiders often
operate through authorized access, which complicates the dis-
cerning of legitimate users and insiders [2]. Furthermore, it is
difficult to observe changes in user behavior, encrypt insider
activities and analyze massive volumes of data in institutions.
The 2023 insider threat report states that insider attacks are
vulnerable and occur more often in 74% of organizations [3].

The institutional IoT architecture comprises of five layers:
business, application, processing, transport, and perception.
Depending on the IoT layer, insider threats can occur
within institutions with unauthorized access to IoT devices.
Employees of institutions have access to modifying the com-
ponents and information of IoT sensors in the perception
layer [4]. Insiders can interrupt the data transmission from an
IoT-enabled gateway in the transport layer. In the processing
layer, the input data may have improper analytics, or the user
can inject incorrect data into the layer, leading to an insider
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threat [5]. Data exfiltration means that confidential data are
dripped owing to unauthorized employees in the application
layer and institution employees who intentionally practiced
data leakage in the IoT architecture’s business layer [6].
Numerous traditional approaches have been proposed to com-
bat insiders in IoT infrastructure; however, these approaches
are challenging because of inadequate real-time datasets and
skewed class distributions in the dataset [7].
The skewed class distribution of the insider threat dataset

of IoT-enabled institutions was resolved using oversampling.
The widely used oversampling techniques include the Syn-
thetic Minority Oversampling Technique (SMOTE) [8] and
the Adaptive Synthetic Sampling Technique (ADASYN)
[9]. Nevertheless, these methods are unsuitable for het-
erogeneous datasets, because they may lead to model
overfitting. It can be handled using data augmentation
techniques to identify unobserved data and maintain the
generalizability of the model [10]. Hence, this research
article proposes an Enhanced Bidirectional Generative
Adversarial Network (EBiGAN) to address the data imbal-
ance problem of an institution’s IoT-enabled insider threat
dataset.

Recently, deep learning models have played an important
role in insider threat detection (ITD) in IoT infrastructure
to achieve a high detection rate and a lower false alarm
rate. However, certain limitations exist, such as data imbal-
ance, dimensionality reduction, computational complexity
and hyperparameter tuning, which affect the performance of
ITD system. Thus, improved Principal Component Analy-
sis (IPCA) was used to extract the user functionality-based
samples and outlier-resistant estimators of k-means clustering
to cluster the scenario-based user functionality samples.An
Enhanced BiGAN was used to balance the imbalanced
data, and hyperparameter tuning of the Deep Neural Net-
work (DNN) model was performed using the Probability of
Improvement (PI) acquisition function of Bayesian optimiza-
tion over the GPyOpt tool for the detection of insider threats.
This increased the overall performance and decreased the loss
of the objective function while validating the ITD model for
the IoT-enabled infrastructure. The main objectives of the
proposed model are as follows,

• IPCA for extracting user functionality-based sam-
ples and outlier estimators of k-means clustering for
scenario-based user functional data were utilized to pro-
vide better quality clusters and ensure standard stability
and robustness to the detection model.

• EBiGAN is composed of an additional discriminator to
ensure the quality of the encoded data by assessing the
correlation between the encoded data and data from the
latent space.

• EBiGAN generates an adversarial sample that performs
interpolation in a latent space using an improved and
diversified adversarial sample generation.

• A DNN hybridized with a Probability of Improve-
ment (PI) acquisition function in Bayesian optimization
for hyperparameter tuning solves the complexity and

non-smoothness problems of the objective function,
which can achieve higher performance.

• An improved DNN for insider threat detection was pro-
posed to detect suspicious behavior of users with a high
detection rate and a minimal false alarm rate.

• The release of the insider threat dataset (r6.1&r6.2) from
the Computer Emergency Response Team (CERT) of
Carnegie Mellon University (CMU) was incorporated
into the IoT layered architecture, which was used for
experimentation and evaluated in terms of accuracy,
precision, detection rate, false positive rate and false
negative rate.

The rest of the article is structured as follows: Section II
presents a detailed study of existing ITD and ITD in IoT
infrastructure. Section III presents preliminaries of the pro-
posed model. Section IV describes the research objective and
a comprehensive description of the proposed method. Inten-
sive experimentation is presented in Section V. Section VI
concludes the paper with a scope for future work.

II. RELATED WORK
Further research has been conducted to detect, mitigate,
and prevent insider threat. Recent ITD studies have mainly
focused on machine learning and deep learning techniques
compared with traditional methods. The three significant
phases involved in designing an ITD framework are (i) class
imbalance, (ii) dimensionality reduction, and (iii) anomaly-
based insider threat detection, as discussed in the literature.

A. INSIDER THREAT DETECTION
The approach presented in [11] is a resource access pattern
network (RAP-Net) with neural network techniques and rein-
forcement learning-based generative adversarial networks
to solve imbalanced data problems. The embedding layer
‘‘word2vec’’ computes distance measurements and semantic
correlations to observe various user behaviors in the patterns.
The obtained feature vectors for the classification models
include an integrated classifier model of a 1D convolu-
tional neural network, bi-directional long short-term memory
(Bi-LSTM) and Attention Neural Network (ANN) in the
CMU CERT r4.2 dataset. The proposed 1D CNN was used
for sequential feature extraction, Bi-LSTM for collecting
time-based user actions, and ANN for user behavior-based
insider threat identification and classification of normal and
malicious with better accuracy. However, the proposed model
has computational complexity owing to multiple integrated
neural network types. Four traditional classification mod-
els [12] for ITD, logistic regression, decision tree, random
forest, and XGBoost were implemented in the CMU CERT
r4.2 dataset. The SMOTE sampling technique was used to
address the class-imbalance problem. The frequency-based
feature extraction approach derives feature vectors and
achieves sample space reduction. Each model was evaluated
using standard performance metrics to detect and classify
the insiders. The experimental results were obtained before
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and after balancing the dataset, and compared to all the
models,logistic regression outperformed all other techniques.
However, the SMOTE sampling technique leads to model
overfitting. Dual domain graph-based convolution Network
(DD-GCN) [13] was developed for an adaptive anomaly-
based ITD. The similarity metric of the weighted feature
method was used to compute the similarity between the fea-
tures of users and their behavioral data. The weighted feature
similarity metric was primarily used to obtain highly qual-
ified structural data. Dual domains with dual convolutional
graph neural networks were designed to fuse the information
of structural relationships and features, which were delivered
as additional detection components. The combination and
difference constraints verified the consistency and disparity
of the trained DD-GCN model. Furthermore, the attention
model was integrated with DD-GCN to attain better accu-
racy for publicly available datasets. The proposed model
addresses this issue by computing the similarity between
user behaviors and by detecting insider threats. However, the
class imbalance problem of insider threat datasets must be
addressed using this approach. The model proposed [14] is an
employee relationship model for the effective dissemination
of insider knowledge within an organization. The proposed
model was classified into two phases. In phase one, data secu-
rity queries arise for user organizations based on employee
and organizational aspects in order to evaluate insider threat
levels. In phase two, the construction of the employee rela-
tionship model using TOPSIS defines the impact of how
the insider threat is inclined within the organization. Fur-
thermore, the graph structure of the insider is constructed
using a parameterized employee relationship model and is
evaluated using synthetically generated log records and psy-
chometric tests which are processed according to the user’s
relationships and organizational infrastructure. Nevertheless,
synthetically generated insider data can be compared with
a benchmark dataset to provide insight into the proposed
model. An ITD using machine learning-based user behavior
analytics [15] was designed to map the behavioral changes
in user activities. The mapped user behavior changes are
streamed activities in a sequential form. The Recurrent Neu-
ral Network (RNN) is used for feature representations after
preprocessing using min-max normalization in the CMU
CERT r4.2 dataset. To define the best feature extraction for
sequential event activities, temporal-based Long Short-Term
Memory (LSTM) is primarily used for user behavior ana-
lytics such as pattern learning. The LSTM was found to
be a detection model with a low mean squared error rate.
However, the dataset contained a minority of adversarial
samples that were not addressed, and the researchers con-
cluded that the proposed detection model was less accurate
with imbalanced data. The model presented in [16] is a
machine learning model based on ITD using synthetically
generated log records from China’s Civil Aviation Flight
University website. The detected anomalies are clustered
without annotated data owing to user behavior modification
patterns by considering the IP addresses where the insiders

are identified. The performance of the proposed model was
better than that of other machine learning techniques in
terms of precision, recall, and f1score. However, the pro-
posed model must define feature engineering techniques for
synthetically generated datasets. The proposed method [17]
suggests a machine-learning framework for an ITD. An unsu-
pervisedmachine learningmodel, isolation forest, and elliptic
envelope framework were employed to view data from vari-
ous sources and detect insider threats. The proposed model
was evaluated using the CMU CERT insider threat test
dataset, and achieved greater accuracy, sensitivity, specificity,
f1score, and MCC. When working with the dataset, the data
imbalance problem must be resolved.

B. ITD IN IoT INFRASTRUCTURE
A trustworthy machine learning-based insider threat detec-
tion model [18] was developed to detect insiders by assuring
both confidentiality and explication. The performance of
ML models has improved through data collaboration among
several owners. However, the proposed ML model concen-
trates on the need for more reliable insider threat detection
solutions that specifically address the challenges related
to trustworthy learning. Designed a taxonomy of adver-
sarial techniques [19] that insiders can use, and examined
how vulnerable machine learning models are to adversar-
ial attacks in the context of the Internet of Things (IoT).
It also attempts to increase the knowledge of the current
insider threat scenario in the IoT ecosystem and to inves-
tigate defensive strategies against adversarial attacks. This
study primarily examines supervised machine learning sys-
tems that are specifically linked to the Internet of Things
(IoT), excluding other categories of machine learning mod-
els or applications. However, this discussion does not cover
the potential ramifications or outcomes of insider threats
to the IoT ecosystems. Modelled [20] a security system
utilizing machine learning to identify insider assaults in
IoT devices. The proposed assault exploited the weaknesses
of the RPL routing protocol. The performance of machine
learning ensures that insider threats can be effectively iden-
tified. The significant consequences of deploying security
service that arise in IoT devices include restricted computa-
tional power, storage capacity, and communication capacity.
IoT devices are susceptible to security breaches owing to
inadequate physical security measures. Conventional secu-
rity measures can be more efficient in mitigating attacks
specifically targeting IoT devices. A novel blockchain-based
anomaly detection technique [21] to mitigate insider assaults
in IoT systems. It focuses on edge computing and addresses
the concerns related to limited availability, potential data
loss, and compromised data integrity. It uses edge comput-
ing to minimize latency and bandwidth demands, enhance
availability, and prevent potential points of failure. Further-
more, it incorporates decentralized edge computing with
blockchain technology to effectively identify and rectify
anomalies in incoming data from the sensors. The assess-
ment of the methodology using an actual IoT system dataset
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demonstrated the successful attainment of the stated objective
while simultaneously guaranteeing the preservation of data
integrity and availability, both of which are crucial for the
implementation of IoT systems. However, the blockchain
model must discuss performance metrics where full-fledged
detection has not yet been established.

Moreover, a study on insider threat detection revealed
that addressing imbalanced data problems is inevitable.
Several detection approaches have been explored, such as
profile-based user behavior, log record monitoring and anal-
ysis systems, and content-based methods. However, a single
model cannot provide a security-based solution, whereas a
hybrid model implements various integrated techniques to
improve the accuracy and increase the computational com-
plexity of the model. However, deep learning-based solutions
have provided a new opportunity to develop a robust insider
threat detection model. During implementation and valida-
tion, it was ensured that the deep learning models could
significantly improve the accuracy and detection rate with
reduced false positives. Thus, this research attempts to over-
come the literature challenges by proposing an improved
PCA that extracts user functionality-based samples and out-
lier estimators of k-means clustering groups scenario-based
user functional data to reduce the dimensionality with-
out changing the underlying data structure. The enhanced
Bidirectional GAN-based Probabilistic of Improvement (PI)
acquisition function for hyperparameter tuning of DNN to
detect insiders, where the EBiGAN solves the data imbalance
problem.

III. PRELIMINARIES
A. OUTLIER ESTIMATORS OF K-MEANS CLUSTERING
K-means clustering is an unsupervised algorithm for group-
ing similar points through iterative processes that form
clustering. This technique visualizes complex data in an
understandable format for predetermined clusters. K-means
clustering aims to form k clusters depending on n obser-
vations, where k is the centroid, and n is the number of
data points joined based on heterogeneous centroids. The
formation of k clusters was achieved by abating the summa-
tion of distances between the points and their corresponding
centroids using the Euclidean distance. However, Euclidean
distance has more consequences when framing detection or
identification algorithms for many security-based applica-
tions. Owing to the need for a strong bond between the data
points and centroids, outliers can interrupt cluster forma-
tion and reduce the computational complexity. This can be
addressed by outlier estimators, which fix the Huber loss to
compute the distance between the data points and centroids.
Huber loss combines themean squared error (MSE) andmean
absolute error (MAE) [22]. Steps for outlier estimators of
k-means clustering with the objective function in (1)

Objective function

F =

∑l

i=1

∑m

j=1
aij.outlier estimators

(
cj, di

)
(1)

Compute Huber loss in (2)

HL = HLδ(a, f (x))


1
2
(a− f (x))2 |y− f (x) | ≤ δ

δ |a− f (x)| −
1
2
δ2 otherwise

(2)

where 1
2 (a− f (x))2 is the quadratic form of the MSE. It hap-

pens when small error exists or else MAE and δ |a− f (x)|−
1
2δ

2 is a linear form of identified larger value using ‘‘δ ’’
delta parameter which sets the value for MAE and MSE
through number of iterations to have absolute value. Huber
loss computation in (3) lly,

HLδ =

{
(G(s))2 ∀|G(s)

| ≤ δ

2δ
∣∣∣G(s)

∣∣∣ − δ2 ∀

∣∣∣G(s)
∣∣∣ > δ

(3)

By differentiating between quartic and linear, the value of G
is expressed in (4,5)

d
dG

G2
=

d
dG

|G|

For x < 0,

G = −
1
2

(4)

For x > 0

G =
1
2

(5)

To equalize both functions, differentiation was performed to
ensure the junction point of quadratic and linear Huber losses.
Thus, the outlier estimators of the k-means algorithms are
performed using Huber loss functions and provide a strong
bond between the centroid and data points [23].

B. EBiGAN
Enhanced Bidirectional Generative Adversarial Network
(EBiGAN) is an extended version of the BiGAN. An addi-
tional discriminator was integrated with the BiGAN to
differentiate the actual encoded data from the latent space and
ensure the quality of the generated samples. The principle
of EBiGAN is to improve the performance model, provide
an improvised latent space, and stabilize the training of the
generator and encoder. To maintain regularization, a realistic
sample is generated from the generator and encoder, which
are highly reliable for handling noisy data. It comprises
a generator, discriminator, encoder, discriminator one and
loss functions. Objective function of the trained EBiGAN
in (6)

EBiGAN obj = [min(G,E) ,max (D,D1)V (D,D1,G,E)]

(6)

where the V (D,D1,G,E) is defined in (7),

V (D,Dl,G,E) = Ea∼pa/Eb∼pE(·/a)[logD(a, b)]/

× {(logD(a,E(a)) | logD1(E(a), b)}
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+ Eb∼pb
[
Ea∼pG(·|b)[log(1 − D(a, b))]

]
× {log(1 − D(G(b), b))} (7)

where G is the generator, E is the encoder, D is the dis-
criminator and D1 is the discriminator one, a is the real
data; b is the latent space; (a, E(a)) is the encoded sample,
(G(b), and b) are the generated sample and loss functions
are generator loss, discriminator loss and discriminator one
loss, respectively. The latent vectors from the latent space as
input to the generator produce a generated sample, and the
real data to the encoder produces encoded data processed by
the discriminator to separate the actual and generated data.
The D1 has an input from the latent space and an encoded
sample for differentiating the real and fake encoded samples
to correlate the relationship between the latent space and the
encoder. The primary advantage of the discriminator one is
that it improves the quality of encoded samples [24].

C. DNN-PI
The Deep Neural Network comprises an input layer, two
hidden layers, and an output layer with a hyperparameter
learning rate, dropout, and activation function, with Gaussian
optimization. Each layer in the network contained nodes that
were interconnected using weights. The nodes in the input
layer represent features of the input data. The input data to the
hidden layer comprise sequential weights to the node, and the
output layer is the data with weights in the node. Assigning
weights to all nodes of the three layers and adding biases to
the weights, produces flexibility in the model.

However, challenges associated with DNN include over-
fitting, computational complexity, hyperparameter tuning,
and limited transferability. Among these challenges, hyper-
parameter tuning is the most complex. Tuning the DNN
hyperparameters using Bayesian optimization is based on the
Gaussian process optimization (GPyOpt) tool, which also
models the objective function and is trained for several iter-
ations to determine the best hyperparameters. This benefits
from the continuous search space, and the performance of
the model is high. Nevertheless, Bayesian optimization is
challenging for high-dimensional data; the non-convexity and
non-smoothness of the Gaussian process make the model
complicated and discontinuous. This can be solved using
an acquisition function for Bayesian optimization [25]. The
Probability of Improvement (PI) acquisition function for
Bayesian optimization in (8) is proposed for tuning the learn-
ing rate hyperparameter of the DNN to solve non-convex
and non-smooth problems, which are primarily set for high-
dimensional data.

PI (y) = P(f (y)f (Best observed values))

= f µ(y)
−∞ 8

(
f (best) − µ(y)

σ (y)

)
(8)

where PI(y) is the probability of the Improvement acqui-
sition function at point y; f(y) is the function of the true
value of the objective function at y, f (best-observed value)
is the observed value of the objective function, µ (y) is the

mean value provided by the surrogate model, σ (y) is the
standard deviation provided by the surrogate model and φ is
the cumulative normal distribution. The optimization process
was triggered to investigate the location where the surrogate
model indicated a high possibility of improvement over the
present best value via the PI acquisition function.

IV. RESEARCH OBSERVATION
RQ1: How does the improved PCA method handle times-
tamped user activity data points to balance information
retention and computational efficiency for anomaly detection
by insiders in IoT enabled institutions?

RQ2: Incorporating clustering techniques into the IoT
infrastructure influences the accuracy and efficiency of out-
lier detection within the reduced feature space and defines the
impact of the interpretability of identified outliers.

RQ3: How does the proposed data augmentation model
effectively address data imbalance problems, and how does
it prove that the generated adversarial samples are similar to
the actual samples of insider threat data?

RQ4:How canDNN-PI be optimized to enhance the detec-
tion of insider threats and achieve an increased detection rate
while minimizing false alarm rates?

RQ5:State the security provided by the implementation of
the proposed model in real-time infrastructure and its critical
limitations

A. PROPOSED METHODOLOGY
The proposed model is framed as an ITD with a high detec-
tion rate and a minimal false alarm rate. It is composed of
three stages: (1) Extraction of user functionality-based sam-
ples using IPCA and scenario-based clustering using outlier
estimators of K-means, (2) Enhanced Bidirectional GAN
for solving imbalanced data problems and (3) Probability
of Improvement the acquisition function for learning rate
hyperparameter tunning of the DNN model to achieve better
accuracy with minimal false alarm rate. The framework of the
proposed detection model is illustrated in Fig.1.

1) STAGE 1: USER FUNCTIONALITY-BASED SAMPLES USING
IPCA AND SCENARIO-BASED CLUSTERING USING OUTLIER
ESTIMATORS OF K-MEANS CLUSTERING
a: DATASET & PREPROCESSING
IoT enabled institutional log records were collected, which
including user activities with timestamps. Carnegie Mellon
University’s (CMU) Computer Emergency Response Team
(CERT) institutional log records of insider threats [26] were
correlated with the five-layered IoT architecture, as shown in
Fig.2.CMUCERT log records consist of logons, files, emails,
devices, and HTTP. The five layers of IoT architecture are
perception, transport, processing, application and business.
The portable PC in the perception layer holds the records of
devices accessed by users; the transport layer has a gateway
for sending and receiving mail and data; the records of web
services are presented in the processing layer; the user files
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FIGURE 1. Proposed insider threat detection model architecture.

Algorithm 1 Data Preprocessing
Input:CMU CERT r6.1 & 6.2 (logon, device, http, email,
file→ single homogenous file)
Output:Insiders, Non-insiders

Data Preprocessing

Begin
Convert categorical, ordinal → numerical
Ordinal encoding (0, 1, 2, 3, . . . . . . . . . n)
Encoded samples → robust scaling
Robust scaling Rs =

R−Rmedian
Iqr

End

are enabled in the application layer; and the user accessing
records are formatted in the business layer.

The log records were converted into a single homogeneous
file for insider threat detection, that consisted of both cate-
gorical and ordinal values. The initial step of ITD involves
data preprocessing, including data cleaning, data reduction
and transformation. The timestamps are mined in terms of
hour, day _of _week, day_of_ month, month and year and
ordinal encoding is then used to convert all categorical values
into numerical values [27].

b: FEATURE EXTRACTION
Improved Principal Component Analysis (IPCA) was
used as a feature engineering technique to extract user
functionality-based samples and outlier-estimators of the

k-means clustering technique to cluster scenario-based user
functional data within IoT infrastructure. IPCA is a dimen-
sionality reduction technique that reduces large samples to
smaller collections without disturbing the underlying struc-
ture of a dataset. The PCA steps for removing the user
behavior samples are as follows,

Step 1: The ordinally labelled data are scaled using robust
scaling, making the detection model more robust. It was
computed between the median and interquartile range (Iqr)
in (9)

Rs =
R− Rmedian

Iqr
(9)

where Rmedian is the median, and Iqr is the interquartile range
Step 2: Find the covariance matrix for the normalized

data to identify the highly correlated sample. The covariance
matrix is given by (10)

CovaXm = λmXm (10)

whereCovaXm is the covariance matrix, Xm is the eigenvector
with an eigenvalue λm

Step 3: Eigenvalues and eigenvectors of the covariance
matrix are computed. Eigenvectors are defined as the prin-
cipal components of the underlying data structure. The
eigenvectors with a more significant value are the essential
principal components, and those with a small value are the
least critical principal components

Step 4: The number of principal components is selected
based on the Kaiser criterion, which has an eigenvalue as
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FIGURE 2. Log records from five layers of IoT.

Algorithm 2 Feature Extraction - Time based user behavior
sample using IPCA

Begin
Compute Covariance matrix (time stamps, activ-

ity(user))
CovaXm = λmXm
Compute eigen values and eigen vectors
eig val → AX = λX &
eig vect → (A− λI )X = 0
eig val >1 (Kaiser Criterion) // to find no. of
principal components

find the largest principal component (user
behavior samples) // reduce dimensionality//
ignore the smallest eigenvectors

End

Algorithm 3 Clustering-Outlier resistant k-means clustering
Begin

K-means clustering
Initialize centroid C // as scenario (IT admin)//Select
k
Find distance between centroid and user //centroid as
one scenario & user who are belongs to the scenario//
Compute Euclidean distance

ED =

√∑n
x=1 (ax − bx)2

Cover nearby user with same scenario as cluster
Fix iteration point
Round as per iteration with centroid
Form cluster//once reached the iterations//

End

greater than one for each attribute. This holds factors which
have more variance and ignores model overfitting

Algorithm 4 Data augmentation - EBiGAN
Begin
G (w, b), D (w, b), E (w, b), D1(w,b)
For Training
iteration i → real data = sample real data_(batch) ()

latent space = sample latent space LSs ()
encoded data= encoded Erd (real data (batch))
generate attack sample Gas(eLSs)

dis(1) = Erd (LSs())
Dloss = -log [Dis (Erd )-log (1-Dis (Gas)]
Gloss =-log (Dis (Erd(LSs))
Eloss = || LS-En(Ge(LSs))||2

/∗ process Dloss, Gloss, Elossparameter update ∗/
Proceed iteration
End

Step 5: The feature vector matrix is constructed using
larger principal component values, and smaller principal
component values are neglected to reduce data dimen-
sionality without changing the underlying structure of the
data

Step 6: Coordinate the standard data to the principal com-
ponents by multiplying the transpose standard matrix by
the feature sample matrices [28]. Once dimensionality is
reduced, the outlier estimator of k means is applied to group
similar samples. The value of k was determined based on five
different scenarios of the dataset [29].

2) STAGE 2: ENHANCED BIDIRECTIONAL GAN FOR SOLVING
THE IMBALANCED DATA PROBLEM
a: DATA AUGMENTATION (EBIGAN)
The EBiGAN structure comprises a generator, discrimina-
tor, encoder and discriminator one with loss functions. The
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FIGURE 3. EBiGAN architecture.

TABLE 1. Computation of probability of improvement acquisition function.

latent space contains random noise, which is converted into
latent vectors and forwarded to the generator that produces
adversarial samples generated in Layer 1. The encoder inputs
the actual data and delivers the encoded data in layer 2. The
discriminator separates the actual samples from the generated
models and encoded samples, which are represented by a
combination of both layers [30]. Then, the discriminator one
has concatenated input from the encoded data and latent space
samples to evaluate the correspondence between the data, and
it defines how the encoder performs the mapping of actual
data into latent space, as shown in Fig.3. shows the EBiGAN
architecture. The discriminator one ensures the quality of the
encoded samples.

3) STAGE 3: PROBABILITY OF IMPROVEMENT (PI) FOR
HYPERPARAMETER TUNING OF DEEP NEURAL NETWORK
FOR ITD (DNN-PI)
The PI acquisition function of Bayesian optimization is
used to tune the learning rate hyperparameter of the
DNN to improve the performance while detecting insider
threats in IoT-enabled institutions. The main challenges
in Bayesian optimization for DNN hyperparameter tuning
are the non-convexity and non-smoothness of the objective
function, which affects the performance of the DNN when
working with various datasets.

The PI acquisition function enumerates the probability of
validation accuracy and loss of learning rate to demonstrate
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Algorithm 5 Insider Threat Detection (DNN-PI)
Input:(Balanced dataset + (training dataset (80%) + val-
idation dataset (10%)) & Testing dataset (10%)
Output:Binary classification (0→ malicious; 1→ non-
malicious)

Begin
Initialize DNN hyperparameters
Frame DNN layers
Input layer (IL1) → { (w1, b1) ⇒ [ IL1.size,

HL1.size] Hidden layer
HL1

HL2

}
→ { (w2,b2) ⇒

[HL1.size, HL2.size]}
Output layer (OL1) → { (w3, b3) ⇒ [ HL2.size,

HL2.size]}
Initialize training

Update forward propagation
for epoch (200)
for batch size (64)
w1, b1
w2, b2
w3, b3
Compute cross entropy loss
Deploy Back propagation

With stochastic gradient descent update w, b
Compute model performance
Initialize GpyOpt
Set up iterations (i=5)
Hyperparameter (learning rate)
Obj.fun (val.acc,loss)
Updated (lra) ⇒Bayesian opt (evaluations (PI))
Fine-tune DNN model with updated hyperparameter
Train & Test updated DNN⇒ Detect insider
Classify 0 (Malicious)& 1(non-malicious)

Update DNN-PI performance
End

performance improvement in the present observed value.
The Gaussian process, which is a surrogate model of
Bayesian optimization, was implemented in the DNN using
the GPyOpt tool of the Python library [31]. The aim of
DNN-PI is to obtain the best learning rate to improve the per-
formance of a DNN in detecting insider threats in IoT-enabled
institutional log records [32].
The steps in Table 1 were used to compute the PI acqui-

sition function for the DNN learning rate to maximize
validation accuracy and minimize loss values. Thus, the steps
defined in the proposed model were used to obtain learning
rate of DNN for insider threat detection in IoT-enabled insti-
tutional log records. In Bayesian optimization, the objective
function is enhanced using the probabilistic model to obtain
the best solution in which the acquisition function improves
the accuracy and decreases the loss reduction of the objective
function in the holds a new set of hyperparameters for the
objective function evaluation, and the data points are added to

TABLE 2. Attributes of cmu cert log records in IoT enabled institutions.

TABLE 3. Preprocessed timestamps attributes and its description.

the DNNmodel based on iterations and the model is updated.
Finally, the fine-tuned optimal learning rate hyperparameter
is determined. The model was then trained and validated on
an insider threat dataset to achieve better accuracy.

V. EXPERIMENTATION AND RESULTS
A. EXPERIMENTAL SETUP
The proposed model was implemented using Python 3.5 with
the Keras library and TensorFlow. The experiments are car-
ried out in an Intel core i5 processor with 8 GB RAM, and
64-bit processor in the Windows 10 operating system, and
the dataset used is CMU CERT r6.1 & r6.2 dataset.

B. DATASET DESCRIPTION
The CMU CERT insider threat dataset was released from r1
to r6.2. All six releases consisted of the following folders:
logon, device, email, HTTP, psychometric and file. User
activities were recorded in terms of id, userid, timestamps,
PC number, and activity, which are common attributes in all
log records. The proposed model was implemented in r6.1 &
r6.2 of five scenarios with 3995 users and five insiders. The
releases cover the LDAP for 17 months from 01-11-2009
to 01-05-2011, including the attributes of user designation,
projects, business, functional, department, and team. The
features of all the log records are listed in Table 2. The
log records of each release were constructed as a single
homogenous file and then separated into training, testing and
validation sets for insider threat detection.

C. DATA PREPROCESSING
The single homogenous file is pre-processed by uproot-
ing the timestamps in the order of hour, day_of_week,
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FIGURE 4. Kaiser criterion to determine number of principal components.

day_of_month, month and year. A description of the extri-
cated features of the timestamps is provided in Table 3.
Ordinal encoding is then applied to attributes id, user-id, pc,
and activity, which converts the data from hour to years of
uprooted timestamps.

D. RESEARCH OBSERVATIONS
RQ1:How does the improved PCA method handle
timestamped user functional data points to balance
information retention and computational efficiency for
anomaly detection of insiders in IoT infrastructure-based
institutions?

IPCA is used as a feature engineering technique to extract
user functionality-based samples to reduce the dimensional-
ity of the data deprived of the original data. Robust scaling
is computed using time, functionality units and user activ-
ity to normalize, centralize and notify dissimilar functions
of a user’s data, which makes it less sensitive to out-
liers. From the obtained time-dependent user functionality of
centralized data, a covariancematrix is constructed and eigen-
value decomposition is computed by taking the eigenvalue
and eigenvector with time and the user functionality unit.
The number of principal components was determined using
Kaiser criterion. When an eigenvalue is more significant than
one, the corresponding attributes are retained as principal
components. Here, the number of principal components of
the insider threat data is declared as two. The user functional
unit and user id are taken as the two principal components.
The computation of the number of principal components
performed by the eigenvalue and principal component index
is shown in Fig.4.

The corresponding larger eigenvector with its eigenvalue
is marked as an important principal component, and small
eigenvectors, which are not included for further processing,
are ignored. The functional units of the user are larger eigen-
vectors of the principal components, without disturbing the

underlying structure of the data. The interpretation of the
eigenvalue denotes the time duration of the user’s activity
and, depending on the principal component of the user’s
functional unit, the eigenvector characterizes the route of
the user’s functionality. The principal components extract
important user functionality-based samples, ensuring that the
improved PCA can handle balanced information retention.
The performance of eigenvalue decomposition and IPCA,
especially in CMU data, processes the data dependent on the
‘‘functional_units’’ attribute of insider threat test data, prov-
ing the data scalability and computational efficiency within
the IoT infrastructure.

RQ2: Incorporating clustering techniques in IoT
infrastructure influences the accuracy and efficiency of
outlier detection within the reduced feature space and
defines the impact of identified outlier’s interpretability

Outlier estimators of k-means clustering were applied to
group the extracted time-user functionality-based samples
depending on the scenarios listed in Table 4. Owing to the
former acquaintance in the dataset, the five specific scenarios
of insider threat data involve clustering the samples. Ini-
tializing the value of k=5 indicates the number of clusters
to be formed in the extracted user functionality samples
depending on the scenarios of the insider threat dataset. Thus,
the implemented clustering technique ensures the accuracy
and efficiency of insider detection within the reduced fea-
ture space and defines the impact of the interpretability of
identified outliers. Fig.5. represents the IPCA with outlier
estimators of K-means for the samples of r6.1 and r6.2, where
the IPCA shows the extraction of the user’s functionality-
based samples, which achieves dimensionality reduction and
k=5 is represented as the centroid (red color) of each cluster
that indicates the scenarios. It defines the user’s functional
data related to a particular scenario that falls within the cluster
of insider threats within the institutions of IoT infrastruc-
ture. For instance, scenario S1 as a centroid and joining
all the user’s functional data of S1 as a single group is
performed iteratively by computing the Euclidean distance
between users. The cluster S1 is formed by iteration, and
continues until the nearest user is formed. The further cluster
formation procedure of S1 continued for the remaining four
scenarios, S2, S3, S4, and S5. Scenario-based user functional
data clustering identifies the intrinsic form and structure of
insider threat data in a practical and understandable manner.
Scenario-based clustering in the obtained user functionality
indicated a reduced feature space with important outlier data.
Identifying user functionality with different scenario-based
data distributions in the feature space provides to a simple
method for further insider detection analysis within the IoT
infrastructure.

Outlier-resistant k-means clustering for grouping the
scenarios-based user functionality sample confirms the iden-
tification of outliers through the scenarios of each cluster with
its local characteristics, which can improve the detection rate
and accuracy of the insider threat detection model.Scenario-
based clustering has increased the efficiency of insider
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TABLE 4. IoT scenarios for log records and its description.

FIGURE 5. IPCA with outlier estimators of K-means clustering.

detection by reducing the time complexity and dimensionality
of user functionality.

RQ3: How the proposed Data augmentation model
effectively address the data imbalance problems and how
does it prove the generated adversarial samples are simi-
lar to the real samples of insider threat data?

User functionality-based samples ensure that the insider
threat dataset is highly imbalanced, with most normal sam-
ples and a minority of malicious samples. In this research,
the Enhanced Bidirectional Generative Adversarial Network
(EBiGAN) data augmentation technique is used to gener-
ate malicious samples to generate a balanced dataset that
improves the performance while detecting insiders within

TABLE 5. Parameters of EBiGAN.

the IoT infrastructure. The importance of EBiGAN lies in
defining the quality of the encoded data from actual data to
demonstrate the stability and flexibility of the model. The
parameters of EBiGAN are listed in Table 5. The extracted
user-functionality-based samples were partitioned into 80%
training,10% validation, and 10% testing samples. It con-
tains a majority of non-malicious samples and a minority
of malicious samples. Training samples are present in the
discriminator and encoder to solve the class imbalance prob-
lem. The latent space of the EBiGAN maps the latent vector
onto the generator, which then generates random adversarial
samples. The encoder maps the input data to the discriminator
from the extracted user functionality samples, which differen-
tiates the generated samples from the functional data of user.
The discriminator one was used to map the latent samples and
encoded user functionality samples to determine the quality
of the encoded samples.

The generated random adversarial samples of minority
class balance the user’s functional data of training samples.
Balanced training and validation data are incorporated into
the insider threat detection model. The testing data were
directly forwarded to the DNN-PI detection model. The col-
lected samples of each phase are coordinated to the next stage
of the proposed model (i.e.) the extracted user functionality
samples of phase 1 are taken as input to the data augmentation
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FIGURE 6. Accuracy Vs Epochs of proposed model.

model of EBiGAN in phase 2, and the balanced training
samples of phase 2 are given as input to the DNN-PI of the
insider threat detection model.

RQ4: How can DNN-PI be optimized to enhance the
detection of insider threats and achieve an increased
detection rate while minimizing false alarm rates?

A Deep Neural Network with Probability of Improvement
(DNN-PI) was used to detect insider threats in the balanced
insider threat data of IoT enabled institutions. In DNN-PI, the
PI acquisition function of Bayesian optimization fine-tunes
the learning rate hyperparameter of the DNN to improve the
performance of the model. The structure of DNN-PI is com-
posed of one input layer with three neurons, two hidden layers
where the first layer has five neurons; the second layer has
four neurons, and one output layer has two neurons. The input
layer holds balanced training, validation, and original testing
samples. Two-batch normalization hidden layers are used to
convert the user’s functional data in the form of anomaly
identification. The user’s functional data of hidden layers is
fed into the output layer to identify the anomaly. It performs
binary classification to detect insiders by classifying the sam-
ples as malicious or non-malicious. The hyperparameters of
the DNN-PI were a learning rate lr of 0.002, small step size
resulting in less convergence with a batch size of 64 for mem-
ory and processor speed, and L2 regularization enhancing the
loss function with 200 epochs. It uses the Gaussian process
as a surrogate model for the objective function (validation
accuracy and loss) of the learning rate hyperparameter tuning
in both training and testing models.

The fine-tuned DNN-PI model was trained to detect the
insider threat in the extracted user functionality-based sam-
ples, achieving an increased detection rate and a minimized
false alarm rate. The accuracy of the detection model reaches
a maximum of 0.98 in 200 epochs, while training and validat-
ing are shown in Fig.6.

The loss of the detection model reaches 0.03 in validation
and 0.04 in training for 200 epochs in Fig.6.The proposed

FIGURE 7. Loss Vs Epochs of proposed model.

detection model has improved accuracy and reduced loss
owing to the presence of an acquisition function in the Gaus-
sian process with parallel optimization settings. This ensured
that the proposed detection model had a greater detection
accuracy with fewer losses for 200 epochs. The importance of
PI during optimization is a sense of balance between explo-
ration and exploitation for the learning rate in the detection
of insider threats.

RQ5: State the security provided by the implementa-
tion of the proposedmodel in real-time infrastructure and
its critical limitation

When the proposed model is implemented in different
types of IoT infrastructure institutions, it secures the environ-
ments from unauthorized access to devices and mail, physi-
cally interfering with the IoT devices, providing high security
while configuring the access controls, and avoiding negli-
gent insiders. However, while deploying the proposed model
faces significant limitations, such as noise robustness and
computational complexity, it provides an enhanced secure
IoT infrastructure to institutions. The proposed model only
concentrates on securing institutions from insider threats,
although it is not aware of other external cyber attacks.

E. DISCUSSION
The performance of the proposed detectionmodel is validated
in terms of accuracy, precision, and detection rate with a rel-
atively minimal false alarm rate in (11-15). The effectiveness
of the proposed model depends on the efficiency, and, hyper-
parameter selection of the surrogate model. The exploration
phase of various learning rates and exploitation was balanced
to improve the performance of the DNN model by deploying
the acquisition function of Bayesian optimization.

Accuracy =
TP+ TN

(TP+ TN + FP+ FN )
(11)

Precision =
TP

(TP+ FP)
(12)

Detection Rate (DR) =
TP

(TP+ FN )
(13)
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TABLE 6. Comparing the performance of proposed model with existing insider threat detection models.

FIGURE 8. Accuracy, precision, Detection rate results of proposed model compared with existing model.

False Positive Rate (FPR) =
FP

(TN + FP)
(14)

False Negative Rate (FNR) =
FN

(FN + TP)
(15)

The proposed detection model was compared with existing
deep learning models such as the Long Short-Term Memory-
Autoencoder [27], which had increased FNR (0.07) affects
the false alarm rate, Adaptive Synthetic sampling technique
based Deep Neural Network (ADASYN-DNN) [9] has high
false alarm rate (0.06) of FPR and (0.08) of FNR due to
less threshold value of model, Recurrent Neural Network
(RNN) [33] includes Gated Recurrent unit classifier as binary
classifier has (0.902) as DR for imbalanced data fails to detect
the accurate insiders. Conditional Wasserstein Generative

Adversarial Network-Gradient PenaltywithOne-dimensional
Convolutional Neural Network (CWGAN-GP -1DCNN) [34]
had reached the maximum false alarm rate (0.04) of FPR
and (0.05) of FNR, however, the obtained result had less
DR. The Conditional Generative Adversarial Network with
One-dimensional convolutional neural network [35] had a
lower performance for DR (0.875) for balanced data. The
hybrid learning model is composed of Bidirectional LSTM
for feature extraction, Feed Forward Artificial Neural Net-
work for feature selection, and Support Vector Machine
for insider detection (BiLSTM-FFANN-SVM) [36], which
achieved a lower DR (0.844), and the residual hybrid network
with a graph convolutional network combined with convo-
lutional neural network (Reshybnet-GCN-CNN) [37] which
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FIGURE 9. False alarm rate results of proposed model compared with
existing models.

achieved the DR (0.928).However, the computation of the
false alarm rate was not determined. The bidirectional LSTM
for dimensionality reduction, hypergraph to achieve less
FPR, and cascaded autoencoder to detect insider (BiLSTM-
HG-CAE) [38] achieved a lower FPR (0.05), although it
affected the model training speed. The similarity factor-based
principal component analysis integrated with the Generative
Adversarial Network (SPCAGAN) and Hybrid Bayesian
Neural Network model [39] achieved a lower DR (0.695).
The insider threat detection model of Bidirectional Encoder
Representations from transformers with BiLSTM [40] had
reached (0.915) DR; however, the data are purely imbalanced,
which affects the performance. Table 6 lists the overall
comparison of the proposed model, which was ensured by
achieving a high DR with a low false alarm rate. The existing
models are applied to the insider threat dataset of CMUCERT
releases of r4.2 and r5.2; however, the proposed model is
implemented in the latest releases of r6.1 and r6.2, which
cover all five scenarios of a benchmark dataset.The pro-
posed detection model had better accuracy (0.988), precision
(0.978), and DR (0.967) for balanced insider data. Generally,
accuracy defines the complete perfection of the proposed
model while detecting the insider, and precision holds pos-
itive prediction values of accuracy that ignore false positive
errors. DR is more significant than precision and recognizes
the positive occurrences of existing insider threat detection
neural network models, as shown in Fig.8. It achieves the
minimum false alarm rate by analysing the FPR, which
wrongly identifies the negative occurrences as positive occur-
rences in the rest of the compared existing insider threat
detection methods with the proposed model shown in Fig.8.
In insider threat detection, the FPR 0.03 is predicted owing
to the fine-tuning of the DNN hyperparameter, where the
model identifies the normal samples as malicious, as shown
in Table 6 and depicted in Fig.9.
The proposed data augmentation technique of EBiGAN

was compared with the one oversampling method called the
Synthetic Minority Oversampling Technique (SMOTE) [10].
It produces synthetic samples of the minority class in the

TABLE 7. Comparison of smote and ebigan with an classifier oF DNN-PI.

insider threat data. This was carried out by utterance among
malicious samples of the minority class. The SMOTE pro-
cedure computes the Euclidean distance to find the nearest
neighbors within the minority class. It produces synthetic
samples, which are replicas of malicious samples and join-
ing the samples with their neighbors. However, SMOTE has
some significant complications regarding the insider threat
dataset because it generates a smaller number of samples,
which does not cover all the scenarios of the dataset, due
to linear utterance, the generated sample does not have the
resemblance of the original dataset and the major complex in
handling high dimensional data because of identification of
nearest neighbors.

Based on imbalanced data ratio (IDR) values in (16), as the
presence of samples in the majority of the normal class
divided by the presence of samples in the minority class.
SMOTE and EBiGAN are compared, and the performance
of the classifier model ensures the identification of a better
model.

IDR =
Non−MaliciousS+

MaliciousS−
(16)

where S+ is the majority class and S− is the minority class.
In general, the majority class is always a non-malicious sam-
ple, and theminority class is malicious sample.When the IDR
value is greater than or equal to one, there exist high level of
class imbalance problem. Table 7 compares the four IDR val-
ues of SMOTE and EBiGANwith the proposed classification
model. The classified IDR ratios (80:20, 70:30,60:40, 50:50)
compute the accuracy and DR as performance metrics for the
proposed model with SMOTE- generated samples.

The imbalanced data of the CMU CERT insider threat
dataset was balanced using different data augmentation tech-
niques. Recently, GAN [10] and CWGAN-GP [34] have to
balance an insider threat dataset with a neural network model
to detect insider threats [10] proposed a deep adversarial
insider threat detection framework (DAITD), that includes
the LSTM-autoencoder and GAN, which is a DAITD frame-
work comprising three phases. In phase 1, the user behavior
series is encoded into the LSTM - autoencoder, which shows
critical user behavior representations. GAN was applied to
analyze and generate anomalous user behavior samples to
balance the imbalanced dataset. Then, the real and balanced
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FIGURE 10. Proposed EBiGAN with existing data augmentation
techniques used for insider threat data.

datasets are forwarded to the classifier to detect insider threats
and classify malicious and non-malicious users. However,
the performance of GAN poses instability and mode collapse
problem while generating data. Reference [34] developed a
conditionalized Wasserstein GAN with a gradient penalty for
synthetically generating attack samples and deployed amulti-
class classifier for insider threat detection. When the samples
are generatedwith CWGAN-GP, non-targeted test time attack
predictions are performed using a multiclass classifier model
to detect insiders. However, the performance of the proposed
model is computationally complex. To overcome the chal-
lenges of data augmentation and existing detection models
for insider threats, the proposed detection model has better
stability and improved generalizability. EBiGAN ensures that
the generated adversarial samples improve the performance
of the models and defines the quality of the real and encoded
samples compared to GAN and CWGAN- GP.Fig.10. shows
that EBiGAN is more accurate than in comparison with other
GAN techniques.

F. ABLATION STUDY
To prove the modules of the proposed detection model,
each module of the proposed model was evaluated for each
scenario listed in Table 4 in terms of performance metrics
namely accuracy, precision and detection rate DR. The four
consecutive sets of experiments are shown in Table 8.

• A simple DNN is used to detect the anomalous behavior
of insiders in the IoT infrastructure. This resulted in
model overfitting and a lower overall accuracy of 0.75.

• To ignore the model overfitting, the data augmentation
technique of BiGAN is used to balance the skewed data,
which provides better results with an accuracy of 0.82 in
insider threat detection. However, it is challenging to
converge BiGAN and it cannot determine the quality of
encoded and generated samples.

• The enhanced BiGAN is about the additional discrimi-
nator added to the BiGAN structure to notify the quality

TABLE 8. Abalation study of proposed model based on scenarios of
insider threat data.

of the generated samples, which increases the accuracy
by 0.86 when detecting the insider threat. However, the
overall performance of the insider threat detectionmodel
was less.

• To increase the overall performance and data qual-
ity, EBiGAN was augmented with the probability of
improvement (PI) acquisition function of the Bayesian
optimized DNN to detect insiders within IoT enabled
institutions.

VI. CONCLUSION
In the IoT infrastructure, insider threat detection is chal-
lenging because authorized employees access sensitive data
within institutions. Cybersecurity researchers have devel-
oped effective ITD models using neural networks to protect
IoT enabled institutions. However, the existing ITD models
have complications when working with a benchmark insider
dataset, such as data imbalance problems and confrontation,
to maintain the model’s generalizability and interpretability.
The issues discussed above are addressed by the proposed
detection model to detect insider threats in the institutional
log records of CMU CERT. The proposed detection model
comprises three modules: IPCA for extracting the impor-
tant user functionality-based samples and outlier estimators
of k-means clustering for grouping the scenario-based user
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functionality samples to achieve dimensionality reduction
and EBiGAN data augmentation to avoid a skewed class
distribution in the dataset and ensure the encoded quality
of the generated adversarial samples. The DNN-PI iden-
tifies the insiders of the IoT infrastructure and improves
the overall performance of the model by achieving a high
detection rate and minimal false alarm rate. The proposed
model works well for the standard insider threat data of
IoT enabled institutions. However, the model’s limitations
remain: it is difficult to adapt to different environments,
it requires infeasible resources, and it lacks interpretability in
real-time environment. The model ensures enhanced security
of infrastructure although it faces complexity. In the future,
the proposed model can be employed to generate samples and
detect suspicious activities in other real-time scenarios.
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