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ABSTRACT Printed mathematical expression recognition (MER) models are usually trained and tested
using LaTeX-generated mathematical expressions (MEs) as input and the LaTeX source code as ground
truth. As the same ME can be generated by various different LaTeX source codes, this leads to unwanted
variations in the ground truth data that bias test performance results and hinder efficient learning. In addition,
the use of only one font to generate the MEs heavily limits the generalization of the reported results to
realistic scenarios. We propose a data-centric approach to overcome this problem, and present convincing
experimental results: Our main contribution is an enhanced LaTeX normalization to map any LaTeX ME
to a canonical form. Based on this process, we developed an improved version of the benchmark dataset
im2latex-100k, featuring 30 fonts instead of one. Second, we introduce the real-world dataset realFormula,
with MEs extracted from papers. Third, we developed a MER model, MathNet, based on a convolutional
vision transformer, with superior results on all four test sets (im2latex-100k, im2latexv2, realFormula, and
InftyMDB-1), outperforming the previous state of the art by up to 88.3%.

INDEX TERMS Data-centric AI, deep learning, labeling, document analysis, mathematical expression
recognition, pattern recognition.

I. INTRODUCTION
Recognizing mathematical expressions (MEs) in images
and converting them into a machine-understandable format
is known as mathematical expression recognition (MER).
Creating a dependable MER would unlock possibilities for
producing innovative tools, such as the ability to digitize,
search, extract, and enhance the accessibility of mathematical
equations in documents [1].

However, despite recent progress in the field of MER,
it remains a challenge for two main reasons. Firstly, MEs
contain many symbols, i.e., multiple alphabets, numerals,
operators, and parentheses. Secondly, structural information
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(for example, nested superscripts and subscripts) is crucial for
correctly recognizing MEs [2], [3].

In addition, we have identified a third challenging aspect
that needs to be addressed. The machine-understandable
format used in many MER models can cause unwanted
variation. For instance, LaTeX is a popular format used by
many MER models [4]. However, LaTeX allows authors to
write the same ME with different LaTeX code as shown
in Figure 1. Accordingly, many LaTeX commands are
redundant or can be neglected without altering the canonical
form or even without changing the visual appearance of an
ME. For example, we observed that of the 500 different
tokens in the printed MER benchmark dataset im2latex-100k
[5], 174 tokens or 34.8% of the vocabulary is redundant
or does not influence the canonical form of the ME. This
leads to detrimental variability in the training data and
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FIGURE 1. An example of an ME image that can be produced with more
than one LaTeX code. While the two presented LaTeX codes are quite
different (22.2% Edit score), they create the same image.

therefore to inefficient learning, excessive training data
needs, and, finally, suboptimal recognition performance due
to unresolved ambiguity in the model [6], [7]. Finally, the use
of a single font for MEs in im2latex-100k heavily limits the
generalization of performance results reported on this data set
to realistic scenarios.

Reducing this variability is not only to reduce unwanted
biases in test scores but is expected to have a high impact
on learning quality of respective models and, hence, their
performance. Recently, methods have emerged under the
term data-centric AI that systematically engineer the data
in order to improve overall system quality [8], [9]. The
methodology is characterized by making the data a first-class
citizen in the development process of any machine-learning-
based system, thus shifting the focus away from merely
manipulating the model architecture [10]. In this paper,
we adopt a data-centric approach by proposing a systematic
process to map an ME to a canonical LaTeX representation.
Since we develop our methods to make MEs in PDFs
accessible, we focus in this work on printed MER, but
our approaches are also applicable to handwritten MEs and
we expect similar benefits for complex handwritten MEs.
We present the following major contributions: 1) A LaTeX
normalization process that maps LaTeX MEs to a canonical
form. 2) Im2latexv2, an upgraded version of im2latex-100k
with multiple fonts and a canonical ground truth (GT).
3) realFormula, a real-world test set for MER. 4) Our MER
model MathNet which outperforms the previous state of the
art on all four test sets by up to 88.3%.

The remainder of this paper is structured as follows: we
present related work in Section II. We discuss the issues
with using LaTeX for MER in Section III. We introduce
the datasets we have developed, the metrics used, and our
printed-MER model in Section IV. We will then present
the results of our experiments in Section V and discuss
them in Section VI. Finally, we offer concluding remarks in
Section VII.

II. RELATED WORK
MER has been a research task for over 50 years [11], and it
still remains open. Although the focus of the MER research

field has shifted to the recognition of online and offline
handwritten MEs in the last years, research on printed MEs
is still important to make it applicable in practice. The
two fields of MER research overlap, but there are also two
major differences. First, the offline handwritten MER has
the extra challenge of touching symbols, which makes it
harder to separate them [3], [4]. Second, the characteristics
of the benchmark datasets are different. Handwritten (offline)
MER uses the CROHME datasets [12] as the benchmark,
with a vocabulary of 142 tokens and, on average, 18 tokens
per ME. On the other hand, the printed MER benchmark
dataset im2latex-100k [5] has a much larger vocabulary of
500 tokens, which is 3.5 times greater than the CROHME
dataset. Additionally, on average, each ME in the im2latex-
100k dataset has 2.8 times as much tokens.

However, both MER systems comprise three stages:
symbol segmentation, symbol recognition, and 2D structure
analysis [4]. Classic approaches, as the Infty system [13], [14]
solve these stages separately, whereas end-to-end approaches
address them all at once. With recent progress in deep
learning, end-to-end approaches with an encoder-decoder
structure have become prevalent [15]. These systems directly
map input images to a semantic text representation, e.g.,
LaTeX. In general, the encoder is based on convolutional
layers to calculate features of the image. The decoder gen-
erally uses LSTMs [16], GRUs [17], or Transformers [18],
which translate the feature inputs step-by-step into a token
sequence [4].
WYGIWYS, introduced by Deng et al. [15], is one of the

first end-to-end MER systems. It calculates its features using
a convolutional network stacked with an RNN row encoder.
The token sequence is predicted by an RNN decoder with
visual attention stacked with a classifier layer. Because of the
end-to-end approach, large datasets are required for training.
Therefore, the authors introduced im2latex-100k [5], which is
still the classic benchmark dataset in printed MER.

Cho et al. [19] found that the performance of the
encoder-decoder network for text generation declines as
the length of the sentence increases. This is particularly
relevant for ME sequences, which are usually longer than
sentences used in image captioning. As a result, many MER
models focus on enhancing the long-distance dependence
of the decoder. Various approaches have been developed to
overcome this issue.

Bian et al. [20] developed a bi-directional mutual learning
network based on attention aggregation. The network uses
two encoders, one that processes the input left-to-right and
another that processes it right-to-left. They demonstrated
that this structure helps alleviate the issue of long-range
dependencies in RNNs. Li et al. [21] introduced a method
for counting symbols in handwritten MER. Their weakly
supervised multi-scale counting module can be combined
with most encoder-decoder frameworks, and it improves the
model’s robustness when the ME is complex and/or long.
However, it does not solve the problem with variations in
writing styles. Yan et al. [22] developed ConvMath, a printed
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MER system based entirely on convolutions. They introduced
a convolutional decoder to better detect the 2D relation of
MEs.Markazemy et al. [23] introduced a novel reinforcement
learning module to process the decoder output and refine it.

Apart from focusing on the decoder, various elements
of MER have been researched. Wang et al. [24] aimed
to enhance the encoder by incorporating DenseNet into
printed MER. Li et al. [25] introduced scale augmentation
and drop attention to handwritten MER to improve the
model performance for various ME scales. Peng et al. [26]
introduced Graph Neural Network in printedMER. However,
representing anME as a graph became popular in handwritten
MER [27], but not in printed MER [4]. Singh [28] inves-
tigated the visual attention in printed MER and developed
two new datasets based on im2latex-100k. Furthermore, there
have been advancements in the development of end-to-end
systems for scientific documents that can recognize not only
MEs but also text and tables. However, the current leading
end-to-end system from Blecher et al. [29] has an Edit
distance of only 87.2%, which is lower than the best current
MER systems.

However, to the best of our knowledge, the influence of
undesired variations in the GT has not yet been investigated
in handwritten nor printed MER.

III. DETRIMENTAL LATEX VARIATIONS
MEs have a two-dimensional structure which is different
from the one-dimensional structure of natural language text.
Therefore, a markup language, e.g. LaTeX, is needed to
convert MEs into a natural language description. LaTeX
is widely used in the scientific community for writing
documents. Hence, many MEs in LaTeX exist, making it
appealing for printed MER. The widely used benchmark
dataset im2latex-100k also uses LaTeX to create the MEs for
the training and test datasets. However, we discovered two
problematic issues with this dataset:

1) Our analysis of the dataset revealed that the whole
im2latex-100k dataset was created with a single font.
This, on the one hand, drastically limitates the generali-
sation capability of the performance results reported on
this dataset to realistic scenarios whereMEs are printed
in various different font styles, normally different than
the one used for training the systems. This effect was
revealed in preliminary experiments when we observed
a significant decrease in the performance of all tested
systems by changing the font of the test set. This effect
is also apparent when we compare the performance
results of the baseline models of im2latex-100k and
im2latexv2 (refer to Tables 4 and 5).
To address this limitation, all MEs of the im2latex-100k
dataset were generated in many different fonts.

2) We further discovered another detrimental effect in
the GT of im2latex-100k: As the GT of the MEs in
im2latex-100k was taken from real papers written by
different authors, there was a large variation of the
GT for semantically identical MEs, as illustrated in

Figure 1. These variations have nothing to do with
improved generalization capabilities to be learned or
shown. To the contrary: First, it reduces the validity
of performance result comparisons of the different
systems if this occurs in the test dataset. Second,
it is detrimental for the learning of MER systems,
if it occurs in the training dataset (by teaching the
model that the same input has ambiguous output,
leading to reduced learning [30]). In order to minimize
these meaningless variations in the GT of im2latex-
100k, we adopted a data-centric approach to develop a
new LaTeX normalization procedure. The data-centric
approach involves three steps. First, the model is
trained using the existing training data. Second, the
performance of the trained model is evaluated to
identify any error patterns. Third, these error patterns
are utilized to improve the training dataset (in our case
by adjusting the LaTeX normalization).

These steps are repeated until no more error patterns can be
detected. During this iterative process, we have identified six
problematic aspects in the GT of the im2latex-100k dataset:
mathematical fonts, white spaces, curly brackets, sub- and
superscript order, tokens, and arrays. These problematic
aspects together with our proposed solutions are described in
Sections III-A - III-F. We designed our normalization process
to address these issues and reduce undesired variations.
The normalization algorithm is publicly accessible via
GitHub [31].

A. MATHEMATICAL FONTS
Using different mathematical fonts, such as bold or double
bold, to indicate vectors or spaces can be challenging
for MER. Recognizing these mathematical fonts is simple
if only one font is used for all MEs, but it becomes
challenging with multiple fonts, as shown in Figure 2.
Additionally, it can be challenging to create a dataset with
mathematical fonts, as not all mathematical font commands
work with every font, i.e., only 16 out of 59 fonts respond to
the three basic mathematical font commands (\mathcal,
\mathbb, and \boldsymbol) for all symbols. As a
result, the collected ME can contain a mathematical font
command that does not influence the compiled image
of the ME. To avoid this, we decided to remove all
mathematical font commands, which is a simplification of
the task but reduces the number of labeling errors in the
GT.

B. WHITE SPACES
In LaTeX, authors can adjust the white space between two
symbols using various commands (e.g., \quad). However,
these commands are primarily defined relative to the font size,
making it essential for the model to accurately detect the font
size, which is influenced by the font. Additionally, multiple
combinations of white space commands exist for each relative
white space length. This makes it impossible for the model
to predict the white space commands when multiple fonts
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FIGURE 2. The ME: A = \mathcal{A} = \mathbb{A} = \boldsymbol{A}
generated with the 16 fonts, which can render all three basic
mathematical fonts.

are utilized, and the white space commands do not follow
a clear pattern. Since the white space does not impact the
canonical form of an ME, we decided to remove all white
space commands from the GT.

C. CURLY BRACKETS
In LaTeX, curly brackets are used to define the scope of
LaTeX commands. As a result, 33% of all tokens in im2latex-
100k are curly brackets. However, the issue with curly
brackets is that they are often optional and can be added
without changing the visual appearance of a mathematical
expression (e.g., a_3, a_{3}, and {a_{3}} are visually
identical). Therefore, we introduced a precise definition of
which curly brackets are required and which are not. This
reduces ambiguity and the number of curly brackets in the
GT.

D. SUB- AND SUPERSCRIPT ORDER
Symbols can have sub- and superscripts but the order in
LaTeX code is irrelevant for the visual appearance of the ME.
If multiple sub- and superscripts (e.g. a^{b}_{c}^{d})
exist, we decided to combine these to one subscript and
one superscript (e.g. a_{c}^{bd}) to reduce ambiguity
and the number of tokens. Although this normalization steps
may result in errors in certain circumstances, it typically
minimizes undesired variations of the GT.

E. TOKENS
We identified three issues on the token level. First, many
expressions in LaTeX exist that produce the same visual
symbol (e.g., \ge to \geq). Hence, we identified all
redundant LaTeX expressions in im2latex-100k and replaced
them by the canonical form. Second, some tokens in the ME
imply that the ME not only contains mathematical elements
(e.g., \cite, \label) or is more a graphic element than
an ME (e.g., \fbox). Hence, we decided to delete all
MEs with such tokens. Third, the tokenizer introduced by
Deng et al. [15] sometimes combines two LaTeX commands
in one token, e.g., the token \right{ actually contains two
tokens \right and {. This can increase the vocabulary
and introduce undesired variation. To avoid this, we split
up these tokens, so each token represents only one LaTeX
command.

FIGURE 3. Overview of all 59 fonts in the im2latexv2 dataset.

F. ARRAYS
The array structure has the purpose to arrange elements in a
grid, e.g., a matrix. However, many authors use this feature
to align MEs instead (e.g., \begin{array}{cc}a=b,
& c=d\end{array}. Additionally, the column alignment
indicators (l, c, r) do not affect the semantics of the array.
Moreover, not all arrays are well-defined and may contain
empty columns, rows, or cells. Hence, we removed array
structures used only for formatting, and reduced GT variation
in the array structures by replacing all column indicators with
c. We also removed sparse arrays (empty entries or number
of columns doesn’t match number of column alignment
indicators).

IV. APPLYING LATEX NORMALIZATION FOR PRINTED
MER
To evaluate our LaTeX normalization, we applied it for
printed MER. Therefore, we developed an enhanced version
of im2latex-100k described in Section IV-A, a real-world
test set described in Section IV-B, and a new printed MER
model described in Section IV-C. Lastly, Section IV-D gives
an introduction to printed MER metrics.

A. im2latexv2
This dataset is an evolution of im2latex-100k and con-
tains three major modifications over existing printed
MER datasets. First, we used the normalization procedure
described in Section III with minor modifications for
rendering. To create controlled visual diversity, we left the
column alignment indicators of arrays unchanged and did not
remove the \right and \left tokens for rendering the
MEs. Using the normalized MEs we can ensure that the GT
and image coincide. In comparison, Deng et al. [15] used the
original ME descriptions for im2latex-100k. Hence, the GT
for the same image may vary.

Second, in contrast to im2latex-100k, im2latex-90k, and
im2latex-140k, we rendered each ME with 30 different fonts
for the training dataset and 59 for the validation and test set.
The incorporation of multiple fonts makes the dataset more
realistic. Furthermore, 29 fonts only appear in the validation
and test set to assess a model’s generalization capability. The
font variation introduced this way is illustrated in Figure 3.

Third, we used 600 DPI (font size 12pt) to render the
images, because down-sampling works well compared to
up-sampling. In contrast, Deng et al. [15] suggested 100
DPI for the MER task. Singh [28] used 200 DPI and
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TABLE 1. Overview of the reasons, why we deleted different MEs.

in handwritten MER different resolutions exist. However,
the scanned images of handwritten MER correspond to
resolutions of 300 to 600 DPI in printed MER. We will
demonstrate the influence of the resolution on the model
performance in Section V-A.

The resulting im2latexv2 dataset contains fewer MEs than
the original im2latex-100k due to our rendering pipeline,
which includes four check criteria (see Algorithm 1 and
Table 1). 19 MEs in the training set and 30 MEs in the test set
had to be dropped because the image was blank. Additionally,
we found 1 emptyME in the train set and 42 emptyMEs in the
test set. We manually corrected the empty ME in the train set
and 37MEs in the test set.We removed the other 5 emptyMEs
from the test set because the image depicted a drawing rather
than a validME. Besides, our normalization step dropped 882
MEs in the training set, 116 in the validation set, and 179MEs
in the test set. The rendering step removed 129 MEs in the
training set, 11 MEs in the validation set, and 23 MEs in the
test set, which could not be rendered for all fonts. As a result,
the training set was reduced by 1′023 MEs, the validation
set by 127 MEs, and the test set by 237 MEs compared
to the original im2latex-100k. The new normalized dataset
im2latexv2 finally contains approximately 92′600 MEs (ref.
Table 1). It is publicly available on GitHub [31].

Algorithm 1 Im2latexV2 Rendering Pipeline
Require: [F1, I1] . . . [FN , IN ] in im2latex-100k
1: for k ← 1 to N do
2: if Ik is null then
3: continue
4: end if
5: if Fk is null then
6: check manually
7: continue
8: end if
9: Fk ←LaTeXNormalization(Fk )
10: if Fk is null then
11: continue
12: end if
13: for j, r in renderingSetups do
14: Ik,j, ek,j←renderImages(Fk , renderingSetup)
15: if ek,j is not null then
16: break
17: end if
18: end for
19: end for

TABLE 2. Overview of 200 randomly selected MEs. It shows various issues
that arose, requiring some MEs to be excluded from the realFormula set.

B. realFormula
By using the Mathematical Formula Detection model from
Schmitt-Koopmann et al. [32], we collected over 250k
ME from randomly selected arXiv papers with 600 DPI
and selected 200 MEs at random for manual annotation.
As shown in Table 2 we deleted 69MEs where the image was
larger than 768x2400 pixels. Nine other MEs were deleted
because the image did not show the complete ME and 1
ME showed a sparse matrix. Hence, we manually annotated
121 MEs. Of these 121 MEs, 110 were single-line MEs and
11 were multi-line MEs. Five single-line MEs contained an
array, and 43 MEs contained style types (\boldsymbol,
\mathbb, \mathcal). realFormula is publicly available
on GitHub [31].

C. MathNet
For our experiments we decided to use an encoder-decoder
approach similar to the state of the art MER models.

In order to accurately process ME images, it is crucial
for the encoder to extract informative features. This requires
the encoder to be able to focus on small details while also
considering the overall structure of theME, such as a fraction.
To handle both short-term and long-term relationships,
Deng et al. [15] developed the Coarse-to-Fine Attention
mechanism. However, recent advancements in image recog-
nition have shown that vision transformers (ViTs) [33] are
well-suited for this task. A further development of ViTs
are convolutional vision transformers (CvTs) [34]. CvTs
combine convolutionswith transformers, resulting in superior
performance and efficiency with a smaller model. Hence,
we decided to use a CvT instead of a usual CNN encoder.

The decoder is responsible for converting the features of
the encoder into the chosen markup language, i.e. LaTeX.
Unlike most other MER systems, MathNet uses a regular
decoder transformer instead of LSTMs. Vaswani et al. [18]
showed that transformers are better suited for handling
long sequences, as we have in printed MER. Furthermore,
im2latexv2 is much larger than im2latex-100k, which should
benefit the training of transformers. Our decoder transformer
has 8 heads and a depth of 4. On top of this, we added
a classifier layer with a log softmax. An overview of our
MathNet model with the layer sizes is shown in Fig. 4.
We used a cross-entropy loss between the GT sequence

and the predicted sequence. To optimize our model, we used
the Adam optimizer [35] with an initial learning rate of
0.000075 and a batch size of 36. Our model was trained on a
single Nvidia Tesla V100-SXM2-32GB GPU.
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FIGURE 4. Overview of our MER model, called MathNet. The CvT consists of 3 layers, which are a combination of an
embedding layer and a transformer block. The encoded image is decoded with a decoder transformer and a classifier layer.

In order to prevent themodel from learning useless patterns
in images, we applied different augmentation techniques.
We have identified four patterns that the model should
explicitly not learn. Firstly, to avoid confusion by white
spaces (such as \quad and \,), we randomly introduced
white pixel columns to the image. Secondly, we used blurring
masks and changed the image resolution randomly. Thirdly,
we resized the image to prevent the model from focusing
on a specific text size. Lastly, we added a white border of
variable size to the image to facilitate batch-wise processing
and ensure that all images have the same size.

D. METRICS
Printed MER primarily uses three metrics (Edit distance,
Bleu-Score, and Exact Match) to evaluate model perfor-
mance. An edit distance counts the operations needed to
transform one sequence into another sequence. Depending
on the operations allowed, different edit distances exist. The
most popular edit distance for printed MER and the one we
use is the Levenshtein edit distance (lev). It contains three
operations: 1) insert a new token, 2) delete a token, and
3) replace a token. The Edit score, as used by Deng et al.,
is the edit distance normalized by the max sequence length of
the GT and predicted sequence (PRE) as shown in Eq. 1. For
MER, an Edit score of 100% is a perfect prediction.

EditScore = (1−
lev(GT ,PRE)

max(len(GT ), len(PRE))
) · 100% (1)

The Bleu score compares subsequences of two sequences.
A predefined number, usually 4 in MER, determines the
maximum subsequence length. To determine the Bleu score
you create n-grams for the sequences and then calculate the
precision between the n-grams of sequences. The Bleu score
is the average precision with a brevity penalty to discourage
overly short predictions. However, the Bleu score is designed

for longer sequences, and errors at the sequence borders count
less than errors in the middle. This behavior can significantly
impact the score of MEs. Exact Match measures the amount
of fully correctMEs. It makes no distinction between partially
correct ME and completely incorrect ME.

With respect to PDF accessibility, we regard the Edit score
as the most relevant metric because it indicates the amount
of work that must be manually done to correct all errors in a
recognized ME. The Bleu-4 score shows unwanted behavior
for short MEs and focuses more on patterns than on the
correct order of the tokens. The interpretation of exact match
is very limited through the binary output.

However, as discussed in Section III, semantically identical
MEs can be produced with different LaTeX code sequences.
Hence, the metric results are largely influenced by the used
tokenizer and normalization. For example, if the x in Eq. 2
should be a 5, the Edit score would rise from 96.3% (1 of 27)
to 97.8% (1 of 45) if curly brackets had been added in the GT
around each entry in the array, which would mean a 40.5%
reduction of the Edit error rate (1 - Edit score). The Bleu-4
score shows similar behavior.

 1 2 3
4 x 6
7 8 9

 (2)

V. EXPERIMENTS WITH PRINTED MER
This section presents the results of four experiments. The first
experiments (see Section V-A) demonstrate the influence of
the image resolution on the model performance. Experiments
two to five are comparison experiments with printed MER
models. To ensure a fair comparison, we used the provided
pre-trained models (WYGIWYS, i2l-strips, i2l-nopool) and
normalized the predictions with our normalization process.
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TABLE 3. Influence of the training image resolution on the im2latexv2
test set. We trained our model with 100, 200, 300, and 600 DPI.

Weused the following four datasets to compare themodels:
1) The benchmark dataset im2latex-100k. 2) Our enhanced
version im2latev2 which includes multiple fonts. 3) Our
developed real-world dataset realFormula with MEs images
extracted from papers, to demonstrate how well the systems
perform in a real-world environment. 4) InftyMDB-1 contains
MEs images, which were scanned with 600 DPI. This
dataset is also intended to evaluate real-world performance,
specifically the impact of scanning noise.

It is important to note that i2l-strips and i2l-nopool used
a modified dataset built upon im2latex-100k which had
a different split between training, validation, and testing.
Hence, MEs of the test sets of im2latex-100k and im2latexv2
could be in the training set of i2l-strips and i2l-nopool.

A. OPTIMAL IMAGE RESOLUTION
When the resolution is low, the image has fewer details and
the model has to focus on the general structure. On the other
hand, high-resolution images provide more detail which can
enable the model to differentiate better between symbols.

However, there is no clear definition what the optimal
image resolution for MER is (with the standard font size of
12pt). According to Deng et al. [15], 100 DPI images are
recommended, while Singh [28] used images with 200 DPI.
In contrast, handwritten MER mainly uses image sizes that
correspond to resolutions between 300 and 600 DPI [12].
We trained our model on various image resolutions to

demonstrate the impact of this resolution, as shown in Table 3.
We used 100, 200, 300, and 600 DPI image resolutions.
The images of the test set were scaled accordingly. Our
results reveal a significant improvement between 100 and
200 DPI. Moreover, the model’s performance still improves
with even higher resolutions. However, we did not test
resolutions higher than 600 DPI because 600 DPI is typically
the maximum for scanned documents. For the subsequent
experiments, we used the model with 600 DPI training
images.

B. im2latex-100k
This Section presents the results on the im2latex-100k test set.
im2latex-100k contains images with 100 DPI. However, i2l-
strips and i2l-poolwere trained with 200 DPI images, and our
model was trained with 600 DPI images so they require larger
images. We used two techniques to create larger images.
First, we resized the original images with OpenCV to the
training size. Second, we rendered the original MEs without
normalization using a LaTeX environment to eliminate the
influence of insufficient resolution.

TABLE 4. Results of the im2latex-100k test set. We run the models once
with the original images, resized to the training size, and once with the
images rendered with the optimal resolution.

As shown in Table 4, rendering an image with a higher
resolution achieves better results as resizing the original
images. MathNet achieved the same Edit scores (88.6%) as
WYGIWYS with the resized images. However, the Edit error
rate (1 - Edit score) nearly halved from 11.4% to 5.3%
when the images were rendered with 600DPI. i2l-strips and
i2l-nopool performed poorly with the resized images (32.5%
and 32.0%), but similarly to WYGIWYS with the rendered
images (86.9% and 86.8%). Interestingly, the exact match
score of MathNet is low compared to the other systems.
Hence, the fewer errors of MathNet must be more widely
spread over the different MEs than those of the other systems.

C. im2latexv2
This section presents the results with the im2latexv2 test set.
We assigned a random font for each ME in the test set.
We used the same font-ME combination for all models to
avoid influencing the results by using different fonts for the
sameME. Since im2latexv2 uses 600 DPI images, we resized
the images for i2l-strips, i2l-nopool, and WYGIWYS to
the training image resolution. As presented in Table 5,
WYGIWYS’s Edit score drops dramatically from 88.6% to
37.2% compared to im2latex-100k. However, i2l-strips and
i2l-nopool handle multiple fonts better, with only a small
decrease of 11 pp. and 10.8 pp. in the Edit score. In contrast,
our model shows a 2.5 pp. increase in the Edit score.
We attribute this increase to the fact that im2latex-100k
includes problematic mathematical fonts, as explained in
Section VI-A4.

D. REALFORMULA
This section presents the results of the realFormula test
set. Table 6 provides an overview of the results. The
table shows that our model reaches an Edit score of
88.3%. This is about three times higher than WYGIWYS
(27.5%) and approximately one-third higher than i2l-strips
(65.1%) and i2l-nopool (65.2%). In order to quantify the
impact of multi-line formulae we have split the MEs into
multi-line (M) and single-line (S) MEs as discussed in
Section VI-A5. To determine the influence of the array
element we have filtered out all MEs with the token elements
\begin{array} and \end{array} (nA), which is
discussed in Section VI-A3. Additionally, we have filtered
out all MEs with mathematical fonts (nMF); this issue is
discussed in Section VI-A4.
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TABLE 5. Results of the im2latexv2 test set. We resized the images to the optimal size. Errors is the summed Levenshtein distance over all MEs. Array
errors is the summed Levenshtein distance of all MEs with an array structure. nA is the edit score of all MEs without an array structure.

TABLE 6. Edit scores [%] of the realFormula test set. S: single line ME, M: multi-line ME, nA: no arrays, A: arrays, nMF: no mathematical fonts, MF:
mathematical fonts.

TABLE 7. Prediction results on the InftyMDB-1 dataset (scanned MEs).

E. InftyMDB-1
This Section presents the results on the InftyMDB-1 test
set [36]. InftyMDB-1 contains 4400 images of scanned MEs
with a resolution of 600 DPI. We used the pandoc library to
covert the MathML GT into LaTeX GT and processed the
resulting LaTeX strings similar to the other datasets.

As shown in Table 7, the resulting performance ofMathNet
is about the same compared to realFormula test set. However,
it demonstrates that MathNet is not significantly affected
by the noise of the scanning process. In contrast, the
performance of WYGIWYS, i2l-strips, and i2l-nopool drops
by 10.2 pp., 2.0 pp., and 1.6 pp.. This highlights that these
models are probably affected by the noise of the scanning
process. However, since our focus is on scientific PDFs,
we assume that scientific PDFs are usually available in native
digital format. Hence, scanned documents with geometric
deformation, coloration, and noise are considered as not in
our research focus.

VI. DISCUSSION
A. DATA RELATED ACHIEVEMENTS AND CHALLENGES
As our results reveal, our data-centric approach with the
LaTeX normalization and augmentation process is very
beneficial for the training of robust printedMERmodels. The
influence of our normalization and the use of multiple fonts
on the model performance is discussed in Section VI-A1.
Section VI-A2 demonstrates that our model is adept at
working with fonts not included in the training set.

However, in our error analysis, we encountered two
significant challenges. First, the array element was the main
culprit of errors, as detailed in Section VI-A3. Second, the
absence of mathematical fonts and multi-line MEs in the
im2latexv2 training dataset poses a challenge for our model
on the realFormula test set, as discussed in Section VI-A4

TABLE 8. Prediction results for MEs in the realFormula test set with
mathematical fonts.

and Section VI-A5. Section VI-A6 gives an overview of the
most frequent token errors with MathNet and im2latexv2.

1) THE IMPACT OF NORMALIZATION AND MULTIPLE FONTS
We conducted experiments to separately analyse the influ-
ences of our model architecture, our normalization process,
and the use of multiple fonts. We trained the model three
times, once with the im2latex-100k dataset, once with the
im2latexv2 dataset using only the basic font, and once with
the full im2latexv2 dataset. The results are shown in Table 5.
When we used the im2latex-100k dataset, our model’s

Edit score (78.2%) was more than double that of WYGIWYS
(37.2%) and was 2.3 pp. 2.2 pp. higher than i2l-strips and
i2l-nopool. This demonstrates the beneficial network design
of our model. The advantage of our model architecture is
analyzed further in Section VI-B. However, the normalization
process has amuch stronger impact on themodel’s Edit score,
with a 12.2 pp. improvement when using the im2latexv2
dataset with the vanilla font for all MEs. The remaining
6.8 pp. improvement is explained by the use of multiple fonts
for the MEs during training. In summary, the model architec-
ture is marginally better as state of the art model architectures.
However, two-thirds of the improvement compared to state of
the art models are due to our LaTeX normalization process,
while the remaining third is attributed to the use of multiple
fonts. This reveals the significant influence of our LaTeX
normalization process during model training and, hence, the
value of the new dataset im2latexv2.

2) NON-TRAINING FONTS
The im2latexv2 training set only includes 30 of the 59 fonts in
the test set. We tested our model’s ability to work with fonts
not in the training set and found that that the font influence is
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TABLE 9. Analysis of the Levenshtein operations required to correct the MathNet predictions on the im2latexv2 test set. The table shows the 10 most
frequent tokens required to be inserted or deleted and the 10 most frequent pairs of tokens that must be replaced by the other.

negligible. Specifically, we achieved a 97.5% Edit score for
MEs with fonts in the training set and 96.8% for MEs with
fonts that were not. Overall, this demonstrates our model’s
strong generalizability.

3) ARRAY ISSUE
LaTeX users normally use the array structure to create a
matrix (\begin{array} · · · \end{array}), but some
authors use it to format their ME instead. To address this
unwanted variation we introduced normalization steps in
Section III to reduce the use of the array environment for
formatting purposes. However, even with our normalization
process, the array structure remains challenging for MER,
as shown in Table 5. Out of all the prediction errors on the
im2latexv2 test set with our model, 52.6% are related to
MEs with an array structure. However, this array structure is
only present in 4.8% of all the MEs. Therefore, by removing
MEs that use the array structure, our model’s Edit error
rate is reduced by 50% (from 2.8% to 1.4%). i2l-strips and
i2l-nopool also see reductions from 24.1% to 20.8% and from
24% to 21.1%, respectively. The effect on WYGIWYS is not
significant. We attribute this to the high overall Edit error rate
of WYGIWYS. The same problems with array structures can
be seen in the results of Table 6 for the realFormula test set.
For instance, MathNet achieves an Edit score of 93.3% for
single lineMEs without arrays and 84.1% for single lineMEs
with arrays.

4) MATHEMATICAL FONT ISSUE
In ME, changes to the font style of symbols (mathematical
fonts) are used to indicate, e.g., vectors and spaces. As these
mathematical fonts are not rendered correctly for all fonts,
we decided to remove all mathematical font tokens in
im2latev2 to ensure the images are rendered correctly.
Consequently, MathNet cannot detect mathematical fonts.
Our results with the realFormula test set reveal that removing
MEs with mathematical fonts in the training set has a
significant influence on the model’s real-world performance.
Without counting the mathematical font tokens as an error,
the Edit score of MEs without mathematical fonts is 94.1%
(column S nMF), whereas MEs rendered with mathematical
fonts, it drops to only 89.5% (column S MF). Table 8
shows that MEs rendered with the three mathematical
fonts \mathcal, \mathbb, and \operatorname are

especially challenging for MathNet. In contrast, the math-
ematical font \boldsymbol has no negative influence
on the performance. Nevertheless, mathematical fonts are
a limitation of MathNet and im2latexv2 and, hence, the
predicting results ofMathNet deteriorate for MEs containing
mathematical fonts. This issue is to be addressed in future
research.

5) MULTI-LINE ME
The MEs in the im2latex-100k dataset are limited to
150 tokens, so there are almost no multi-line MEs. However,
in the realFormula dataset we had to drop 69 MEs because
they were too large, and these were all multi-line MEs.
Together with the 11 multi-lineMEs in the final dataset, 80 of
the original 200MEs were multi-line MEs (see Table 2). This
reveals that a real-worldMER needs to handlemulti-lineMEs
in addition to single-line MEs.

Table 6 shows that our model performs 30% better in
terms of Edit score for single-line MEs (92.5%) compared
to multi-line MEs (71.2%). This may be because our
training set, im2latexv2, consists primarily of single-line
expressions. The other models suffer a much more dramatic
performance drop for multi-line MEs to 14-23% Edit score.
Furthermore, by using a straightforward y-cut algorithm,
we can strongly improve our model’s performance for
multi-line MEs from 71.2% to 96.2% Edit score. As a result,
when the y-cut algorithm performs well, we can robustly
recognize multi-lineMEs even with our model mainly trained
on single-line MEs.

6) MOST FREQUENT TOKEN ERRORS
To better understand the open challenges of our MathNet
model, we analyzed the Levenshtein operations needed to
correct the predictions. Table 9 shows the 10 most frequent
tokens that needed be corrected. It is not surprising that the
curly brackets are the primary culprit of errors because they
are the most frequent tokens in the GT. Also, the sub- and
superscript tokens (_ and ^) are still tricky for our model,
even after our normalization step.

The replace operations reveal that the model is mainly
confused by visually very similar symbols. However, their
occurrences are small compared to the number of errors with
curly brackets.
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FIGURE 5. The plot shows the average edit score per sequence length for
the different models and the im2latex-100k dataset. The x-axis shows the
number of tokens in the ME with a bin width of 3. The y-axis shows the
average Edit score of each bin. A perfect prediction has a edit score of 1.

FIGURE 6. The plot shows the average edit score per sequence length for
the different models and the im2latexv2 dataset. The x-axis shows the
number of tokens in the ME with a bin width of 3. The y-axis shows the
average edit score of each bin. A perfect prediction has a edit score of 1.

B. MODEL RELATED ACHIEVEMENTS AND CHALLENGES
As discussed in Section II, many MER models employ
LSTMs with specialized mechanisms to improve long-
distance learning.We addressed this issue using a transformer
architecture. Our analysis, depicted in Figures 5 and 6, shows
that the Edit score of MathNet does not decrease with the
sequence length of the MEs, indicating that transformers
are effective in learning long-distance relationships in
MEs.

VII. CONCLUSION
We introduced the novel printed MER model MathNet,
incorporating a CvT encoder and transformer decoder.
MathNet achieves outstanding results for im2latex-100k (Edit
score: 94.7%), im2latexv2 (Edit score: 97.2%), realFormula
(Edit score: 88.3%), and InftyMDB-1 (Edit score: 89.2%),
reducing the Edit error rate to the prior state of the art
for these datasets by 53.5% (from 11.4% to 5.3%), 88.3%
(from 24% to 2.8%), 66.4% (from 34.8% to 11.7%),
and 70.4% (from 36.5% to 10.8%), respectively. These

results were achieved with our transformer-based model
architecture and on an inherently data-centric approach
normalizing and augmenting the training data. We found
that detrimental variations in the LaTeX GT of im2latex-
100k exist. To reduce this undesired variations, we proposed
a LaTeX normalization method. Our LaTeX normalization
process enables the model to focus on the canonical
form of an ME instead of learning non-relevant variations.
We demonstrated that our LaTeX normalization process is
mainly responsible for the model’s superior performance.
Moreover, we introduced an augmented dataset, im2latexv2,
an enhanced and normalized version of im2latex-100k with
multiple fonts, and realFormula which contains annotated
real ME images from arXiv papers. We also showed that a
simple y-cut algorithm can expand single-line MER to multi-
line MER.

Despite promising effectiveness, the Edit scores of all
models investigated were significantly lower on realFormula
and InftyMDB-1 compared to im2latex-100k and im2latexv2,
which indicates a difference between synthetic (im2latex-
100k and im2latexv2) and real-world datasets (realFormula
and InftyMDB-1). The removal of mathematical fonts styles
in im2latexv2, such as bold and italics, limits the correct
recognition of MEs that use these mathematical fonts
styles in realFormula. An extended version of im2latexv2
with mathematical fonts could solve this problem. Addi-
tionally, the correct cutting of ME lines heavily supports
multi-line ME recognition, making stable line detectors a
precondition.

After testing the handwritten benchmark datasetCROHME
with our model MathNet and our LaTeX normalization,
we could not find evidence that our LaTeX normalization
process helps to improve the recognition performance.
We think this is because the characteristics of CROHME and
im2latex-100k are vastly different. The MEs in CROHME
are on average only one-third as long as in im2latex-100k,
and the vocabulary is significantly smaller, consisting of only
142 tokens compared to 500 tokens in printed MER. As a
result, our LaTeX normalization only reduces the original
142 tokens to 121 (canonical) tokens, which is much less than
with im2latex-100k. Furthermore, the MEs in CROHME are
simpler and do not contain arrays, mathematical fonts, and
other complex elements. This leads to the conclusion that
the detrimental variation in CROHME is much lower than in
im2latex-100k. However, we believe that for more complex
handwritten MEs, our LaTeX normalization process could be
as beneficial as it is for printed MER.

Generative pretrained transformers with multimodal input
have shown significant progress in image recognition.
However, testing a fewME images with GPT-4 from OpenAI
indicates that the results, although impressive, have not yet
reached the state of the art in MER. Nevertheless, combining
generative AI with MER could be a promising approach
worth exploring.

For our upcoming research steps, we plan to combine
FormulaNet [32] and MathNet to develop a semi-automatic
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captioning system for MEs in PDFs. With this system,
we expect to significantly improve the accessibility of PDFs
specifically for MEs and also enable easy searching and
extracting of MEs from PDFs.
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