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ABSTRACT The process of visual analytics is composed of the visual data exploration tasks supporting
analytical reasoning. When performing analytical tasks with the interactive visual interfaces displayed by
the large screen, physical discomforts such as gorilla-arm effect can be easily caused. To enrich the input
space for analysts, there has been some researches concerning the cross-device analysis combining mobile
devices with the large display. Although the effectiveness of expert-level designs has been demonstrated,
little is known of the ordinary users’ preferences for using a mobile device to issue commands, especially the
small one like smartwatch. We implement a three-stage study to investigate and validate these preferences.
A total of 181 distinctive gestural inputs and 52 interface designs for 21 tasks were collected from analysts.
Expert designers selected the best practices from these user-defined interactions. A performance test was
subsequently developed to assess the selected interactions in terms of quantitative statistics and subjective
ratings. Our work provides empirical support and proposes a set of design guidelines for optimizing
watch-based interactions aimed at remote control of visual data on the large display. Through this research,
we hope to advance the development of smartwatches as visual analytics tools and provide visual analysts
with a better usage experience.

INDEX TERMS User-defined interaction, human-computer interaction, visual analytics, smartwatch, large
display.

I. INTRODUCTION
With the explosive growth of data in the current era, it is
crucial to effectively extract useful information quickly from
the massive and complex data through visual analytics. For
this purpose, the design of visual analytics has received
much attention, especially in terms of the representation and
interaction of visual elements. Representation refers to the
mapping of data to graphics, which is used to represent data
in a more intuitive and understandable way. Researches on
the interaction for visual analytics center on methods and
techniques that facilitate the exploration and interpretation
of data [1]. Better interactions not only facilitate uncover
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insights [2] from data to support user decision making, but
also improve the efficiency of analysis while reducing the
cognitive load and physical effort for manipulation.

Visual analytic interaction has traditionally employed the
Windows, Icons, Mouse and Pointer (WIMP) [3] paradigm
of user interfaces to perform analytic tasks and manage data
content stacked on a large display. As vision-based gesture
interfaces (VBGI) have become more popular, researchers
begin to explore how WIMP can be replaced with interac-
tion primitives, e.g. touch [4] or freehand [5] gestures that
are conducive to the expression of the analyst’s intention to
enable direct manipulations from their embodied experience.
However, the use of interactions based on visual gesture
recognition yields several challenges, including ‘‘vocabulary
disagreement’’ [6], ‘‘midas touch’’ [7], and ‘‘gorilla-arm
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effect’’ [8]. These challenges have a significant negative
effect on the experience of mid-air gesture interactions ori-
enting to the large display. For data analysts, the larger size
of the standing screen and more information volume can
require increased upper limb movement, as they need to
frequently acquire, edit, and compare data only with gestural
interactions. In this situation, due to the not very ergonomic
positioning that is required, users are more likely to suffer
from fatigue and their arm may start to hurt over time [9],
[10]. In addition, some subconscious, casual actions during
freehand interaction may be misrecognized by the system
as task commands. Furthermore, visual analytics involves
a large number of single tasks [11]. Mapping a distinctive
gesture-based interactive input to each task would undoubt-
edly burden user’s memory of the gestural repertoire. With
these concerns, this paper concentrates on an attempt to
develop a set of interactions for visual analytics with the
assistance of wearable devices, within the framework of a
brief account of the suitable tasks.

The idea of making sense of visual data on a large display
through commanding a smartwatch exploits the dimensions
of wearable devices, thereby enablingmicro-interactions [12]
and proxemic interactions [13]. To our knowledge, the study
of using the smartwatch as an input field of interactions
for visual analytics is as yet in its infancy, although some
research has been made, see the work of Horak et al. [14].
Unlike interactions with smartwatch only and cross-device
interactions involving the watch, a smartwatch used for visual
analytics interactions should be the miniature version of
large screen displaying the visualizations. This requires not
only an interaction style that is more appropriate for mini-
screen, but also the corresponding visual feedback for a
specific analytic task to be visible on the watch. For this
reason, the researcher should have a good understanding of
how the interaction with smartwatch plays its role in the
visual analytics process. As there was a dearth of relevant
design practices, we intended to investigate the interaction
preferences of analysts as end-users with the user-eliciting
approach. The findings may provide insights for researchers
to design interactions for visual data exploration involving
wearable devices.

This paper is structured as follow. We first define visual
analytic tasks to be performed combining with the watch and
the large display. The selected tasks are representatives of task
categories of visual analytics. We perform the Wizard-of-Oz
test to elicit user proposals as it is a user-research method
of low cost where a user interacts with a mock interface
controlled by a person. Using a smartwatch prototype and a
smart blackboard displaying pre-designed visualizations, the
mock interface can simulate a watch-based interaction input
and its visual output. After the user-eliciting experiment,
a set of user-preferred smartwatch interactions for visual data
exploration of the large display is obtained. Each interaction
includes the user-preferred gesture command to the smart-
watch for analyzing the on-large-display visualization and the
preferred user interfaces (UIs) of smartwatch in response to

the command. The above work constitutes the user elicitation
study of the research.We invited expert designers to select the
user-defined interactions using the choice-based elicitation
approach, and then statistically compared the preferences
between two user groups. Finally, we tested memorability
of the selected gestures and user experience of the interac-
tions with smartwatch, thus to assess the feasibility of users’
designs. The test results can indicate the complexity of the
tasks for visual data exploration and contribute to design
suggestions.

II. RELATED WORK
A. TASKS AND INTERACTIONS FOR VISUAL ANALYTICS
What are the interaction behaviors that make sense for inter-
preting data in a visual analytics system? This question
has been of interest to researchers for a long time. How-
ever, different data content and visualization techniques call
for different interaction tasks. The more specific interaction
intentions for close-up observation of data call for categories
of task with higher level of granularity. To date, there has
been a handful of works focusing on the taxonomy of com-
monly used interaction tasks for visual analytics. An earlier
attempt to provide a comprehensive overview of interactions
in information visualization was done by Yi et al. [2]. This
work proposed seven basic classifications including select,
explore, reconfigure, encode, abstract/elaborate, filter and
connect, which provided a new perspective for later studies
to understand visualization interactions.

In fact, a compound or abstract visualization interaction
task is probably composed of a series of low-level tasks per-
formed on graph-specific objects [15]. Amulti-level typology
of abstract visualization tasks was proposed by Brehmer and
Munzner [11] to classify all tasks in terms of two dimensions
of interaction: ends and means. In this framework, present,
discover, enjoy, produce objects, search and query were con-
sidered as the intents that explain why a task is performed
(i.e. the ends). The framework also inventoried two main
categories of user intentions regarding task execution (i.e. the
means): manipulate and introduce. Later studies have been
more specific to a particular category of visualization, giving
a detailed discussion on the specificity of the interaction
task engendered by the structure and key features of the
visualization. For example, Ahn et al. [16] proposed a task
taxonomy of temporal features based on the identification of
the entities, the properties to be visualized, and the hierarchy
of temporal network evolution analysis. Kerracher et al. [17]
argued that the user behaviors of analyzing temporal graph
visualization—lookup, comparison, and relation seeking—
could be either attribute-based tasks or structural tasks. They
defined corresponding interactions according to the needs of
analyzing the element and structure of temporal information.
For group-level graph visualization, Saket et al.’s classifica-
tion [18] included group-only, group-node, group-link and
group-network tasks. Adopting the multi-level typology of
abstract visualization tasks, the examples of group-level tasks
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were thus described. Similarly, Gladisch et al. [19] introduced
several tasks specially for graph editing, including create,
insert, delete, select, update and navigate.

To accomplish such miscellaneous tasks, an integrated
system of visual analysis requires a rich interaction vocab-
ulary [19] that takes full advantage of human cognitive and
expressive habits. This rich interaction vocabulary is often
supported by multimodal interaction technologies, combin-
ing touch- or gesture-based interface, tangible user interface
and voice control. A typical multimodal interaction case is
Orko, a network visualization of European soccer players,
which was developed to facilitate both natural language and
direct manipulation input for highlighting the connections
between players [20]. Compared to direct interaction on the
screen based on multi-touch [21], [22], [23], the use of physi-
cal objects of generic shapes acting as tokens was considered
a more effective strategy for interactive data visualization on
tabletop displays [24]. As for mid-air gestural interaction,
with the advantage of free movement, it can express a variety
of concrete and abstract interaction tasks. Therefore, gestures
have been used in VR [25], medical volume data visualiza-
tion [26] and scientific visualization. Ntoa et al. [27] designed
a big data visualization application supporting directional
mid-air gesture interaction with a large display. It allowed
users to navigate in a data center room by adjusting the
camera and the view. Other researchers have developed inter-
active prototypes that involved handheld or wearable devices
for visual analytics of multidimensional data on the large
display, and we will provide a detailed introduction to them
in the following part.

B. THE SMALL DEVICES FOR CROSS-DEVICE
INTERACTION AND DATA EXPLORATION
The growing interest to designing cross-device interaction
accompanies with the popularization of personal computing
devices on the consumer side. Cross-device interactions can
be classified into two categories from the temporal dimen-
sion: synchronous and asynchronous [28]. Synchronous
defines the situation that simultaneously employs two ormore
devices to accomplish the same task. in this situation, the
behavior on the secondary device affects the primary device
due to a distributed or mirrored user interface. Asynchronous
mainly refers to the design of adaptive user interface which
allows the digital content to be transferred from one device to
another. The second devices, especially those that are small
and portable, have the additional role of acting as remote
control for larger displays [29].

There are different methods for performing interactions
with small devices for cross-device communication. On-
screen interface is one of them, and it has been applied in
prototypes such as Conductor [30], WatchConnect [31] and
CurationSpace [28]. On-screen interface, in the narrow sense,
is multi-touch on the display of the device. In the broad
sense, however, the around-device gestures such as waving
above [32], dragging, and touching a visual proxy are also

applicable to the display of small devices, and are favored for
transferring and managing the visual data [28]. As wearable
or graspable artifacts, the use of small devices can easily be
linked to people’s behavior of using tools. Such metaphor-
ical associations were seen in some tangible interactions,
for instance, tiliting the watch-like device to change [33] or
synchronizing content [34] to the target device; and using
pick-up gesture [35] or knocking the target display with the
phone [36] to exchange a file; or specifying device motions
in 3D space [37], [38] as interaction inputs. Additionally,
the mechanical movement of the device is also a form of
tangible interaction. For example, Xiao et al. [39] developed
a watch prototype that allows for pan, twist and tilt of the dial.
This mechanical interface with multi-degree of freedom can
contribute to the sophistication and accuracy of interactions
we perform.

According to Brudy et al. [28], data exploration has been
an increasingly popular application domain of cross-device
interaction. Among the small devices, mobile phone and
tablet have become the main areas of concern to assist the
presentation of data on the big screen or enable co-located
data analysis [40]. Relevant projects include Thaddeus [41],
VisTiles [42], Surface Constellations [40], Slice WIM [43],
GraSp [44] and Photo4Action [25]. Some of the above
projects were equipped with control panels that acted as
toolbars, for example, VisTiles placed such a panel called
sidebar on the edge of the minipad screen. Photo4Action
represented other projects using widely-accepted touch ges-
tures. Users can take photo to select the subgraph on
the wall display and then pan, zoom or rotate the shown
box representing the selected area. They can further check
more details of nodes by tapping, drawing a lasso or long-
press. Similar smartphone-based interactions are also seen
in Sollich et al.’s [45] prototype for exploring volumetric
microscopy movies, where two scroll bars are used to change
the viewpoint and create key-frame bookmarks. GraSp was
a project applying tangible interactions to visual analytics
scenarios. It supported spatially horizontal, vertical and axial
motion of the device to select the range of displayed data and
provide a comparative view of data.

The previous study closest to our research was carried out
by Horak et al. [14], as mentioned above, which pioneered
a new smartwatch-based interaction system for data explo-
ration on the large display. The system is built on two basic
design concepts: item sets and connective areas. A set shows
the configuration property or the simplified version of a data
item containing multiple entities; and connective areas are
four zones representing ‘‘components of a visualization that
have a specific interaction’’. This system supported three
types of inputs: touch-based swiping, rotating a physical
control and spatially moving the arm. Analysts can issue
commands to a focused connective area through these actions,
and the change of data items will be shown on the set inter-
face. Given that the screen size of the watch precludes many
on-screen direct manipulations, some studies presented the
fisheye distortion technique to facilitate data selection [46].
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III. STUDY DESIGN
A. ORGANIZATION OF STUDIES
The paper describes a three-stage study (Figure 1). First,
the experienced analysts are recruited to initiate the user
elicitation study. The results can demonstrate user’s prospects
of relying on the watch interface to issue commands concern-
ing data processing and presentation, even though they may
also have usability and technical feasibility problems. In the
second stage, interaction designers will select the elicited pro-
posals from the perspective of design experts. Dim et al. [47]
first introduced such a choice-based elicitation method as a
further step to more reliable user-elicited gestures, in which
subjects were asked to choose the gesture they thought was
the best from all the user-defined options. One purpose of
choice-based elicitation is to compare the judgments of dif-
ferent user groups, and the other is to test the rationality of
gestural inputs in the prior user elicitation study by observing
the difference in the top gesture between two studies. Next,
we evaluate the practicality of designers’ choices. This is
performed tomeasure the interaction performance and inform
the designers of the limitations of using the watch as a con-
troller for visual data exploration.

B. DEFINING INTERACTION TASKS
We conducted the top-down coding to summarize the inter-
action tasks commonly used in visual analytics. According to
this coding method, the basic categories of tasks should be
defined first, and all the single commands could be then clus-
tered into the categories. Nine task categories were identified
by mainly referring to the classification framework proposed
by Yi et al. [2], and then by adding a few other categories
mentioned in related literature [11], [16], [17]. We described
each category in detail with a short name and a phrase that
interprets users’ intent of performing the interaction tasks.

• Select: highlighting or tagging items of interest.
• Explore: examining a subset of the data or browsing its
full picture.

• Edit: altering the visual appearance of data element or
modifying the data values.

• Abstract: adjusting the level of abstraction of data from
an overview to a very detail representation.

• Filter: presenting the set of data items based on a speci-
fied range or condition.

• Connect: creating relationships between data sets or
items.

• Position: changing the spatial arrangement of represen-
tations.

• Add/Remove: adding or removing data representations.
• Others: other tasks not included in the above classifica-
tions.

Referring to the existing studies on visual analytics is
an effective way to extract the necessary interaction tasks.
By reviewing several of the key works [15], [16], [17], [19],
a total of 80 tasks were collected. To enumerate the tasks not
mentioned in existing literature, we invited five experts to
participate in the generation of the task set, all of whom were

familiar with the use of large displays and had at least five
years of experience with visualization design. We prepared
a blackboard, signature pens, sticky notes and large sheets
of white paper. First, the experts were asked to write the
tasks they considered to be higher frequently used in visual
analytics on the blackboard, according to our taxonomy of
interaction tasks. They needed to present at least two tasks
per category. They could also take the brainstorming method
to add tasks that had not been presented by other experts to
one category. Then, the experts were asked to briefly annotate
the proposed tasks and transcribed them on the sticky notes.
Through these procedures, a total of 89 expert-elicited tasks
were obtained. We transcribed the 80 tasks collected from lit-
erature on the sticky notes, resulting to a total of 89+80=169
tasks. If an expert-elicited task coincided with one collected
from previous studies, these two would not be merged but all
written on the notes for subsequent classification work.

Next, all the tasks were encoded deductively into the nine
categories using the affinity diagram method [48]. To start
with, the theme cards with category names were listed. After
that, we mixed the 169 cards on a large sheet of white paper,
and invited the experts to discuss how to group them. Experts
pasted the cards they believed to be of the same category
together, before merging and removing the tasks in each
category according to the following three principles: (i) tasks
with similar users’ intent of interaction were merged into one;
(ii) tasks with low frequency of use were removed; and (iii)
tasks with overly complex operations were not considered.

There was a procedure by which experts decided how to
merge or delete tasks. One expert firstly picked out two or
more tasks with a similar meaning from the same category.
For example, ‘‘change the hue of points in a scatter plot’’
and ‘‘change the transparency of those points’’ mentioned
in Ahn et al. [16] is both to edit the chromatic value, which
can be merged into ‘‘adjust the color of the graph’’. Before
these tasks were finally merged, a collective discussion was
usually made when experts argued that some of them bear
different meanings. After reaching a consensus, this new and
representative task would be put in a certain category. This
process was repeated until each category contained several
tasks which are the summary of the relevant elicited tasks.
The experts also had to determine whether the merged tasks
could be retained or not based on principle 2 and 3. At least
three of the five experts must agree in order for this task
to be retained. Regarding the removed tasks, one described
as ‘‘find data cases with extreme values in the range of an
attribute in the dataset’’ [15] was believed to be less frequent,
and consequently it was removed from the task set. In the
end, we defined 21 representative interaction tasks out of the
169 candidate tasks. Table 1 explains these tasks and indicates
the categories within which they fall.

C. THE EXPERIMENTAL MATERIAL: A VISUALIZATION
DESIGN
As the experimental material, the visualization design
should facilitate the elicitation of general interaction design

78660 VOLUME 12, 2024



Y. Xiao, L. Liu: User-Defined Interactions for Visual Data Exploration

FIGURE 1. Procedural details of the three stages of the study. At the bottom the statistical indicators for each stage are presented.

proposals. Otherwise, the particular way of presenting data
in some charts can induce the proposals that are less reason-
able for other charts. Therefore, choosing the right graphical
representations for the visualization is critical. First, these
representations should be familiar to everyone. Second, the
target objects (e.g., dots or squares representing data item)
in the initial state of the chart should be displayed clearly
and with a certain touchable area for the analyst to manip-
ulate. Third, the form of the chart should be basically fit
the layout of the dial, so that the analyst does not feel that
he or she has to spend more operational steps in searching
the target object. Fourth, the visualization should permit
simulation of all the interaction tasks in real-world usage
scenarios by linking them together through a theme of data
analysis.

Based on the above principles, we designed a visualization
depicting the trend of online shopping of Chinese college stu-
dents as shown in Figure 2a. This topic was chosen because
all the subjects in the elicitation study were college students.
Histogram was applied in order to follow the first and sec-
ond principles, while others like scatter plots and line plots
were excluded. Chord diagram is circular, and can represent
multiple categories of data that are connected to each other
(Figure 2b). The two charts were integrated to make the entire
visualization be a circular form by changing the histogram to
a coxcomb diagram surrounding the chord diagram. The area
of the slices of the coxcomb diagram can be scaled, reducing
it to an arc-shaped histogram (Figure 2d). It highlights the
amount of online purchases for different categories of goods
and the number of purchasers in different grades. These two
dimensions are represented by a pair of vertical bar charts
with two different hues (Figure 2c). The color gradients
within the bars represent the magnitude of the values. The

interpretations of the amount of online purchases are hidden
in the initial state before analysis (Figure 2e).
The visualization we designed allows the implementation

of all 21 interaction tasks. Subjects will be presented with the
initial state of the visualization for each analysis task and its
state after the execution of that task on the large display. These
two states are illustrated into two separate pictures, each for
one slide of PowerPoint (Figure 3). According to Table 1,
we define the users’ intent of performing the tasks, so that the
execution of them one after the other constitutes a story line
of the complete analysis process. The story begins with the
two tasks: Zoom-in and -out and Select, because the objects
must be found and selected before subsequent tasks can be
performed.

IV. STUDY 1: USER ELICITATION
A. SUBJECTS
A total of 30 volunteered subjects (16 males and 14 females)
with more than one-year experience in visual analytics were
recruited from a Chinese university. The subjects had a vari-
ety of majors, including design, journalism, engineering, and
data science. The number of subjects from different majors
was approximately equal. The age of the subjects ranged
from 18 to 23 years old, with a mean of 19.6 years old
(SD=1.7). These subjects were recruited because (i) college
students of the same age range can represent the user groups
who accept the same digital technology, and (ii) younger
subjects usually have better comprehension and expression
skills than the elder, making them easier for the researchers
to communicate with. All the subjects did not have any
experience in gesture design, and their dominant hand was
the right hand. At the end of the user elicitation study, each
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FIGURE 2. The visualization design for this study: (a) the integration of chord diagram and coxcomb diagram; (b) the enlarged chord diagram; (c) two bar
charts indicating the magnitude of values; (d) scalable slices of the coxcomb diagram; (e) the interpretations of the amount of online purchases.

FIGURE 3. Presentation of the visualization: (a) showing the initial state of visualization on the large display before interaction with one slide;
(b) showing the effect of interaction; (c) user defines the gesture; (d) user designs the UI of smartwatch in response to the gesture.

subject would receive a small gift to the value of 50 RMB as
a reward.

B. APPARATUS
The user elicitation study was conducted in a usability labo-
ratory with the space covering up to approximately 55 square
meters. The 86-inch display (approx. 190 cm×110 cm side
length, 3840 × 2160 resolution) of a smart blackboard was
used to present the slideshow. The subjects were provided
with a smartwatch model copying the appearance of the
Samsung Gear S2 watch to demonstrate gesture commands.
The dial of this model was rotatable that it could be used as
a mechanical input modality. A set of table and chair was
placed in the lab, with several sheets of A3 white paper on
the table. A high-definition camera was fixed on the table to
record the subjects’ performance for subsequent extraction of
the gestures from the captured videos.

C. PROCEDURE
Prior to the initiation of the study, subjects were briefed
about the purpose and requirements of the study and signed

an informed consent form. The 21 tasks appeared in the
same order as the numbering in Table 1, in accordance to a
pre-written story line of visual analytics. At the beginning of
each task, the PowerPoint software showed the initial state of
the visualization with the name of that task and its description
for the subjects to read and understand. Once the subject
executed a gesture command, the researcher switched the
slideshow to the next page to show the interaction effect
of the visualization resulting from the task. The time limit
between the start of the task and the completion of the gesture
execution should not exceed one minute, forcing the subjects
to intuitively suggest their most preferred interaction input.
After performing the gesture, the subject was asked to follow
the think-aloud protocol to give an account of (i) the number
of fingers required to perform the gesture, (ii) the target
area clicked by the fingers, (iii) the duration of each atomic
gesture, and (iv) the reason why this certain gesture was
recommended.

After the think-aloud session for explaining the gestural
input, the subjects were asked to draw the UI of the smart-
watch in response to the gesture command on a white sheet
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TABLE 1. The twenty-one tasks defined for this study. T-1 is the abbreviation of Task-1, and so forth.

of paper using a needle pen (Figure 4). As with the previous
session, they were asked to verbally explain why the UI
was designed in this way. If more than one UIs depicted by
the subjects differed in layout, widget, and visual element,
but the functions of the current page were essentially the
same, the UIs were considered to be the same design pro-
posal. At the end of each trial, we checked the consistency
of the gestural input and the feedback of two display devices
in each step of interaction. The study took about 75 minutes
overall for each subject.

D. DATA ANALYSIS
A total of 651 gestures and UI design proposals for 21 tasks
were collected from 30 subjects. The UI design proposals that
were identical in main design characteristics were merged
into one, leaving 52 proposals as a result. The gestures with
the same dynamics were also merged. Taking ‘‘T-4: Hide
the selected graph or data’’ as an example, some subjects
‘‘dragged the graph or data item to the edge of the screen to
hide it’’, while some ‘‘using a long-press to drag the graph
or data item out of the screen’’. For both gestures the graph
or data item is dragged off the screen, and the direction of
dragging is not important. Therefore, these two gestures can
be grouped together. In the end, we identified 181 distinctive
gestures. When combining the gesture and the UI as an inter-
action design proposal, there are 228 distinctive proposals.

We calculated the agreement rate of gestures, UIs and
interaction design proposals for each task with the formula
introduced by Vatavu & Wobbrock [49]. The higher the
agreement rate, the more likely the subjects were to come up
with the same proposal for the target task. The agreement rate
(AR) was computed by AGATe. The four levels of agreement
are low (AR(r) ≤ 0.100), medium (0.100 ≤ AR(r) ≤ 0.300),
high (0.300 ≤ AR(r) ≤ 0.500) and very high (AR(r) > 0.500)
[49].

1) AGREEMENT RATE OF GESTURES
Figure 5 shows the agreement rate of the 21 tasks, and the
average AR value is 0.303. Among them, the highest agree-
ment rate was seen for T-1, which was 0.709, indicating that
26 out of 30 subjects chose the ‘‘pinch-to-zoom’’ gesture
to execute this task. High agreement also appeared in T-
6 (0.488) and 8 (0.400). Two subjects (P3, P15) reported
that these were tasks for editing images or data value and
were easier to perform through clicking a button from the
menu. In contrast, the ARs for ‘‘T-20: Restore to previous
state’’ and ‘‘T-21: Perform a redo operation’’ were both
relatively the lowest (AR=0.107). Popular gestures for these
tasks were ‘‘two-finger tap’’, ‘‘two-finger left/right swipe’’,
‘‘clockwise/counterclockwise rotation’’, etc. Some subjects
indicated that the gesture they defined for this task were
extracted from their daily use of smartphone and digital
products. The difference in prior knowledge of using device
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FIGURE 4. Two examples of subject’s designs for the UI of smartwatch in elicitation study.

resulted the diversity in eliciting gestures for these two tasks.
Medium agreement was observed for T-10 and T-17. Five
subjects stated that the two tasks occurred less frequently
on data analysis, and three of them even had never handled
them before, resulting in arbitrary mappings of their personal
gestures to the target task.

2) AGREEMENT RATE OF UI DESIGNS
The agreement rates of subjects’ UI design for 21 tasks are
also shown in Figure 5, with a mean value of 0.493. For ‘‘T-2:
Select’’ and ‘‘T-3:Multi-Select’’, the agreement was very high
(0.821). The majority of subjects preferred an enlarged view
of the visualization which only displayed the focused area of
the target to be selected. They felt that such a view made it
easier to identify the desired item, improving the speed and
accuracy of selecting it. T-9 had the lowest agreement rate of
0.201 among all the tasks, and the agreement rate of gestures
for it was also low (0.142). TheUI designwas generally based
on the gesture design, and so the high level of agreement on
the UI often went with a consensus on the gestural input for
one task. However, for T-1, there was a second-lowest AR
of 0.263, in contrast to its high level of agreement in gesture.
Some subjects (e.g., P5 and P19) wanted only a text or symbol
shown on the watch to indicate the zoom-in operation was
in progress, while others (e.g., P25) hoped that the watch
would display aminiature version of the zoom-in effect on the
large screen. A considerable proportion of subjects suggested
that the watch should only display the zoom-in percentage,
allowing the analyst to know to what extent the object could
be enlarged more.

3) AGREEMENT RATE OF INTERACTION DESIGN PROPOSAL
An interaction design proposal is composed of the gestu-
ral input and the UI design. Figure 5 shows the agreement
rates of interaction design proposal for 21 tasks, with a
mean value of 0.257. We observed 7 out of 21 tasks for
which the most popular proposal received more than fifteen
votes. They are: T-1, T-2, T-3, T-12, T-13, T-16, and T-19.

Except for ‘‘T-13: Merge two groups of data’’, the other six
tasks are more frequently used by the subjects and highly
common across digital devices. The related use experience
much contributed to the popularity of certain human-machine
interaction. To execute T-13, 23 out of 30 subjects defined
‘‘press the object and swipe it to the target object’’ as its ges-
tural input. When pressing the object to be merged, subjects
suggested that there should be an object list on the watch to
show every target the selected object would be swiped to. One
subject stated that his first reaction to ‘‘merge data’’ was a
dragging gesture for establishing a connection between two
objects. In addition, a low level of agreement appeared in T-
10 (0.093) and T-11 (0.088), with most subjects indicating
that these tasks were not usually performed and therefore they
would improvise some random gestures during the elicitation
study. There was no clear explanation from these subjects as
to why the particular gestures were presented.

4) GESTURE TAXONOMY
We examined the characteristics of all user-defined design
proposals by building a classification schema based on
gesture taxonomy. Deriving from the pioneering studies
of categorizing gestures conducted by Kendon [50] and
McNeill [51], a variety of classification schemata for ges-
tures in the domain of interaction design has been pro-
posed [52], [53], [54], [55]. To give an exact description of
the elicited proposals, we specifically established a taxonomy
of watch-based gestural interactions differing from the pre-
vious ones. This taxonomy included four dimensions: form,
semantics, input area and UI design, each was divided into
multiple categories, shown in Table 2. The frequencies of
the proposals encoded as these categories are illustrated in
Figure 6.

V. STUDY 2: CHOICE-BASED ELICITATION
A. SUBJECTS
Thirty subjects with experience in visualization design
and interaction design were recruited, from universities,
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FIGURE 5. Agreement rates of user-defined gestures, UI designs and interaction design proposals.

TABLE 2. The taxonomy of proposals based on 651 user-defined designs.

companies, and independent design firms, to participate in
Study 2. These subjects were considered experts because they
had at least 5 years of study and practice in both of the two
relevant fields. Their votes on the user-defined proposals in
Study 1 were able to suggest the difference between experts
and non-tech savvy users in understanding ‘‘better interac-
tion’’. Eighteen of the thirty subjects are females and the rest
are males with the age range from 22 to 32 (X = 26.78, SD=

2.62). All the subjects participated voluntarily and signed an
informed consent form.

B. APPARATUS AND EXPERIMENTAL MATERIALS
This study was conducted in the same lab with the user-
elicitation study. We first used the slideshow to show the
experts the visualization interaction effect for the correspond-
ing task on the large display to help them become familiar

with the task list. To reduce the experiment time, each video
recording of a user-defined gesture was reformatted into a
GIF that would be played on an iPad. The middle of the GIF
is the gesture action taken from a top view angle. On the left
side, it shows the enlarged UI of smartwatch in response to
the gestural manipulation; while the visualization interaction
effect on the large screen resulting from that manipulation
is displayed on the right side of the GIF. The current task is
indicated at the top of the GIF, along with a textual descrip-
tion of the gestural manipulation and the UI, as shown in
Figure 7. To maintain consistency in the experimental equip-
ment, we provided the experts with the same model of watch
as the subjects in Study 1. The rest of the hardware devices
were also the same as in Study 1. In the watch we embedded
a set of figures presenting the interface switches for every
task, each of which was called up immediately upon subject’s

VOLUME 12, 2024 78665



Y. Xiao, L. Liu: User-Defined Interactions for Visual Data Exploration

FIGURE 6. Distribution of user-defined gestures and UI designs across the taxonomy.

performance of the gesture. This was an experimental setting
to perform the Wizard-of-Oz test.

C. PROCEDURE
Before initiating the choice-based elicitation, we considered
some measures to ensure the validity of this approach. First,
there should not be too many or too few options to make the
subjects difficult to choose. Second, the very personalized
options that seem clearly unreasonable should be ruled out.
In order to reduce the number of options, we decided no more
than six candidates of user-defined interaction for each task,
according to the conventional maximum number of options
that should be set. We formulated four rules of eliminating
the not-so-good user proposals. First, all the most elicited
proposals were selected; Second, the complex manipulation
that required more than three atomic gestures were excluded;
Third, gestures that existed in the current watch products
and in previous studies were retained; Fourth, options that
received only one vote had to meet both rule 2 and 3. Ulti-
mately, a range of three to six options was used for all tasks.
It is important to note that the options in the choice-based
elicitation are the complete proposals of interaction combin-
ing gestures as the input and the UIs as the output.

During the process of elicitation, expert subjects were
asked to demonstrate each gesture to better weigh how com-
fortable the manipulation was. They watched the GIF of each
proposal firstly, and then immediately follow the animation
to perform the gesture action. The time limit of this session
could not exceed one minute, but the performance can be
repeated. After all the options for each task had been experi-
enced, the subjects needed to choose the one they thought was
the best. To prevent subjects from forgetting the details of the
gestural manipulation, they would make their choice while
looking at the GIF again. The order of all tasks and the order

of proposals for each task were randomized across subjects to
prevent order effects. Afterwards, the subjects reviewed their
choices in the sequence shown in Table 1 to check if there
were any contradictions within the list of selected proposals.
When the best interaction for each task was selected, the
subject had to state its advantages. Once the proposal chosen
by the expert was not the one by the user group in Study 1, the
subject should explain the reason for his or her choice. The
whole study lasted approximately for two hours per person.

D. RESULTS
Through Study 2, the expert subjects’ attitudes to the
highly-agreed interaction design proposals that user pre-
ferred were explored. According to the ‘‘winner-take-all’’ [6]
methodology, the optionwith the highest number of votes was
identified as the expert’s preferred design. As a result, a set
of expert-chosen interaction design proposals was generated,
shown in Figure 8.
We calculated the agreement rates of the expert-preferred

proposals using the same formula as in Study 1. As depicted
in Figure 9, the average AR value for the 21 tasks is 0.458.
This high level of ARmay be due to the fact that fewer options
in Study 2 cause a slighter chance of disagreements. ‘‘T-15:
Annotate the selected data graph’’ had the lowest agreement
rate, and the second lowest was ‘‘T-9: Modify the value of a
histogram’’. The top three interaction design proposals for T-
15 adopted three separate gestures: ‘‘long press the graph’’,
‘‘long press the center of thewatch screen to open the function
menu’’, and ‘‘make a flick gesture on the graph’’. The design
received the most votes from experts was ‘‘make a flick
gesture on the graph’’. In Study 1, it received only the third
highest number of votes among all user-defined gestures. One
expert (E18) argued that all the three gestures were applicable
to this task, but the one-to-one mapping of the gesture to
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FIGURE 7. An example of the GIF pictures for choice-based elicitation.

a specific effect should be considered. Since ‘‘long press’’
was also assigned to T-3, the applicable category of task of
this gesture should be clarified to avoid cognitive confusion
between gestures. Comparing to the other tasks, T-1, T-4 and
T-16 had higher agreement rates. There were six tasks with
very high level of agreement rates and the rest are with high
level.

Statistical analysis showed that the number of votes of
some design proposals selected in Study 2 as the options for
experts differed from that in Study 1. This difference was
significant for T-16 (χ2

= 33.77, p < 0.001, ϕ = 0.78), T-2
(χ2

= 13.27, p < 0.01, ϕ = 0.49) and T-3 (χ2
= 12.90, p

< 0.01, ϕ = 0.52). For the rest of the tasks, we detected a
considerable difference for T-10 (χ2

= 7.99, p = 0.10, ϕ =

0.41) and T-4 (χ2
= 4.56, p = 0.16, ϕ = 0.32). Overall, the

2×N Chi-square tests found no fundamental inconsistency
between the expert-preferred and user-preferred proposal for
most tasks (Table 3). In particular, for T-1 and T-20, the
difference between the two groups of subjects was assumed
to be negligible (p = 1). In total, there were seven tasks in
which the most elicited proposal from experts differed from
the one from normal users, namely the analysts. In addi-
tion to T-2, T-3, T-4, T-10 and T-16, the other two are
T-14 and T-15 (Figure 10). The most elicited proposals
from the experts were designated as the final selected ones.
By reviewing the experts’ explanations for their choices,
we analyzed the causes for these differences in preference
as follows.

(1) Select: The most-frequently chosen proposal by the
experts was ‘‘click the target object on the watch screen, then
the selected object is highlighted, and a small icon appears
at the edge of the screen after a few seconds’’. This design
proposal was suggested by only two subjects in Study 1,
because most of the subjects did not mention the icon but only
the highlighting effect. Expert subjects, however, were more

favorable to the design of icon. One expert (E25) pointed
out that the floating icon could effectively handle with the
situation when the selected object was moved off the screen
before further operations. This icon design helps the analyst
to quickly find the selected object so as to perform the anal-
ysis task.

(2)Multi-Select: The most preferred gestural input and UI
of watch were inconsistent for this task between experts and
normal users. Fourteen expert subjects chose ‘‘long press the
first target object, then a pop-up appears with the other objects
of the data set having been lined up for the user to click one
by one’’. In Study 1, only one subject suggested this design.
Most subjects would like to click on the targets one after
another in the usual way. In Study 2, however, only eleven
experts chose this option. Some experts (E8, E14) expressed
that inserting data items into the pop-up enabled a focused
view on a specific data set. This design insured the analysts
against misclick and repeated operations.

(3) Hide the selected graph or data: The subjects in Study
1 preferred the ‘‘long press on the center of the watch screen
to enter the menu with related functions’’ option. From the
perspective of expert subjects, this solution not only requires
more steps, but will also consumemore time to find the corre-
sponding button in themenu. By comparison, ‘‘drag the target
object to the edge of screen’’ is a design of which the experts
were more in favor.

(4)Present data items based on one specific condition:The
majority of the experts (17 subjects) disagreedwith the design
of placing a function button in the menu. The representative
opinion from E15 is that all the filter tasks should be evoked
by a distinctive gesture. Amongst the limited number of
options, expert subjects advocated ‘‘double-tap on the data
graph’’. However, some of the subjects were concerned that
this gesture was not strongly associated with the semantics of
filtering.
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FIGURE 8. Selected design proposals chosen by expert subjects.
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FIGURE 8. (Continued.) Selected design proposals chosen by expert subjects.

(5) Highlight all the data values within a chart related to
one item having been selected: To show data items differ-
ently with some criteria, the most-frequently opted proposal
in Study 1 was ‘‘when the target object is selected, the
edges of relevant objects will be outlined for the user to
select’’. Most experts preferred to express such a single
command with a one-move gesture. The number of experts

who chose ‘‘draw a circle around the watch screen’’ was the
highest.

(6) Annotate the selected data item: For this task, the top
gesture in Study 1 was ‘‘long press on the data graphic’’,
while Study 2 was ‘‘click on the data item and perform a flick
gesture’’. Some expert subjects who specified long press as
the trigger for the pop-up menu argued that this gesture could

VOLUME 12, 2024 78669



Y. Xiao, L. Liu: User-Defined Interactions for Visual Data Exploration

TABLE 3. Comparison of the subjects’ preferences in Study 1 and 2.

FIGURE 9. Agreement rates of choice-based elicitation.

not be mapped to another task, otherwise it would be error-
prone.

(7) Juxtapose two or more data graphics: For this task,
dragging was the gesture that most subjects agreed on. Expert
subjects preferred dragging the graphics in a pop-up window,
using left and right swipe to choose the position where the
data itemwas placed. E3 strongly recommended adopting this
interactive design, as the horizontally swiping would be an
easy method for users to linearly explore objects. By com-
parison, it would be more cumbersome to constantly pan the
dial display to find distant objects to be juxtaposed.

In summary, the experts’ understanding of good interaction
led to different results of Study 2 from Study 1. T-2 and T-3,

as the two with the highest frequency of execution in practice
among all tasks, were highly valued by both experts and
subjects, while their opinions on the optimal solution were
quite divergent. For some tasks only one or two experts’ votes
reversed the results of the elicitation study. This especially
happened to T-2, for which 11 experts agreed the subjects’
preference in Study 1 for ‘‘highlighting the selected object in
the thumbnail view’’, while 12 chose the interaction proposal
shown in Figure 9. The rough equality of scores indicated
that each of these two proposals has its rationality. Many
of the experts would give consideration of both operational
experience and design creativity. They would not only design
one command, but rather the interaction for the context of
tasks, placing greater emphasis on the smoothness of the
entire analysis process.Most of the expert subjects mentioned
that scrolling of the function menu was to be considered. One
design proposal recommended by them is using the back-and-
forth rotation of the wrist to scroll up and down. Figure 11
illustrates the breakdown of the proposals chosen by expert
subjects using our taxonomy. When comparing the results of
Figure 7 and 12, we found that the distribution of proposals
of normal subjects and expert designers are roughly the same
(Figure 12).
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FIGURE 10. The tasks with different most elicited proposals in Study 1 and 2.
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FIGURE 11. Distribution of expert-chosen gestures and UI designs across the taxonomy.

FIGURE 12. Difference of two distributions of gestures and UI designs across the taxonomy in Study 1 and 2.

VI. STUDY 3: PERFORMANCE TEST
Through Study 1 and 2, we derived a set of interaction design
proposals that were more accepted by the subjects for con-
trolling the on-screen visualization with a smartwatch. In this
section, these proposals are tested through the Wizard-of-Oz
method to verify their performance in practice, with respect
to both memorability and usability.

A. SUBJECTS AND APPARATUS
Twenty-seven subjects participated in the test with a mean
age of 22.15 years (SD = 1.21), including 11 females and
16males. The subjects’ demographic information and profes-
sional background are the same as the user group in Study 1,
but neither have they participated the first two studies nor
been experienced in gesture design. The subjects are all right-

handers. Each subject was remunerated with 50 RMB for
participation.

The setting of laboratory for the test was consistent with
that in Study 1 and 2. GIF pictures acted as learning materials
for the subjects. We used a static camera to capture the sub-
jects’ handmovements fromwhich to analyze the accuracy of
the gesture action and the time point at which the movement
can be considered as the initiation of making gesture.

It also helped to record the subjects’ self-report on the
experience of their performance.

B. PROCEDURE
The experimental procedure consisted of three phases: learn-
ing, testing, and rating. In the learning phase, the subjects
were presented with 21 tasks and their interaction effects
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on the large display. The presentations were sequenced
according to the task frequency and priority in visual ana-
lytics, in line with the story line as described in Table 1.
Subjects memorized the gestures by practicing them in
this order until they confirmed that they could accurately
express the execution process of every tasks. When this
work was down, only then could the subject move on to the
testing phase.

We arranged a pretest before the testing phase. The tasks in
the pretest were randomly ordered for the subjects to demon-
strate the correct gestures. Only if the subject successfully
performed at least 80% of the gestures would he or she be
allowed to start the formal test. The order of tasks in the
formal test was also randomized but was different from the
pretest. Using the watch prototype in Study 2, subjects were
instructed to intuitively execute the gestural manipulation as
soon as the prompt of a target task had been completely read
out. Subjects would be not informed of any errors during the
test. For each gesture, the available time for its performance
was 30 seconds. Each task was repeated five times, so that
the overall number of trials was 27 participants × 21 tasks ×

5 repetitions = 2835.

C. MEASURES
The study carried out evaluation in two dimensions: quanti-
tative statistics and subjective ratings. The quantitative data
are about the efficiency and effect of learning the inter-
action design proposals. We measured these two aspects
with two metrics: number of correct performances and recall
time. If the subject performed the gesture exactly as the
motion in GIF, it was regarded as correct performance.
Recall time refers to the time interval from the moment
the prompt finished to the moment the subject moved the
right hand. The criteria for a correct performance included
the accuracy in gesture dynamics, the correctness of the
sequence of multi-step manipulations, and the exactness of
input area. A gesture performance that did not meet any
of these criteria was considered as incorrect. The recall
time of an incorrect performance would not be statistically
processed.

When the testing phase was finished, subjects were
required to rate the design of gestural input and UIs for each
task with a seven-point Likert scale. The scoring items were
in the following four areas:

1. Comfort: Do you feel easy to physically perform the
gesture? (1 = very hard, 7 = very easy)

2. Matching: Do you think there is a one-to-one match
between the gesture and its target task? (1 = very low, 7 =

very strong)
3. Promptness: Do you think the UI of smartwatch is

prompting for your gestural manipulation? (1 = totally not,
7 = very useful prompt)

4. Learnability: Do you think the watch-based interaction
can be easily remembered and learned? (1 = very hard, 7 =

very easy)

FIGURE 13. Number of correct performances and errors of 21 tasks.

D. RESULTS
1) NUMBER OF CORRECT PERFORMANCES
The number of correct trials for each of the 21 tasks correct
is shown in Figure 13. The statistics showed that almost all
the trials for T-1, T-2, T-20 and T-21 were correct. Relatively
higher error rates were observed for T-4, T-10, T-11, T-13,
T-14, and T-15. Among these tasks, T-10 and T-14 had unex-
pectedly higher than 50 percent error rates. We performed a
2× 2 Chi-square test to execute pairwise comparisons of the
21 tasks in the number of correct trials. For T-14, it was found
that the number of correct trials was significantly smaller than
that for the other 20 tasks (T-14 vs. T-10: χ2

= 1.90, p< 0.05,
ϕ = 0.131). Subjects (e.g., P6) suggested that it would be
appealing but also unfamiliar to users to perform a metaphor-
ical gesture on the small screen of the smartwatch to highlight
all the data items of the same category. High-frequently used
gestures such as tapping or pressing can be learned with ease,
but not suitable for characterizing tasks of low frequency such
as ‘‘highlighting’’. The number of correct trials for T-10 was
significantly smaller than for T-4 (χ2

= 15.27, p < 0.01,
ϕ = 0.238). Subjects (e.g., P17) reported that the gestures
were easy to perform, but they needed more time to associate
the ‘‘double-tap’’ gesture with presenting the filter condition.
In contrast to the tasks mentioned above, there were fewer
recall errors for T-19 and for tasks that required the pop-up
of function menu. Subjects (P2, P7) said that they learned the
gesture for T-19 quickly. The icon denoting delete instructed
the subjects the area they can naturally hold and drag the
target object to.

2) RECALL TIME
The recall time of gesture for each of the 21 tasks are illus-
trated in Figure 14. A Friedman test showed that there was a
significant difference in the recall time for all the tasks (p <

0.01). According to the homogeneous subsets, the tasks were
divided into 12 groups. The tasks with the longest recall time
were T-14, secondly T-11 and then followed by T-10. The
task that required the shortest recall time is T-12. The recall
time for ‘‘T-12: Move the data graph to a new location’’ was
extremely short, even slightly less than Select. A Wilcoxon
signed-rank test revealed that the recall time for T-14 was
significantly longer than any of the other 20 tasks (T-14 vs.
T-11: Z = −4.80, p < 0.01). The results of subjective rating
can further validate the quantitative data and explain the
performance of the design proposals.
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FIGURE 14. Recall times of 21 tasks. Error bars denote the
between-subjects standard deviation (SD).

FIGURE 15. Subjective ratings of Comfort. Error bars denote the
between-subjects standard deviation (SD).

3) SUBJECTIVE RATING
Figures 15-18 depict the four areas of the subjective ratings.
We used the Wilcoxon signed-rank tests to execute statistical
analysis. The proposals for T-20 and T-21 were highest rated
in regard to comfort of gestural manipulation. Subjects stated
they felt more comfortable when performing the swipe, tap,
and drag gestures. For the gestures that require fine-grained
adjustments, they felt much less comfortable. This is reflected
by the low rating scores of the proposals for T-9 (T9 vs. T18:
Z= −1.97, p< 0.05) and T-13 (T13 vs. T18: Z= −4.84, p<

0.001). Several repetitions of a simple gesture also increase
the difficulty in performance, as is the case for gestural inputs
for T-5, T-6, T-7 and T-10 (Figure 15).

Regarding the matching score, proposals for T-1, T-2, T-3,
T-12 and T-19 were higher. For these tasks, subjects defined
click or drag gestures borrowed from existing interactions.
Surprisingly, ‘‘double tapping on the center of the watch
screen’’ for T-4 had a very high agreement rate in Study 2, yet
the average match score obtained in Study 3 was extremely
low. When testing this design, the subjects made more errors
in executing gestures than most of the proposals. They were
prone to perform gestures such as long press (21 of 135 trials)
or tap (14 of 135 trials) to show the details of data. Some of
the subjects whomade the long press gesture stated they could
not differentiate the situation of using it from double-tapping.
For T-10, T-11 and T-14, the matching scores of gesture were
also relatively low (Figure 16).
Regarding the promptness of UI design for the watch, the

use of a scroll menu for T-10 had the lowest rating, with a
mean score of 3.89. The general attitude of the subjects to

FIGURE 16. Subjective ratings of Matching. Error bars denote the
between-subjects standard deviation (SD).

FIGURE 17. Subjective ratings of Promptness. Error bars denote the
between-subjects standard deviation (SD).

this design is that the system does not provide the user with
a text box allowing them to submit the word they want. The
rating of UI design for T-6 was significantly lower than T-
8 (Z = −5.89, p < 0.01) and T-17 (Z = −3.03, p < 0.01),
even though the pop-up menu was applied to all these tasks.
Comparing to the design for T-8, the precise selection of color
via a color picker displayed on the watch screen is more
difficult. As to the presentation of options in the function
menu, the design for T-6 is not so self-evident as those for
T-8 and T-17 (Figure 17).

Regarding the item learnability, the interaction design for
T-11 is ‘‘double tapping on the data graph to trigger a button
which gives access to selecting the category of data’’. This
proposal was rated as the most difficult to remember in its
entirety. The double-tap gesture was also seen in the design
for T-10. But as with that design proposal, the subjects (e.g.,
P10 and P20) stated that the double-tap was not easily discov-
erable. Moreover, the entire interaction demands more steps
to complete. Furthermore, the process of finding keywords
from the scroll menu is more complex due to the limited size
of the watch screen. The issue of multiple steps for interaction
was also raised by the subjects for every proposal using pop-
up menu. Statistical analysis showed a significantly lower
rating of T-10’s design in learnability than T-14’s (Z= −3.88,
p < 0.01), though which was viewed as a design adopting an
arbitrary mapping (Figure 18).

VII. DISCUSSION
A. EVALUATION OF THE USER-DEFINED INTERACTIONS
AND TASKS
In the current research, a set of interaction designs con-
necting the large screen displaying the data visualizations
to the smartwatch serving as a controller were elicited by
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FIGURE 18. Subjective ratings of Learnability. Error bars denote the
between-subjects standard deviation (SD).

Study 1 and 2. Study 3 was then launched to evaluate the
user-defined design proposals. We use quartiles of ranking to
assess the level of proposals as high, above average, lower-
middle and low. Better proposals are reflected in relatively
higher agreement rate, less difference between the prefer-
ences of design experts and non-experts, smaller number of
errors, less recall time, and higher rating score. In line with
these criteria, the proposals for T-19 and T-1 rank high on all
metrics. These two proposals adopt the dragging and splay
gesture that are commonly used in screen-based interactions.
By checking the consistency between agreement rate and
performance data of the final proposal (Figure 19), all tasks
can be roughly divided into four categories. This classifica-
tion scheme lacks support from statistical evidence, but can
provide an overview of the evaluation results of user-defined
interactions and suggest the key points of interaction design
for visual analysis tasks.

T-13 and T-16 top the rankings jointly in respect of the
agreement rate, but for some of the evaluation metrics these
two tasks rank below average among all tasks. Overall, the
performance of the proposal for T-16 is higher than that of
T-13, but its ranking for subjective rating on matching is only
13. The expert-preferred proposal for T-16 is not the one the
analysts mostly agreed in Study 1, so this kind of subjects
seemed not to accept it very much in Study 3. For T-13, most
subjects and experts agreed that the merging of data items
demands an operation sequence which is composed of several
fundamental subtasks. The inherent complexity of this task
hinders users from learning it quickly, but does not cause
highly diversified eliciting gestures.

T-2, 20, and 21 are another category of tasks, with lower
overall agreement rates but higher rankings in performance.
These three tasks are single commands and required in dif-
ferent scenarios as basic interactive tasks. Therefore, there
will be more alternatives proposed by the subjects based
on their own habits than other complex tasks. Nevertheless,
the consensus of the subjects’ preference for these tasks
can be made to obtain the most elicited proposal. This pro-
posal is user-friendly and easy-to-perform for the beginner
users. The design of reverse gestures for the opposite refer-
ents [56] are certainly controversial, as different directional
metaphors determine the association between gesture direc-

tion and semantics. The statistics show that the learnability
of the proposals for T-1, T-2, T-16 and T-19 outperform the
others. The proposals for T-20 and T-21 receive learnability
scores lower than these four, probably because the subjects
often perform the swiping gesture in its contrary direction.

We noticed some user-defined interactions for specific
tasks that were more difficult to learn and prone to more
mistakes, Moreover, the ranking of the agreement rate of
these tasks is generally low. Representatives of such tasks are
T-9, T-10, T-11, T-14, T-15 and T-18. They entail multi-step
interactions resulted from their conceptual and procedural
complexity. Based on the overview of the measurements,
there are a couple of user proposals that show especially poor
practical effects on the corresponding tasks. This means that
the analysts without design experience are not very capable
of giving mature proposals for complicated tasks in visual
analytics. Representatives of such tasks are T-14, T-11 and
T-10. It is necessary to have some user-preferred designs
modified by design experts rather than just selecting them by
the frequency of being proposed.

Except for T-1 and T-19, we did not find any other
tasks with high agreement rate and ranking in performance
metrics both, indicating that there is no agreement on the
watch-based interaction for most visual analytics tasks, and
the low precision of on-watch gestures also limits users’ favor
of expressive interactions.

B. DESIGN GUILDLINES
By summarizing and reviewing all the above results,
we suggest following design guidelines for optimizing the
watch-based interactions that enable seamless remote control
of visual data displayed on the large screen.

1) ASSIGNING GESTURES OF THE SAME DYNAMIC
CHARACTERISTICS TO THE TASKS OF THE SAME
CATEGORY [57]
Some visual analytics tasks involve multi-step operations
such as selecting multiple objects and conditional filtering.
The gestural input of collected proposals for related tasks
are comprised of two or more atomic gestures, which may
represent operational steps that exist across heterogeneous
interaction tasks. For example, a long press on the data graph
makes the focused view pops up, and for other tasks the long
press gesture can also but only trigger the focused view. Inter-
actions for one certain category of task should be encoded in
the same way. The triggering conditions, semantics of gesture
and interface feedbacks of the inputs should also be unified
to reduce learning and memory costs for users.

An evidence supporting this design suggestion is the
elicited gestures exhibit certain biases in gesture taxon-
omy, indicating that the results of user elicitation may be
influenced by legacy bias. In the semantics respect, direct
manipulations and deictic gestures account for the higher por-
tion. A very small percentage of abstract gestures is present
for most tasks. As for the input area, gestures in which the fin-
ger(s) touch the watch’s display are the dominant preference
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FIGURE 19. The means and rankings of the selected proposal for each task in respect of all the evaluation metrics. Indicates the smaller the rank, the
better the proposal is, while indicates the opposite.

for all tasks. The analysts generally treat the smartwatch as
a scaled-down version of the smartphone or tablet, persisting
in the preference for touch interaction paradigm. Many of the
atomic gestures, such as the dragging and splay gesture for
T-19 and T-1, are taken from the screen-based interactions.
As demonstrated by a fair number of existing studies, legacy
bias is a contributing factor that users generate personally
satisfying designs [58], [59], [60]. Due to the conscious use
of previous knowledge [61], the designs that successfully
leverage legacy bias can have a positive impact on their
performance. When there is a spatially limited input area and
a traditional task, interactionswith high degree of freedom are
less likely to be proposed. This makes the subjects more fix-
ated to touch gestures, and believe that the gestural input can
bemore guessable and learnable if the watch and othermobile
devices share the same interaction vocabulary. Designers are
encouraged to leverage legacy bias with no outstanding issues
to represent specific tasks or operational steps.

2) SIMPLIFYING UNNECESSARY OPERATIONS FOR
SELECTING, BROWSING AND FINE-TUNING WITH
INNOVATIVE DESIGNS
The choice-based elicitation results show that for seven of the
tasks the most elicited proposal is not the one in user elicita-
tion study. The expert designers explained that the proposals
the analysts most preferred were either too unconstrained or
too clumsy. An unconstrained input means it lacks design
requirements for precise control and error prevention, result-
ing in repetition of basic operations. Such is the case with the
final proposal in Study 1 for T-2, T-3 and T-18. As E3 said,
the small size of watches ‘‘definitely limits precise clicks and
frequent pan gestures to be performed, so selecting objects
located in different areas of the large display only with one-
by-one clicks can be particularly troublesome.’’ A clumsy
input refers to a design treating the smartwatch as ‘‘mini
TV remote control equipped with many buttons’’ (E7’s com-
ment). With this feature, the user must find the functional
button for the target task, such as the way the user proposals

for T-5, T-10, T-14 and T-15 work. Too many times of click
on the buttons within the menu could prolong performance
of the task. Some of the expert designers advised that iconic
or metaphorical gestures [62] could be used to represent
single commands such as hiding, highlighting or displaying
data items, as long as these gestures did not increase user’s
memory burden. The analysts should be inspired to define
physical controls such as rotating the ring of a circle-like
watch, making mid-air swipe gestures moving within a wide
spatial range [63] [64] above the watch, and raising and
lowering the wrist.

The key reason for the disagreement of preferred proposal
between analysts and expert designers is the negative effects
of non-designers’ reliance on prior experience. Firstly, if the
task requires multiple steps to complete, subjects tended to
follow the interactions formulti-layered page andmulti-touch
technology. This made some designs not well adapted to
the physical size of the smartwatch. For example, the final
design proposal for T-13 was considered to be more difficult
to be accurately dragged to the target object because of the
fat finger effect [65] [66]. Secondly, if the subjects lacked
experience of the interaction for executing a certain task,
they would refer to the proposals they had already defined.
For example, the second most elicited gesture for T-15 and
T-18 in Study 1 was ‘‘long press the center of the watch
screen to open the menu’’. It was also frequently proposed
for and assigned as the final proposal for T-6, T-7, T-8 and T-
17. Such practices might hinder the subjects from producing
more creative designs.

3) IT IS ADVISABLE TO UTILIZE THE THUMBNAIL VIEW AND
POP-UPS TO CATER TO USER PREFERENCES
First, the watch should display the thumbnail view of each
independent visual data graph [67] rather than a partial area
of the entire visualization. In the elicitation study, the sub-
jects designed the interface of watch as the result of gesture
operation. Using the gesture taxonomy, we see the design
presenting the objects of interest on the large screen with a
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thumbnail view was most-frequently proposed in terms of
UI design. Subjects did not mention the need to constantly
move this view to display the target object on the watch
in practice, which is critical for smooth experience of data
analysis. Nevertheless, one focused view should be easily
switched to another via some kind of action. A new page
displaying simplified data graph can be invoked and popped
up under this view. Simply performing the task on this page
allows for more efficient and accurate interaction with the
visualizations.

In addition to thumbnail view, the results of Study 1 and
Study 2 indicated that the design proposal with higher agree-
ment rate mostly used a pop-up menu in response to gesture
operation. In particular, the design of pop-up menu consider-
ably helped subjects to recall the interaction. Many subjects
said that the operations on the menu page basically do not
need to be remembered but just to search the buttons. How-
ever, the discoverability of pop-ups is a problem in addition
to the so-called clumsy designs, as few subjects designed the
visual hint or instructions on how to invoke the menu. Some
subjects in Study 3 mentioned the long presses on the center
of watch would accidentally touch data graphs located near
the center point. These comments not only explain to some
extent the medium level of user ratings on the related design
proposal, but also suggested further improvement of the pop-
up designs.

The interface design proposals for T-1, T-2, T-16, T-19,
T-20 and T-21 were rated higher in terms of promptness.
Except the one for T-1, the other five design proposals con-
tained the widget icon or functional pop-ups. These designs
enlarged the interface elements, as compared to treating the
watch’s display as a miniature view of the large screen.
Moreover, they can directly inform the users of the next
operation.

C. LIMITATIONS
Due to some limitations, our study needs to be further devel-
oped. First, we did not use a real smartwatch with real-time
feedback to recognize gestural commands. An interactive
prototype should be equipped with to improve the reliabil-
ity and validity of the test results. Without this prototype,
subjects would be not so cognizant of physical constraint
of the dial on the expressivity of touch gesture. Therefore,
some elicited proposals were not definedwith strict triggering
conditions of contents, nor did they consider the difficulty
of performing small precise movements and the details of
using continuous gestures [68]. As to the sampling method,
the subjects in our studies are all habitual right-handers for
daily activities, so it remains to be seen whether the dexterity
of hand use can have an impact on the preference of gestural
manipulation habits or not.

In contrast to classical user elicitation research, the effect
of interactingwith visualizations is not constant. It varies with
different representations of the visual data, which accordingly
may call for the gesture input specifically mapped to it.

Although there is no direct evidence that our visualization
design causes particular research findings, this effect can be
somewhat detected in the user interpretations in Study 1 and
2. A typical example is the interpretation of the selected
design proposal for T-14. Some expert designers disagreed
with drawing a circle around the watch screen, arguing that
this gesture ‘‘just make use of the circularity of the chord dia-
gram’’. One expert (E6) stated if a Sankey diagram is used to
link items under different categories, a circular swipe cannot
be a good representation of highlighting all the relevant items.
Given that thumbnails are the dominant user preference for
the UIs of smartwatch, it is possible that their styles could
elicit corresponding gestures. More work is need to detect
the strength of this effect. Fortunately, we did not gather
any negative comments from subjects about the visualization
design itself.

VIII. CONCLUSION
This study can provide insight into the possibility of applying
wearable devices as the remote control in visual analytics.
In the current study, we explore watch-based input and output
designs that are more adapted to user habits and cognitions
from the perspective of user preferences. Through a classical
elicitation study, we collect a set of watch-based gestures for
representative visual analytics tasks and the user interface
designs for the gestures. Expert users evaluate these interac-
tion design proposals by choosing them again. Finally, the
selected proposals are tested in terms ofmemorability and use
experience, giving us design guidelines for better interaction
in watch-based visual analytics.

In the first two stages of this study, we contrived to
integrate users’ and experts’ opinions on the best interac-
tion designs. Users’ preference was double-edged that their
proposals made reference to the existing products for good
use but tended to be somewhat conservative. For designers,
more attention should be paid to balancing natural interaction
and user’s habits. Similar interaction intentions should be
expressed through a universal mapping between the inter-
face and gestures, forming a unified interaction language for
menus and functional gestures in order to reduce memory
burden. These all require higher requirements for interaction
design. In future work, we will focus on exploring other
freehand inputs for data visualization interaction, which can
break through the limitations of watch-based interaction in
physical size while exploiting the advantages of wearable
devices.
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