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ABSTRACT The traveling purchaser problem (TPP) is a generalization of the well-known traveling
salesman problem. The purchaser is aware of the travel cost between a pair of markets and between a
depot and markets, the purchase cost and availability of a product at each market, and the demand for
the products. The purchaser has the choice of selecting a subset of markets, where the products and how
much quantity to be purchased. The objective is to determine an optimal tour for a purchaser that begins
and ends at the depot to purchase a set of products from a subset of markets such that the sum of travel
and purchase costs is least within the threshold values on the maximum number of markets visited and the
number of products purchased at any one market. The problem involves three interesting plans, such as the
selection plan, the routing plan, and the purchasing plan. This problem is frequently faced by the shoppers
and it has several applications in different domains including production scheduling, transportation, network
design, machine scheduling, manufacturing, etc. This paper presents an extended version of TPP along with
its mathematical modeling using an integer programming and a deterministic pattern recognition lexi-search
algorithm to solve optimally. To test the efficiency of the algorithm, the experiments are carried out on distinct
large size benchmark data sets. The extensive comparative computational results show that the proposed
algorithm is capable of finding improved solutions on several benchmark data sets reported for capacitated
and uncapacitated instances.

INDEX TERMS Traveling salesman problem, traveling purchaser problem, integer programming, pattern
recognition Lexi-search algorithm.

I. INTRODUCTION
The traveling salesman problem (TSP) is a well-known com-
binatorial NP-hard optimization problem. In TSP, a set of
cities and the distance between every pair of cities are given.
The salesman starts at the depot point and wants to visit
each city exactly once and returns to the depot point. The
objective is to find a closed tour for the shortest possible
distance that connects the given cities. The dashed line in
Figure (1) refers to one of the closed tours of TSP with
5 cities. One of the extensions of this problem is the traveling
purchaser problem (TPP), firstly coined by Ramesh [1], the
problem involves a set of markets and a set of products. Each
product’s cost and the cost of travel between the different
marketplaces are known. The purchaser has to find a tour
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with a subset of markets such that the total cost of travel
and cost of purchasing all the products is minimum. More-
over, he implicitly assumed that if a product is available at
a given market, then its available quantity is sufficient to
meet the product’s demand at that market, referred to as the
un-capacitated version and at least one product should be
purchased from each of the markets in the subset. In practice,
these assumptions may lead to a higher cost. Although a (few)
product(s) is (are) available in different markets with varied
capacities the purchaser cannot make his complete purchase
with lower cost to meet the requirement as partial purchase
is not permitted in the model. The dashed line in Figure (2)
gives a tour with a subset of markets for the purchaser. To find
an optimal solution to this problem a lexicographic search
(LS) algorithm was proposed. While this algorithm is exact
in general, the computational details are limited to small
instances of sizes up to 12 markets with 10 products only.
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FIGURE 1. A tour of TSP with 5 markets.

FIGURE 2. A tour of TPP with a subset of markets.

In addition to the lexicographic method of Ramesh [1],
two more exact algorithms are available. Singh and Oudheus-
den [2] have developed a branch and bound (BnB) algorithm
for the TPP. This algorithm involves two phases; one is
the selection phase and the other one is the search phase.
In the selection phase, a subset of markets will be selected
and in the search phase determined an optimal solution with
the selected markets using effective branching and bounding
strategies. The experiments carried out are limited to the
instances of sizes up to 25markets with 25 products. Later on,
Laporte et al. [3] developed a branch and cut (BnC) algorithm
for the TPP which is capable of solving instances of sizes up
to 200 markets with 200 products.

Pearn and Chien [4] addressed two interesting applica-
tions of TPP, the first one is manufacturing factories want
to minimize the cost of purchasing different raw materials
required from the various warehouses located in different
areas with varied costs, in this case, the purchaser has to select
a subset of the warehouses to be visited, make a tour plan with
the selected warehouses to minimize the sum of travel and
purchase costs. The second one is in the context of scheduling
of a set of jobs over some machines with different set-up and
job processing costs in which the total cost for completing the
jobs has to be minimized. To provide improved solutions for
the TPP, several modifications includes ‘Next bloc and Next-
neighbor search’, the ‘Parameter-selection and Tie-selection’,
‘Adjusted cheapest and the nearest cheapest’ and ‘Random

order and sequence order’ suggested to the existing four
algorithms Lexicographic search [1], Generalized-savings
heuristic (GSH) [5], Tour-reduction heuristic (TRH) [6] and
Commodity-adding heuristic (CAH) respectively. The com-
putational results show that the random-order commodity
adding algorithm was obtained better solutions than the other
three algorithms.

Boctor et al. [7] deals with two versions of TPP. They are
un-capacitated TPP (UTPP) and capacitated TPP (CTPP).
In UTPP, the quantum of availability of a product at each
market is larger than or equal to its demand and in CTPP
the supply may be lower than the demand. They have
designed distinct perturbation heuristics by integrating with
several procedures such as market drop, market add, market
exchange, etc. for both the versions of TPP and tested on
the instances with 50–350 markets and 50–200 products. The
extensive comparative computational results reveal that the
perturbation heuristics produced better solutions. Teeninga
and Volgenant [8] described improvement sub-procedures
that can be incorporated into the existing heuristics GSH,
CAH, and TRH. The Computational results show the effec-
tiveness of these sub-procedures on the test instances of sizes
up to 200 markets with 200 products.

Riera-Ledesma and Salazar-González [9] introduced a new
heuristic approach based on a local search scheme, exploring
a new neighborhood structure for the TPP and experimented
on instances involving up to 350 markets with 200 prod-
ucts within a reasonable amount of time. Another variant of
TPP is the asymmetric traveling purchaser problem (ATPP)
solved by Riera-Ledesma and Salazar-González [10]. Amod-
ified branch and cut algorithm was proposed to solve ATPP
and tested the instances of size up to 200 markets with
200 products within acceptable amount of time. Bontoux
and Feillet [11] solved the TPP using the ant colony opti-
mization (ACO) technique combined with a local search
procedure exploring a new neighborhood structure. This tech-
nique is tested using a set of benchmark instances ranging
from 50 to 350 markets with 50 to 200 products. The experi-
ments carried out on these instances are compared with the
results of Riera-Ledesma and Salazar-González [9] which
give improved solutions on certain test instances. Later,
Riera-Ledesma and Salazar González [12] solved a school
bus routing problem using a multivehicle traveling purchaser
problem (MVTPP). The problem has been addressed by
using a flow-based formulation that combines continuous and
binary variables through the coupling constraints. A branch
and cut algorithm was developed and that has been tested
on different instances of sizes up to 125 bus stops with
125 student locations.

Goldbarg et al. [13] presented a transgenetic algorithm
(TA) for the TPP. It is inspired by two significant evolutionary
driving forces: one is horizontal gene transfer and another one
is endosymbiosis. Computational experiments indicate that
the TA method is very effective for the investigated problems
with 17 and 19 new best solutions from 440 and 89 instances
reported for CTPP and UTPP respectively.
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Gouveia et al. [14] studied a variant of TPP with additional
side constraints, where the purchaser should not visit more
than a predefined number of markets, the number of items
purchased at each market cannot exceed the given thresh-
old value and where only one copy per item needs to be
bought. The problem is nicely described with integer linear
programming and solved instances up to 300 markets with
200 products with the help of dynamic programming and
Lagrangian relaxation techniques.

Several variants of TPP have evolved in the last two
decades. Mansini and Tocchella [15], considered the TPP
with budget constraint and developed two heuristics namely,
efficient enhanced local search and variable neighborhood
search. Both the heuristics are implemented on a large set
of benchmark problems with different control parameters on
budget constraints for both the UTPP and CTPP and reported
the detailed experimental results. Angelelli et al. [16], [17]
addressed a dynamic TPP, where the availability of a prod-
uct at a market decreases over the time and used different
greedy algorithms to solve it. TPP with multiple stacks
and deliveries that is similar to the one-to-one pickup and
delivery vehicle routing problem, introduced by Batista-
Galván et al. [18]. Sumathi et al. [19], studied a variant
of TPP in which the purchaser aims to find a tour with
minimum time such that the total purchase cost of all
products does not exceed the predefined budget limit and
developed the lexi-search algorithm to obtain an optimal
solution. Kucukoglu [20], presents a new variant of TPP
with a fast service option, in which the tour must be closed
within a period that considers the purchaser’s traveling and
purchasing times. An adaptive large neighborhood search
algorithm (ALNS) is presented and tested on the performance
of this algorithm using different-sized benchmark problems
of TPP and computational results are reported. A few more
interesting variants of TPP are listed here: TPP with environ-
mental transportation cost Kang et al. [21], Sustainable TPP
Cheaitou et al., [22], Dynamics of rebound effects in TPP
Caballero et al. [23], Multi-depot TPP under shared resources
in logistics Jesri et al. [24].
More recently, a TPP with transportation time limit is

studied by Kucukoglu et al. [25] in which the purchaser wants
to collect a set of perishable products, which may deteriorate
due to delay in travel time, from the different capacitated
markets. For this he has to determine a route plan and pro-
curement plan with minimum cost subject to satisfying the
transportation time limits. A heuristic based Tabu search
algorithm is used to obtain the near optimal solutions in a
reasonable amount of computational time. A multi-vehicle
clustered TPP Roy et al. [26]., is an extension of TPP, where
the set of markets be divided into distinct clusters with the
help of the k-means algorithm. In this problem, there are two
plans for the purchaser in procuring the products. In the first
case, the purchaser has to procure the products by visiting
the markets cluster-wise, returns to the depot, and the entire
procurement will be carried along the same path of the pur-
chaser by a different vehicle. In the second case, the products

that are purchased in each cluster will be transported through
vehicles from the center of the cluster to the depot directly.
A variable-length chromosome genetic algorithm (VLC-GA)
is proposed to determine the optimal cluster paths and then a
local heuristic is used to connect the clusters whichminimizes
the total cost involved in the system.

The researchers mostly focused on different TPP variants
as it contains the selection plan refers to selecting a subset of
marketplaces with a depot point, the routing plan refers to the
ordering of markets selected to be visited to minimize the cost
of travel, and the purchase plan refers to how much quantity
to be purchased at each market place together with the pur-
chase cost. Also, several practical applications of these plans
involved in transportation, manufacturing industry, telecom-
munication network design, and machine scheduling have
been introduced in the literature by Manerba et al. [27].
Ong [6] described an interesting application of TPP in a
scheduling context that looks for an optimal sequence of
n-jobs on a machine that has m-states and is solved using
TRH. However, the performance of TRH greatly depends
on the selection of the initial subset of markets. Another
application of TPP in production scheduling can be seen in
Buzacott and Dutta [28]. Table–1 provides a summary of
the existing literature on the TPP versus the present study.
It is observed that there is little attention was given to the
studies on TPP with additional side constraints due to its
high complexity in finding the solution. The present TPP
variant studies both UTPP and CTPP cases by considering
the additional side constraints η and δ in the model, whereas
β implicitly appears in the objective function. Therefore, the
present form of study is an extended version of the most of
TPP variants listed. In addition, this contributes a determin-
istic pattern recognition lexi search (PRLS) algorithm, which
eliminates all the infeasible patterns with the help of effective
bounding strategies and provides the optimal solution.

The remaining paper is organized as follows: Section II
provides a detailed problem description of the present vari-
ant of TPP and its mathematical representation of integer
programming. Section III presents the discussion on the
terminologies used in lexi search and the proposed Pattern
recognition lexi search algorithm. Section IV includes the
numerical example of TPP and the systematic search mech-
anism of PRLS to find an optimal solution of TPP. The
extensive computational results are reported in section V and
followed by the concluding remarks of TPP.

II. PROBLEM DESCRIPTION AND MATHEMATICAL
FORMULATION
Let G = (V ,E,W ) be a general directed /undirected
weighted complete graph, where V = {1, 2, . . . ,m} be a
set of vertices, represented as markets with a depot point
(say 1), E = {eij/i, j ∈ Vi ̸= j} be an edge set contains
an edge eij that connects a pair of markets i and j. W be
the collection of weight factor on each edge eij defines the
travel cost Cij from market i to market j. In a graph G,
each pair (i, j) , i, j ∈ V of markets is connected with an edge
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TABLE 1. A brief summary on the most relevant works on TPP to the present work.

eij∈ E uniquely then it is called a complete graph. A weighted
complete graph is a graph in which each edge is assigned
with a weight factor. If Cij = Cji,∀i, j ∈ V , then the graph
is called undirected weighted complete graph otherwise the
graph refers to directed weighted complete graph. A TPP is
referred to symmetric or asymmetric according to the graph
G is undirected or directed. In addition, at each market a
set of products K = {1, 2, . . . , n} be available with varying
quantity, denoted by Akj. The unit cost of product k at market
j is denoted by Pkj and it can be varied in different markets
and Dk represents the known demand for each product k. At
each market j, if Akj ≥ Dk ,∀k ∈ K the problem refers to
UTPP, otherwise it refers to CTPP. In addition, two more
additional constraints are considered in the model. One is
maximum allowable markets η ≤ m to be visited to purchase
the required products and the second one is the maximum
permitted number of products δ ≤ n to be purchased from any
one market. The purchaser starts and ends at the depot point,
visits a subset of markets S of V exactly once, and purchases
his complete demand at one or more markets subject to
satisfying the additional constraints, before returning to the
depot. Clearly, the cardinality of S is |S| = γ , 2 ≤ γ ≤ η and
S must contain the depot. The quantum of units of product
k purchased at market j ∈ S is denoted by Zkj, assumes a
non-negative integral value. The objective of the purchaser is
to find an optimum tour with a subset of markets that provides
the minimum cost of the sum of travel and purchase costs
together. Thus, the model involves three important plans.
The first one is selection plan refers to which markets are
supposed to be visited by the purchaser, the second one is
the routing plan which includes the ordering of the markets
and the third one is the purchasing plan refers to how much
quantity and where to be purchased. If the purchaser visits

market j from themarket i then the binary variableXij assumes
a value 1 otherwise 0. If the purchaser wishes to purchase
product k upon visiting the market j, then Ykj = 1, otherwise
Ykj = 0.
The following assumptions are used to model the TPP

• The travel cost between the markets, demand of prod-
ucts, availability and cost of products at each market are
predefined.

• The purchaser can select a subset S of markets along
with the depot point arbitrarily.

• The purchaser should start from a depot, visit each mar-
ket in the set S exactly once and return to the depot.

• The purchaser will not be allowed to take any illegal
tours or unwanted tours.

• The demand of k th product must be lower than the total
availability of k th product at all markets to set a feasible
solution.

• The complete demand of a product can be purchased in a
singlemarket in the case of UTPP, while a product can be
purchased inmultiple markets tomeet the actual demand
in the case of CTPP.

• The purchaser can visit a market without any purchase
of products.

The mathematical formulation using the integer linear pro-
gramming of the proposed TPP is given in equations (1)–(12).
The variables Xij,Ykj and Zkj appeared in the model are called
the decision variables.

Minimize
∑
i∈V

∑
j∈V

CijXij +
∑
k∈K

∑
j∈S

PkjZkj (1)
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Subject to the constraints

m∑
j=1

X1j = 1

m∑
i=1

Xi1 = 1

 (2)

∑
j∈S Xij = 1, i ∈ S∑
i∈S Xij = 1, j ∈ S

}
(3)∑

i∈S

Xip −
∑
j∈S

Xpj

= 0, p ∈ S (4)∑
i∈S

∑
j∈S

Xij ≤ γ − 1 (5)

Dk ≤
m∑
j=1

Akj, k ∈ K (6)

ZkjYkj ≤ Akj, j ∈ S, k ∈ K (7)∑
j∈S

YkjZkj = Dk , k ∈ K (8)

∑
j∈S

Ykj ≥ 1, k ∈ K (9)

n∑
k=1

Ykj ≤ δ
∑
i∈S

Xij, j ∈ S (10)

Xij ∈ {0, 1} , i, j ∈ V (11)

Ykj ∈ {0, 1} , j ∈ S, k ∈ K (12)

The objective of the purchaser is to minimize the sum of
travel and purchase costs, which is given in (1). Constraint (2)
specifies that the purchaser starts from the depot and returns
to the depot exactly once. Constraint (3) denotes that the
purchaser enters the market j and departs the market i in S
exactly once. However, the constraints (2) and (3) together
do not guarantee the continuity of a tour of the purchaser.
Constraint (4) enforces to maintain the tour’s continuity but
it does not prevent the formation of partial (or) illegal tours
with the markets in S. For example, let S = {1, 2, 3, 4, 5}.
Case 1, the edges corresponds to the pair of markets (1, 3),
(4, 5), (5, 2), (2, 4), (3, 1) forms multiple tours, satisfy the
constraints (2)–(4), but this not a feasible trip for the pur-
chaser. Case 2, the edges corresponds to the pair of markets
(1, 3), (4, 5), (5, 1), (3, 4) forms a continuous trip, yet it is
not feasible as it does not include the market 2, referred as an
illegal tour. To identify the occurrence of such multiple tours
or illegal tours Constraint (5) is enforced. If Constraint (5)
satisfied then it indicates the occurrence of such illegal tours
which are to be discarded. To ensure the existence of a
feasible solution constraint (6) is added i.e., if the demand
of a product k is supposed to be lower than or equal to the
sum of its availabilities at all the markets, then there will be
at least one solution, otherwise, the problem has no feasible
solution. Constraint (7) tells us that the quantum of purchase
Zkj of a product k at market j do not exceed its availabilities
at the market j. Constraint (8) states that the total quantum

FIGURE 3. An illegal tour without a depot.

FIGURE 4. An illegal tour with a depot.

of purchase of each product k must be equal to its actual
demand. Constraint (9) says that the purchaser can purchase
a product in one or more markets to fulfill the demand.
Constraint (10) is imposed to control the maximum number
of products purchased at any one market. Finally, the binary
variables Xij and Ykj which are used in the model are given
in (11) and (12). For better understanding of the mathematical
formulation, a detailed discussion on the formation infeasible
or illegal tours, feasible tours and an optimal tour of the
purchaser shown graphically in Figures (3)–(6).

III. LEXI SEARCH ALGORITHM
The lexi-search algorithm has been used successfully to a
numerous combinatorial optimization problems. In general,
the lexi-search algorithm examines all possible solutions in a
hierarchy meaning that it performs the search for an optimal
solution systematically that is similar to the search for mean-
ing of a word in a dictionary. Firstly, an alphabet table will be
constructed by sorting the entries in the travel cost matrix C .
This alphabet table contains a collection of letters represent-
ing all possible ordered sequences of entities as travel cost,
cumulative cost, row and column indices of respective cost
value as markets. A partial word is the combination of letters
that appear in the alphabet table. A partial word which gives
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FIGURE 5. Initial feasible tour.

a tour and satisfies all the feasibility restrictions is called a
feasible word, otherwise it is infeasible. In this process, find-
ing which combination of letters from the alphabet table gives
the best solution is the challenge. In general, the lexi-search
algorithm uses less memory, because of the existing lexi-
cographic order of partial words. The proposed algorithm
carefully examines all the partial words and identifies a
sequence of markets which will form a feasible tour for the
purchaser. When the process of checking the feasibility of a
partial word becomes difficult, although calculating the lower
bound is easy, a pattern recognition technique (Murthy [29])
can be integrated with the lexi-search algorithm to get the
optimal solution. The performance of the pattern recognition
lexi-search algorithm depends on the choice of an appropriate
alphabet table. In this case, two contradictory features from
the search list should be considered:

i. The process of verifying the feasibility of a partial word
is simple, however calculating a lower bound is difficult
and

ii. The computation of the lower bound is simple, even
though the feasibility analysis is difficult.

In this method, the algorithm’s effectiveness is increased
by calculating bounds at first and then checking for the
feasibility of a partial word whose value is less than the
upper bound. Although, the general structure of the proposed
algorithm appears similar to Ramesh [1] but it is significantly
differs in the construction of the alphabet table and the bound-
ing strategies used, which in turn helps to produce the better
solutions for higher dimension instances too.

A. PATTERN
A pattern is an indicator of a two-dimensional array X which
contains the binary entries and is associated with the partial
word. If the patternX is feasible, thenX is said to be a feasible
pattern, otherwise X is an infeasible pattern. The objective
function value concerning the feasible pattern X denoted by
F(X ), it will be computed using the equation (13) and it gives
the sum of travel cost (TC) and purchase cost (PC).

F (X) = TC + PC =
∑
i∈V

∑
j∈V

CijXij +
∑
k∈K

∑
j∈S

PkjZkj (13)

B. ALPHABET TABLE
The elements in the travel cost matrix C =

[
Cij

]
be

arranged in increasing order and indexed from 1 to m2 to
generate an alphabet table. Table–4, shows the construction
of an alphabet table for the numerical example given in
section IV. The columns in Table–4 are labeled as I,C,CC, r
and c, respectively denote the index of travel cost of the
purchaser, cumulative cost, row and column indices. Let
I = {1, 2, 3, . . . ,m2

} be the collection of m × m ordered
indices and each of this index is called a letter. A letter
ai = (C,CC, r, c) ∈ I represents an ordered sequence
of entities associated with the travel cost matrix. Let αp =

(a1,a2, . . . , ap) be an ordered sequence of p letters from I
represent a partial word of length p(≤ γ ) and ap is called
the leader of αp. A letter ai, i = 1, 2, . . . , p can occupy any
position in αp. For uniqueness, the letters in αp are arranged
in increasing order, that is ai < ai+1,i = 1, 2, . . . , p − 1.
The pattern X is associated with αp. If X is a feasible pattern
then αp is feasible otherwise infeasible. Enumerating all the
feasible patterns in the entire search space is too expensive
when the size of the instance is large. Therefore, the algorithm
implicitly identifies the feasible patterns within the limited
search space with the help of the effective bound settings.

C. BOUND SETTINGS
The value of a partial word V (αp) is given by V

(
αp

)
=

V
(
αp−1

)
+ C

(
αp

)
, with V (α0) = 0. Let S be the subset of

markets, associated with the letters in αp and |S| = γ . Let
LB and UB respectively, denotes the lower and upper bounds
of αp. To accelerate the search, the LB of a partial word αp is
determined using the equation (15). Set UB = ∞ initially or
for an effectiveUB, find a random feasible patternX , and then
setUB = F(X ). The algorithm intelligently eliminates all the
infeasible patterns and searches for an optimal solutionwithin
the range of LB and UB. If there is no further improvement to
the initialUB indicates that either the problem has no solution
or the initial pattern will be the optimum solution.

PC =
∑
k∈K

∑
j∈S

PkjZkj (14)

LB
(
αp

)
= V

(
αp

)
+ CC

(
ap + γ − p

)
− CC

(
αp

)
+ PC

(15)

where PC be the purchase cost and is calculated using an
equation (14). The algorithmic steps involved in finding the
PC are given in the subsection III-D as well.

D. CALCULATION OF AN INITIAL PURCHASE COST
Step 1: Assign TA =

[
Akj

]
and TD = [Dk ] , k ∈ K , j ∈ S

Z =[Zkj]← null matrix of order n ×m
Let us start with k = 1 and PC = 0 go to step 2.

Step 2: Select the least cost cell in Pkj say (k, j) go to step 3.
Step 3: Calculate Zkj = min (TAkj,TDk )

TAkj = TAkj, − Zkj
TDk = TDk − Zkj
PC = PC + Pkj ∗ Zkj
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If TDk = 0 go to step 4.
else select the next least cost cell in Pkj say
(k, l) , j = l repeat step 3.

Step 4: k = k + 1, if k > n, stop and record the PC , else go
to step 2.

E. PROPOSED PATTERN RECOGNITION LEXI-SEARCH
ALGORITHM
The step-by-step search procedure of the pattern recognition
lexi-search algorithm is described in the sequel as follows:
Step 1: Initialization

m← number of markets
n← number of products
η ← maximal allowed number of markets to be
visited
δ ← maximal allowed number of products to be
purchased at any one market
C =[Cij]← travel cost matrix
D =[Dk ]← Demand of products
A =[Aki]← product’s availability matrix
P =[Pki]← product’s cost matrix
UB = ∞ (a large value or a random solution)

Step 2: If equation (6) holds then the problem will have
at least one solution, go to step3, else there is no
solution to the problem, go to step 15.

Step 3: Alphabet table:
Construct an alphabet table using the given travel
cost matrix C as discussed in Section III-B and go
to step 4.

Step 4: Calculate the initial purchase cost as discussed in
section III-D go to step 5.

Step 5: (i) The algorithm starts with a partial word
L(αp) = (ap) = 1, where the length of
thepartial word αp is one, that is, p = 1 go
to step 5(ii).

(ii) If p = 1, max = m2
− m − 1 and if ap >

max, go to step 15, else go to step 6. Else max
= m2

− m− γ + p, go to step 5 (iii).
(iii) If ap > max, go to step 13, else, go to step 6.

Step 6: Bound settings
Determine the lower bound (LB) of a partial word
αp, using the equation (15), go to step 7.

Step 7: If LB(αp) < UB go to step 8, else go to step 13.
Step 8: Feasibility checking

The sequence αp is a partial word. Read the row and
column indices of the letter ap in αp. If the pattern
X corresponds to αp satisfy the equation (3), then it
is said to be a partial feasible word go to step 9,
else it is infeasible discard the current letter and
then continue the search by considering the next
immediate letter ap+1 in pth position of αp, go to
step 5(iii).

Step 9: Concatenation
Consider the letter ap to be a member of αp. If αp
forms a tour or a sub-tour (satisfy equation (4)) then
go to step 10.

Else αp+1 = αp ∗ ap+1, where ∗ is a concatenation
operation, update the markets in the set S that are
associated with αp, go to step 5(ii).

Step 10: If αp included the home city (satisfies an
equation (2)) then it is said to be a partial feasible
tour, go to step 11.
Else it is an illegal tour (satisfy an equation (5))
then discard the current letter and then continue
the search by considering the next immediate letter,
go to step 5(iii).

Step 11: If the pattern X corresponds to a tour of αp satisfy
the constraints (7)-(10) then the pattern X will be a
feasible solution. Update the PC along the tour (as
discussed in section III-D) and hence find the value
of the pattern F(X ) using an equation (13), go to
step 12.
Else it is an illegal tour then discard the current letter
and then continue the search by considering the next
immediate letter ap+1, go to step 5(iii).

Step 12: If F(X ) < UB, then record the improved solution as
UB = F(X ), go to step 13, else discard the current
letter and further continue the search by considering
the next immediate letter ap+1 in pth position of αp,
go to step 5(iii).

Step 13: If p = 1 go to step 15, else go to step 14.
Step 14: Perform the backtracking

Set p = p − 1, continue the search until the opti-
mum solution is obtained by considering the next
immediate letter ap+1 in the pth position of αp, go to
step 5(ii).

Step 15: Stop the search
In brief the PRLS contains different steps such as
construction of alphabet table, and in search process
first calculate the effective bounds for the pattern
αp, next checks for feasibility of αp, perform the
concatenation if it is feasible and record the feasible
solution, then carefully use the backtracking opera-
tion until the optimal solution is obtained.

IV. NUMERICAL ILLUSTRATION
For better understanding the proposed TPP variant and the
concept of the pattern recognition lexi-search algorithm,
a suitable numerical example is considered from Gold-
berg et al. [13]. Let there are m = 7 markets, where market
1 is assumed to be a depot. The travel cost of the purchaser
between a pair of markets is given in Table–2, in which the
cell entries appear to be symmetric and the notion∞ indicates
no direct connectivity between a pair of markets (or) self-
loops. The purchaser wants to purchase n = 4 products that
are available at distinct markets. The demand of a product, the
availability and unit cost of each product is given in Table–3.
Observe that some products may not be available in certain
markets, the quantum of availability and the product’s cost
differs frommarket to market. Now, the purchaser starts from
depot, travel to different markets to purchase all the four
products with the desired demand and then returns to the
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TABLE 2. The travel cost matrix (C).

FIGURE 6. Optimal tour.

depot. Initially, set η = 7 and δ = 2. His objective is to
minimize the sumof total travel and purchase costs on a single
tour subject to satisfying all the constraints. A solution of TPP
gives us a route with a subset of markets which employs the
purchase plan and route plan to the purchaser. In order to get
the solution of TPP through the proposedmodified PRLSfirst
construct an alphabet table as discussed in section III-B and
is shown in Table–4.

A. SEARCH TABLE
The systematic search mechanism of the proposed modi-
fied PRLS is illustrated in detail in Table–5. The columns
1 through 13 in table–5 respectively represent a serial number,
followed by seven columns containing a leading letter ap in
the partial word αp, next two columns V and LB give the
value and lower bound of αp. The columns labeled r and
c state the row and column index of the letter ap. The last
column shows the remarks regarding the acceptance(A) and
rejectance (R) of a letter ap for inclusion in a feasible word
αp. The algorithm starts with the letter a1 = 1, calculate the
bounds first and then check the feasibility. In the sequel, the
algorithm effectively examines the feasibility of the letters
in succession, discards the infeasible letters and inducts the
letters into a partial word αp which are feasible. If αp be a
full length feasible word, then update the value of UB. The
ordered sequence pattern αp = (1, 3, 7, 8, 9, 32, 35) gives
the initial feasible solution for the purchaser and is observed
in 35th row of Table–5. Further, the algorithm continues the

search for the other possible improved or optimal solution
with the help of effective backtracking and bounding strategy.
In the search, three more improved solutions were obtained
and they observed correspond to row 41, row 103 and row
279 of Table–5. The details of the pattern, route plan and pur-
chase plan of these solutions are shown in Table–6. As there is
no further improvement to the solution observed in row 279 of
Table–5, this solution will become the optimum solution.

B. ILLEGAL, FEASIBLE, AND OPTIMAL SOLUTIONS
The graphical representation of a sub-tour with 4–markets
is shown in Figure (3), in which, the markets scattered on
a Euclidean plane are indexed from 1 to 7 and the encircled
point represents the depot point of the purchaser. The vector
Dk , contains the demand of each product. An ordered 4–tuple(
Z1j

(
P1j

)
,Z2j

(
P2j

)
,Z3j

(
P3j

)
,Z4j

(
P4j

))
at market j along

the tour gives us the purchase plan of products, where the Zkj
be the quantity of product k purchased at market j with the
purchase cost Pkj. The value on each edge along the tour gives
the travel cost of the purchaser. Observe that, the purchaser
can buy all the products with complete demand along the tour
shown in Figure (3). However, this tour does not include the
depot point, thus this tour is called an illegal/infeasible tour
of the purchaser. One more example of a sub-tour is given
in Figure (4). This tour includes the depot point. Note that,
there is a possibility of purchasing a maximum of 4 units (1
unit from market 3 and 3 units from market 7) of product
1 only along this tour, and which is not meeting its actual
demand of 5 units. Thus, the purchaser cannot make his
complete purchase along this tour, and it is also an infeasible
tour.

Table–6 contains the details of feasible patterns which are
generated with PRLS, the route plan of the purchaser, and the
corresponding solution. Here, α7 = (1, 3, 7, 8, 9, 32, 35) be
an initial feasible pattern, forms a tour 1→ 5→ 7→ 2→
4 → 3 → 6 → 1 for the purchaser with the ordered pair of
indices of letters in α7 and provides a total cost 37 units. The
total cost includes the travel cost 17 units and the purchase
cost 20 units. The graphical representation of this tour and the
purchase plan is shown in Figure (6). The purchaser purchase
five units of product 1 each cost 1$ at market 5, two and four
units of product 2 at market 6 and market 7 each costs 2$ and
1$ respectively, four units of product 3 from market 7 each
cost 1$ and finally three units of product 4 at market 4 each
cost 1$.

The pattern α6 = (1, 3, 7, 8, 9, 37), give a tour 1→ 5→
7 → 2 → 4 → 6 → 1 for the purchaser with an improved
solution 33 units of total cost. Similarly, the pattern α5 =

(1, 3, 7, 9, 31), provide a better solution 31 units of total cost
along the tour 1→ 5→ 7→ 2→ 4→ 1 of the purchaser.
The search is continued further, and no improvement to the
solution pattern α6 = (1, 4, 5, 8, 18, 20), thus this pattern
will be the optimal solution with the total cost 29 units. The
total cost includes the travel cost 9 units and the purchase cost
20 units. The optimal route plan1 → 5 → 4 → 2 → 7 →
6→ 1 for the purchaser is shown in Figure (6). The purchaser
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TABLE 3. Demand, availability and unit cost of products.

TABLE 4. Alphabet table.

purchase five units of product 1 each cost 1$ at market 5, two
and four units of product 2 at market 6 andmarket 7 each costs
2$ and 1$ respectively, four units of product 3 from market
7 each cost 1$ and finally three units of product 4 at market
4 each cost 1$. Although the purchase cost of both the initial
feasible tour and optimal tour is same they differ in travel cost
and route plan. Table –7 gives the optimal solutions and their
route plans which are obtained by setting different parametric
values for η and δ. It is observed that the value of η decreases

the optimal solution increases where as CPU computational
time is lowering.

V. COMPUTATIONAL EXPERIMENTS
This section provides the computational results of TPP with
the proposed PRLS. The algorithm is coded in MATLAB
programming language and tested on a PC with 1.00 GHz
Intel (R) Core (TM) i5-1035G1 CPU and 4GB of RAM run-
ning the Microsoft Windows 10 operating system. Firstly, the
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TABLE 5. Search table.
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TABLE 5. (Continued.) Search table.

TABLE 6. Feasible and optimal solutions.

TABLE 7. The optimal solution with respect to the varied parametric values.

performance of the PRLS tested by considering the test cases
reported in Goldberg et al. [13] to compare the computational
results with the available best known solutions. These test
cases are classified based on the number of markets (m) rang-
ing from 100 to 200 and the number of products (n) varying
from 50 to 200 products. The test cases in Goldberg et al. [13],
contain the market locations as xy− coordinates and which
are available in http://webpages.ull.es/users/jiriera/TPP.htm.

The travel cost between a pair of market locations is con-
sidered as the Euclidean distance value and rounded to the
nearest integer. For each instance, the purchase cost Pkj and
the quantum of availability Akj at market j = 1, 2, . . . ,m of a
product k = 1, 2, . . . , n are randomly generated in the inter-
val (0, 1) and [1], [15], respectively. For each random number
generation, a uniform distribution is used. The demand value
Dk , k = 1, 2, . . . , n of a product k is obtained for different
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TABLE 8. Comparative experimental results on CTPP symmetric instances with [13].

TABLE 9. Comparison on CPU run time of PRLS verses LP reported in [14].

values of λ = 0.7, 0.9, 0.95 and 0.99 using an equation (16).

Dk =

λmax
j∈V

Akj + (1− λ)
∑
j∈V

Akj

 (16)

where λ is a control parameter, used to generate the demand
value to each product k andDk rounded to the nearest integer.
If λ = 0, then Dk =

∑
j∈V Akj and interestingly in this case

the tour of the purchaser must include all the markets, thus
it will reduce to TSP. If λ = 1, then Dk = Akj and in this
case, the tour of the purchasermay not include all themarkets.
If λ < 0, then the values stored in Dk violates equation (6)

and hence the problem has no feasible solution. If λ > 1, then
Dk will have negative entries which is not a realistic demand
of a product. Therefore, λ can possibly assume a value in
[0, 1]. Table–8 provides the comparative experimental results
carried on different CTPP benchmark instances with the BnC
proposed by Laporte et al. [3] and the transgenetic algorithm
(TA) developed by Goldberg et al. [13].
The first four columns of Table–8 indicate the test instance,

the next column BnC gives the solution with the branch
and cut algorithm, the columns TA, T (s), and #m1 respec-
tively present the solution, CPU run time in seconds, and
the number of markets involved in the solution tour of
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TABLE 10. Experimental results on TSPLIB benchmark instances.

the purchaser with the transgenetic algorithm, the columns
labeled as PRLS, T (s) and #m2 respectively, provide the
best solution, CPU run time in seconds, and the number of
markets involved in the solution tour of the purchaser with
the proposed modified LS. After recording the best solution
with PRLS, the search was continued further up to one-hour
duration. However, there is no further improvement to this
best solution. Finally, the last two columns%gapb and%gapt
respectively show the percent deviation between the solutions
obtained by PRLS and BnC, and PRLS and TA. The percent
deviation is determined using an equation (17).

f (PRLS)− f (BnC|TA)
f (PRLS)

× 100 (17)

The observations on Table–8 are given as follows.
• A deterministic PRLS algorithm is developed to solve
the proposed TPP variant optimally. The PRLS contains

the simple rules of branching, bounding and termination
like in branch and bound method.

• This algorithm carefully eliminates the patterns that are
not feasible with the help of effective bound settings.

• The parametric values m and n are varying from 100 to
200 and 50 to 100, respectively.

• The computational results are obtained by nullifying the
additional side constraint values η and δ for comparison
with the results of [13].

• The PRLS obtained improved solutions to 9 test
instances out of the 17 test instances considered for the
experiments. This can be observed conveniently from
the comparative bar plot of BnC, TA, and PRLS, shown
in Figure (7).

• The number of markets involved in the best found solu-
tions of TA and PRLS can be observed from a bar plot
is shown in Figure (8).
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FIGURE 7. A comparative bar plot of the best found solutions.

• The improved solutions can be added to the literature for
future comparisons.

• The results indicate that PRLS works efficiently to solve
higher dimension instances and provide prominent solu-
tions in reasonable computational time.

• The analysis of percent deviation shows that the pro-
posed PRLS can obtain qualitative solutions.

• The performance of the PRLS highly depends on the
different parametric values m, n,Dk ,Pkj and Akj.

• In most of the cases the improved solutions are observed
on the test instances where the number ofmarkets appear
in the tour of the purchaser obtained with PRLS is lower
than the number of markets appear in the tours obtained
with BnC and TA.

• The average percentage gap between the solutions
of BnC and PRLS is observed as −2.2158 whereas
between the solutions of TA and PRLS is −0.7688.
It indicates the PRLS has a good agreement with TA in
providing the results.

Table–9 presents the experimental results on UTPP cases
by setting different values for m, n, η and δ, recorded the
PRLS average CPU run times on five independent runs of
each instance and the LP relaxation results reported in [14].
On the instance size m = 50 both PRLS and LP relaxation
have mixed results of CPU run times whereas on the instance
size m = 100 and the PRLS CPU run times are lower than
the LP relaxation. In overall CPU run times, the p-value of
the t-test gives as 0.9988 under the lower tailed alternative
hypothesis. This shows that the performance of PRLS is
statistically superior when compared with the LP relaxation
on the UTPP.

Table–10 provides the extensive computational results on
some benchmark data sets. The number of markets m and the

number of products n in the data sets are varying from 7 to
200 and 4 to 200 respectively. For each data set, the travel cost
matrix of the purchaser is considered from TSPLIB [30] and
which are available as SH07, SP11, WG22, DANTZING42,
ATT48, Berlin52, KROA100, KROA150, and KROA200.
The data sets SH07, SP11, and WG22 are available in
TSPLIB as in matrix form and the remaining data sets are
available as Euclidean coordinates. The travel cost matrix is
assumed as Euclidean distance corresponds to the data sets
having Euclidian coordinates. The product’s availability Akj
and unit cost Pkj assumes integral values randomly in the
intervals [5], [25] and [5], [30], respectively. The demand
vector Dk is generated over an interval [4], [15]. For each
random number generation uniform distribution is used.

For computations, a total of 30 different test data sets
are used by setting different values for m and n. Performed
10 independent runs on each data set and recorded the best
one. The CPU run time was recorded to find the initial solu-
tion and then the optimum or best available solution within
one hour duration. When the search is completely exhausted,
the latest available best solution will be the optimum solution.
In some cases, the best found solution is recorded when the
search was not completely exhausted. The optimum solution
is obtained in eight test instances, indicating them with ∗
notation. The algorithm effectively produced the optimum
solution up to the test instance sizem = 48. It is observed that,
when the instance size m = 52 or more, the algorithm takes
more time to exhaust the search process with the implicit
enumeration due to the wide range of solution space and
hence recorded the best solution only. In particular, for dif-
ferent test cases of KROA150 and KROA200, there is no
further improved solution to an initial solution within the time
threshold. The time in seconds taken to produce an initial
solution and the best solution of each test instance is shown
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FIGURE 8. A comparative bar plot of number of markets visited.

under the column head T (s). For lower dimension instances
the algorithm is taking fairly less computational time than the
higher dimensional instances. The number of markets present
in both initial and optimal solutions are denoted by m1 and
m2, respectively. Moreover,m1 andm2 may not be equal. In a
few cases, the purchase cost remains the same in both initial
and best found solutions but they may differ in travel cost
with a different route plan. Similarly, the travel costs of the
initial and best found solutions are equal yet they may differ
in purchase cost with a different purchase plan. Therefore,
it is important to know the purchase plan, route plan, and
the key markets involved in the route plan for the purchaser
for his decision making. The overall results show that the
PRLS is capable in finding nearer or optimal solutions by
eliminating the infeasible patterns with the help of effective
branching and bounding strategies, simpler rules of feasibility
and termination. However, for some of the large size data sets,
the algorithm is taking more computational time to obtain the
quality solutions due to the wide range of search space with
more repetitive cost values appeared in the data sets.

VI. CONCLUSION
This paper presents an extended version of the variant TPP,
in which the purchaser wishes to find a tour with a subset
of markets that minimizes the sum of travel and purchase
costs subject to satisfying a set of additional constraints. This
TPP variant is formulated mathematically with integer linear
programming. The TPP contains three distinct plans namely
selection plan, routing plan, and purchase plan. Due to this,
TPP has interesting applications in the areas of manufac-
turing process, scheduling of jobs to handle multipurpose

multiple configuration machines, providing multiple services
to different customers, routing and network designing, supply
chain management, production scheduling, etc. The study
contributes a deterministic PRLS to solve the TPP variant
optimally and it is coded in MATLAB tool. The concepts
involved in the proposed modified PRLS were explained in
detail through a numerical example. The comparative exper-
imental results carried out on different CTPP benchmark
instances shows that the PRLS was found improved solutions
on 9 test instances among the 17 test instances considered
for which the optimum solution is not known when com-
pared with BnC and TA. The results on UTPP show that the
PRLS is statistically superior when compared with the LP
relaxation.

In addition, the efficiency of the algorithm was tested on
30 more data sets, by considering the travel cost matrix from
TSPLIB and generated the other parametric values involved
in TPP randomly within the specified intervals. The exper-
iments were carried out on different data sets sizes up to
200 markets with 200 products and the extensive results indi-
cate that the algorithm effectively finds an optimal solution
for lower dimension test instances, whereas it takes more
time to produce the optimal solution when the size of the
instance with 52 or more markets due to the wide range of
the search space. The future study may include extended or
modified versions of TPP with costs that are associated with
the model specifications such as rebates or discounts on the
purchase of products instead of existing fixed purchase costs
or uncertainties on the demand, TPP with multiple depots,
TPP with fast service options, TPP with multiple objectives,
etc. or adding some more practical constraints into the exist-
ing model. In addition, the more sophisticated algorithms
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such as hybrid or evolutionary algorithms can be developed
to find the prominent solutions in reasonable computational
time.
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