IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received 17 April 2024, accepted 15 May 2024, date of publication 23 May 2024, date of current version 3 June 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3404878

== RESEARCH ARTICLE

Flexible and Fully Quantized Lightweight
TinyissimoYOLO for Ultra-Low-Power
Edge Systems

JULIAN MOOSMANN""1, (Graduate Student Member, IEEE),
HANNA MULLER ", (Graduate Student Member, IEEE),
NICKY ZIMMERMAN 2, (Graduate Student Member, IEEE),
GEORG RUTISHAUSER !, (Graduate Student Member, IEEE),
LUCA BENINI'3, (Fellow, IEEE),

AND MICHELE MAGNO !, (Senior Member, IEEE)

! Department of Information Technology and Electrical Engineering, ETH Ziirich, 8092 Ziirich, Switzerland
2IDSIA, Universita della Svizzera Italiana, 6900 Lugano, Switzerland
3Department of Electrical, Electronic and Information Engineering, University of Bologna, 40126 Bologna, Italy

Corresponding author: Julian Moosmann (julian.moosmann@pbl.ee.ethz.ch)

This work was supported by armasuisse Science and Technology.

ABSTRACT This paper deploys and explores variants of TinyissimoYOLO, a highly flexible and fully
quantized ultra-lightweight object detection network designed for edge systems with a power envelope of
a few milliwatts. With experimental measurements, we present a comprehensive characterization of the
network’s detection performance, exploring the impact of various parameters, including input resolution,
number of object classes, and hidden layer adjustments. We deploy variants of TinyissimoYOLO on state-
of-the-art ultra-low-power extreme edge platforms, presenting a detailed comparison on latency, energy
efficiency, and their ability to efficiently parallelize the workload. In particular, the paper presents a
comparison between a RISC-V-based parallel processor (GAP9 from GreenWaves Technologies) with
and without use of its on-chip hardware accelerator, an ARM Cortex-M7 core (STM32H7 from ST
Microelectronics), two ARM Cortex-M4 cores (STM32L4 from ST Microelectronics and Apollo4b from
Ambiq), and a multi-core platform aimed at edge AI applications with a CNN hardware accelerator
(MAX78000 from Analog Devices). Experimental results show that the GAP9’s hardware accelerator
achieves the lowest inference latency and energy at 2.12ms and 150p] respectively, which is around
2x faster and 20% more energy efficient than the next best platform, the MAX78000. The hardware
accelerator of GAP9 can even run an increased resolution version of TinyissimoYOLO with 112 x 112 pixels
and 10 detection classes within 3.2 ms, consuming 245 pJ. We also deployed and profiled a multi-core
implementation on GAP9 at different core voltages and frequencies, achieving 11.3ms with the
lowest-latency and 490 pJ with the most energy-efficient configuration. With this paper, we demonstrate
the flexibility of TinyissimoYOLO and prove its detection accuracy on a widely used detection dataset.
Furthermore, we demonstrate its suitability for real-time ultra-low-power edge inference.

INDEX TERMS YOLO, ML, computer vision, object detection, hardware accelerator, microcontroller,
quantization, quantization-aware training, network deployment, network deployment evaluation.

I. INTRODUCTION
With the widespread adoption of edge devices, particularly
The associate editor coordinating the review of this manuscript and microcontroller unit (MCU) based nodes, the Internet of
approving it for publication was Md. Arafatur Rahman . Things (IoT) is revolutionizing various domains including

© 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
VOLUME 12, 2024 For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 75093

https://orcid.org/0009-0007-0283-0031
https://orcid.org/0000-0002-4942-6673
https://orcid.org/0000-0002-9105-0139
https://orcid.org/0000-0001-8875-7611
https://orcid.org/0000-0001-8068-3806
https://orcid.org/0000-0003-0368-8923
https://orcid.org/0000-0002-8221-6168

IEEE Access

J. Moosmann et al.: Flexible and Fully Quantized Lightweight TinyissimoYOLO for Ultra-Low-Power Edge Systems

88/112/224

3 NN

16 16 16 32 32 64

ReLU - 2D Conv. Layer ReLU - 2D Conv. Layer ReLU - 2D Conv. Layer
3-16x(3x3) 16-16x(3x3) 32-32x(3x3)

Max Poolling Layer Max Poolling Layer Max Poolling Layer
(2x2)-5-2 (2x2)-s-2 (2x2)-5-2

16-16x(3x3) 16-32x(3x3) 32-64x(3x3)

o i gl

SxS(B*5+C)

128

RelLU - 2D Conv. Layer ReLU - 2D Conv. Layer FC Layer
64-64x(3x3) 64-128x(3x3)
Max Poolling Layer 128-128x(3x3)
(2x2)-s-2 Max Poolling Layer
64-64x(3x3) (2x2)-s-2

FIGURE 1. TinyissimoYOLO as deployed on GAP9 (both the 9-core cluster and the hardware accelerator) by this paper.

health monitoring [1], [2], smart manufacturing [3], and home
automation [4]. These low-power devices enable increased
automation, cost reduction, bandwidth optimization, and
enhanced privacy by processing collected data on the edge,
i.e., directly on the sensor node. However, the limited
memory and computing resources of MCUs pose a significant
challenge when it comes to deploying advanced machine
learning models. Overcoming this challenge and enabling
efficient machine learning on resource-constrained devices
is a crucial area of research in embedded wireless sensor
systems, as illustrated by [5].

A foundational element of many IoT applications is the
extraction of semantic information about the environment
with image sensors. Specifically, object detection [6], [7], [8],
the vital task of identifying and precisely localizing objects
within a given image, plays a pivotal role in a wide range
of systems. For instance, in the realm of autonomous mobile
agents, object detection enables obstacle avoidance and track-
ing, path planning, and scene understanding, contributing
to safe and efficient navigation. Similarly, in augmented
and virtual reality devices, such as head-mounted displays,
lightweight and energy-efficient object detection algorithms
are crucial to enable real-time visual recognition without
exceeding the limited power resources of the wearable device.
A majority of recent research on object detection focuses
on perfecting detection accuracy. State-of-the-art models
have on the order of 10® or more parameters, requiring
power-hungry hardware such as GPUs [9], [10] for inference.
Therefore, state-of-the-art models like the “You Only Look
Once” (YOLO) series of networks [11], [12], [13], [14], [15],
[16], [17], [18] cannot be directly ported to low power edge
processors due to the memory and compute constraints of
MCUs. Consequently, there is a growing demand to enable
semantic image understanding on the edge using ultra-low
power and constrained hardware. This shift has led to a surge
of interest in various research areas, including architecture
search, quantization techniques, and advanced inference
engines tailored for resource-constrained devices [19], [20],
[21], [22]. MCUs are now being equipped with novel
open-source energy-efficient cores, such as RISC-V cores,

75094

parallel processing engines, dedicated hardware accelerators,
and specialized co-processors aimed at enabling efficient
execution of complex machine learning tasks [23], [24].

By combining these advancements in parallel processing,
hardware accelerators, and quantization techniques, MCUs
are now executing quite sophisticated machine learning (ML)
models. However, deploying machine learning on MCUs is
still far from trivial and mapping networks like YOLO for
advanced visual tasks, beyond simple classification, is still at
the boundary of feasibility.

This work presents an improved and cutting-edge Tinyis-
simoYOLO network designed to push the boundaries
and to achieve accurate and real-time object detection
on MCUs at sub-millijoule inference energy consump-
tion. By leveraging novel low-power processors, we move
from TinyissimoYOLO [22]—initially capable of detecting
3 object classes within a very restricted dataset—and present
an improved, highly flexible network architecture, flexible
TinyissimoYOLO, shown in Fig. 1. Our changes to the
TinyissimoYOLO network allow the use of higher-resolution
images while further increasing the number of object classes
to detect. Additionally, we extensively evaluate the new
flexible TinyissimoYOLO on multiple resolutions and on
different numbers of objects to detect. Furthermore, the
network in our first study was designed specifically for
the MAX78000 MCU. In this paper, we provide a more
detailed evaluation of the proposed network for low-power
microcontrollers and further assess its performance on a
novel multi-core architecture. This difference can aid future
research by providing insights into adapting the proposed
network across various platforms. Additionally, the network
capitalizes on the unique capabilities of the latest gener-
ation of MCU platforms, harnessing their computational
capabilities to set a new state-of-the-art in energy-efficient
object detection, with a memory footprint of below 1 MB.
Through extensive evaluation and performance analysis,
we demonstrate the potential of our network in enabling
energy-efficient computer vision applications.

This research contributes to the advancement of
energy-efficient processing on resource-constrained devices,

VOLUME 12, 2024

J. Moosmann et al.: Flexible and Fully Quantized Lightweight TinyissimoYOLO for Ultra-Low-Power Edge Systems

IEEE Access

opening up new possibilities for a wide range of real-
world applications. To support our contribution, we evaluate
a complete pipeline for deploying accurate, lightweight
quantized object detection on several novel MCUs, bridging
the gap between state-of-the-art models and on-edge
execution. We provide a detailed description for each part
of our pipeline, relying as much as possible on open-source
tools, with the hope of enabling others to successfully deploy
object detection models on ultra-low-power edge systems.

To quantify the benefits of the proposed approach,
we evaluate the performance and energy efficiency of
our object detection pipeline on several MCUs, executing
different TinyissimoYOLO networks on one or multiple
general-purpose cores as well as specialized convolu-
tional neural network (CNN) accelerators. We investigate
and expand the TinyissimoYOLO network proposed by
Moosmann et al. [22], a lightweight general multi-object
detection network optimized for a single processor,
by extending its flexibility. Depending on the target
platform’s capabilities, TinyissimoYOLO can be scaled
to make the best use of the target hardware and offer
optimal performance. We deploy TinyissimoYOLO on
multiple microcontroller architectures: the GAP9 multi-core
RISC-V MCU (GreenWaves Technologies), which features
a hardware accelerator for CNNs, MAX78000 (Analog
Devices), a multi-core platform with an energy efficient CNN
accelerator, Apollo4b (Ambiq), the most power-efficient
ARM Cortex-M4 core currently available, as well as the
STM32LA4R9 and STM32H7A3 from STMicroelectronics to
establish a baseline with the most popular ARM Cortex-M4F
and Cortex-M7 cores.

Furthermore, for GAP9, we map a Pareto front of operating
points (core voltage and operating frequency) to evaluate the
trade-off between latency and inference energy. In addition,
we evaluate the per-layer inference power consumption
and quantify the efficiency enhancements enabled by the
integrated NE16 CNN accelerator.

Additionally, we explore several variations of Tinyissi-
moYOLO, spanning the trade-off between prediction accu-
racy and resource consumption. We evaluate the detection
performance for a range of image resolutions and different
kernel sizes applied in the first layer. We report the size of
the network for each modification and the detection accuracy.
Our investigation demonstrates that, as expected, increased
input resolution contributes to higher detection accuracy, but
also emphasizes the increasing memory consumption.

The rest of this paper is organized as follows: Section II
provides an overview of the works focusing on CNN
optimization and deployment on microcontrollers. Section III
details our deployment pipeline, from choosing the architec-
ture and training, to quantization and porting to target hard-
ware. Section IV specifies the experimental setup and reports
the results, presenting an in-depth analysis of the trade-off
between performance and energy efficiency. Furthermore,
we compare our GAP9-deployed model against state-of-the-
art deployments on different MCUs, focusing on latency,

VOLUME 12, 2024

energy efficiency and inference efficiency (MACs/cycle).
Lastly, Section V concludes our work.

Il. RELATED WORK

In the past decade, deep learning approaches have revolution-
ized the field of image-based scene understanding, through
object detection [6], [7] and semantic segmentation [25],
[26]. Semantic understanding of objects in the environment
is an essential capability for autonomous agents, for tasks
such as localization [27], mapping [28], [29], [30], and
navigation [31], [32]. You Only Look Once or commonly
abbreviated as YOLO 1is one of the most popular and
optimized deep learning algorithms used to perform real-
time detection [33]. To effectively detect and track objects,
YOLO uses a repurposed classifier or localization which is a
model applied to an image at several locations and scales [33].
However, the majority of works require power-hungry
hardware such as GPUs and are not suitable for deployment
on low-power edge devices. Even some of the more
resource-conscious approaches ([33], [34]) still require pow-
erful hardware consuming multiple watts and requires several
tens of megabytes to run inference at sensor-rate. Based on the
recent literature, we observed that existing YOLO approaches
tend to have high memory requirements, limiting their
applicability on resource-constrained devices. To address this
limitation, in this paper, we evaluate and optimize a novel
and flexible lightweight algorithm inspired by YOLOVI.
The TinyissimoYOLO [22] algorithm has been specifically
designed to achieve optimal performance in terms of accuracy
while keeping the memory requirements below 500kB.
However, the proposed algorithm was only trained using a
restricted dataset with a limited number of objects per image.
In this paper, we trained and evaluated the algorithm with all
the images of the PascalVOC dataset [35]—considering no
object limitations—while investigating different input image
resolutions to achieve higher detection accuracy, a small
network layer adjustment for efficient feature extraction, and
different number of object classes to detect in the dataset
for testing the generalization capability of the network. This
investigation leverages the full potential of the small-sized
network’s ability to generalize for multiple detection classes
while further presenting benchmarking results in terms of
memory consumption and compute requirement of the latest
commercial microcontroller hardware.

The deployment of image classification and object detec-
tion models on MCUs has garnered significant attention in
recent years. Canepa et al. [36] propose a method for detect-
ing specific objects in surveillance video frames using deep
neural networks on an STM32 MCUs. Although they achieve
high prediction accuracy, their slow inference rate (0.03 Hz)
limits its suitability for real-time applications, and their
power consumption of approximately 400 mW is relatively
high. To enable semantic understanding on edge devices and
small autonomous agents, the models must be small and
efficient enough to be executed on low-memory (<1 MB) and

75095

IEEE Access

J. Moosmann et al.: Flexible and Fully Quantized Lightweight TinyissimoYOLO for Ultra-Low-Power Edge Systems

ultra-low-power platforms (<100 mW) at significantly higher
inference rates.

This task requires a specialized workflow [2], com-
posed of three main strategies. Firstly, exploiting the
benefits of resource-aware neural architectures and possibly
automatically search for such neural architectures [37],
[38], [39], [40]. Secondly, pruning and quantization strate-
gies [41], [42], as offered by commonly used deep
learning frameworks such as PyTorch. Notable quan-
tization frameworks targeting ultra-low-power hardware
include TensorFlow Lite [20] and Microsoft NNI [21],
and other academic platforms. And lastly, deployment on
lightweight hardware using inference engines, which aim
to improve data locality, memory usage, and spatiotemporal
execution.

TinyML software suites [19], including the open-sourced
TensorFlow Lite Micro [43], EdgeML [44] and CMSIS-NN
[45], allow for deploying neural networks on MCUs and
are mainly designed for ARM Cortex-M and as such
less attractive for RISC-V based processors. Similarly,
Waulfert et al. [46] present an object detection method for
resource-limited systems, performing camera-based human
detection directly on a small ESP32 MCUs. While they
achieve a high inference rate of 12Hz, their approach is
limited to detecting a single class. Likewise, Palossi et al.
[23] demonstrate real-time human tracking on a nano drone,
mounted with GAP8, a RISC-V parallel platform from
GreenWaves Technologies, but are constrained to a single
class. Lamberti et al. [24] propose a specialized low-power
Automatic License Plate Recognition system executed on
GAPS at an approximate frequency of 1 Hz.

In contrast with these prior works, our paper makes
several novel contributions targeting a variety of promis-
ing platforms. Firstly, our proposed flexible lightweight
algorithm ensures competitive accuracy while keeping the
memory requirements low enough for deployment on MCUs.
Secondly, we target specifically different low-power MCUSs,
which serve as the processing units for a wide range of edge
devices. This diverse platform evaluation further highlights
the versatility and robustness of our approach. Overall,
this work addresses the limitations of existing methods
and introduces a memory-efficient algorithm suitable for
resource-constrained devices, opening up new possibilities
for efficient and accurate object detection in real-world
applications. Additionally, the evaluation of our proposed
algorithm on different platforms, including ARM, RISC-V
cores and hardware accelerators, provides valuable insights
into the benefits and trade-offs associated with each hard-
ware architecture. This comparative analysis allows us to
identify the strengths and weaknesses of each platform,
enabling us to make informed decisions based on the
specific requirements of the application at hand. This
analysis provides a comprehensive view of the various
approaches, highlighting the benefits of parallel processing
in the multi-core RISC-V processor and the efficiency
gains achieved through hardware accelerators. Furthermore,

75096

it offers a valuable perspective on power consumption,
latency, and scalability, that influence the choice of hard-
ware for object detection tasks on resource-constrained
devices.

Giordano et al. [47] benchmark a single architecture
for image classification on several different platforms.
Moss et al. [48] evaluate different image classification archi-
tectures on a single platform, MAX78000. Unlike these
works, we describe the full deployment pipeline in the
context of object detection, from architecture exploration to
quantization and hardware-optimized implementation.

In the realm of efficient neural architecture design
for MCUs, MCUNet [49] presents a framework that
combines the lightweight inference engine (TinyEngine)
with the efficient neural architecture (TinyNAS), enabling
ImageNet-scale inference on MCUs. Building upon this,
MCUNetV2 [50] introduces memory-efficient patch-based
inference, further enhancing memory performance for image
classification and object detection. However, while these
works report peak memory consumption and multiply-
accumulate (MAC) operations, they lack comprehensive
power consumption measures or run-time evaluations.
By exploring various variations of the TinyissimoYOLO [22]
network and optimizing it to be deployable in different
platforms, we provide a detailed analysis of the trade-offs
between prediction accuracy, run-time, and power con-
sumption across multiple deployment platforms. Notably,
we demonstrate the feasibility of reducing the MAC opera-
tions to approximately 3 million, representing a 10-50 times
reduction compared to MCUNetV2. In contrast to the pre-
viously published TinyissimoYOLO paper, which evaluated
the network’s performance on a restricted subset of the
PascalVOC [35] dataset and only on single-core processors,
this work investigates the network’s performance without any
restrictions on the dataset and explore and benchmark the
flexibility and the hardware overall energy efficiency. This
allows us to evaluate the performance of our flexible Tinyis-
simoYOLO version across the entire Pascal VOC dataset, con-
sidering all classes and unrestricted object counts within each
image. By combining advancements in architecture design,
memory-efficient inference, quantization-aware training, and
a comprehensive evaluation across various deployment plat-
forms, our work makes significant contributions to the field.
We showcase the remarkable reduction in MAC operations
achieved by our proposed approach, surpassing the state-of-
the-art MCUNetV2. Furthermore, our thorough evaluation on
the complete Pascal VOC dataset demonstrates the robustness
and scalability of our flexible TinyissimoYOLO network.
Overall, our work pushes the boundaries of energy-efficient
object detection on MCUs, providing valuable insights
and paving the way for further advancements in the
field.

Ill. BACKGROUND AND IMPLEMENTATION
In this section, we describe TinyissimoYOLO, which we used
as the basis for our explorations, training, and dataset, the

VOLUME 12, 2024

J. Moosmann et al.: Flexible and Fully Quantized Lightweight TinyissimoYOLO for Ultra-Low-Power Edge Systems

IEEE Access

MCU platforms we compare to and deploy on, and the
deployment tools.

A. TINYISSIMOYOLO

TinyissimoYOLO is a general multi-object detection net-
work, designed to enable fast and accurate detection on
microcontroller platforms. Its architecture is shown in Fig. 1.
The original network, as proposed by Moosmann et al. [22],
uses an input resolution of 88 x 88 pixels and produces
an output vector of dimension (S x S (B x5 + C)), where
S x S is the grid of prediction cells, B is the number of
boxes predicted per cell and C is the number of classes. This
work explores the flexibility of this network by: increasing
the input resolution to trades improved detection performance
for increased computational load and a proportional increase
in the number of parameters of the last layer. The number
of detected classes C can also be varied, affecting only the
parameter count and computational volume in the last layer.
The CNN backbone used for feature extraction is small
in comparison to state-of-the-art object detection networks.
The original YOLOvI network has 20 GMAC and 45M
parameters, while the more recent YOLOv7 scales from
1.75 GMACs to 420 GMACs and 6.2 M to 151 M parameters.
In comparison, the deployed TinyissimoYOLO can be scaled
from 32 MMACs to 57 MMACs and from 441K to 887K
parameters. Using 8-bit quantization further reduces the
model size and memory footprint by a factor of 4 when
compared to equivalent 32-bit floating-point models, making
TinyissimoYOLO ideally suited for real-time inference on
resource-constrained MCU platforms.

In this work, we investigate the influence of network
parametrization on detection performance. In contrast to
the initially proposed TinyissimoYOLO [22], we train
TinyissimoYOLO with different input resolutions (88 x 88,
112 x 112 and 224 x 224 pixels), different numbers of output
classes C (3, 10 and 20) and different kernel sizes in the
first layer (3 x 3 and 7 x 7). Further, no dataset limitations
are posed, and no limitations to the number of objects per
image are set, which is in contrast to the initially proposed
TinyissimoYOLO network.

B. DATASET

Since the number of network parameters in the output layer
increases linearly with the number of object classes in the
dataset—Fig. 1 shows the output layer is defined by S x
S (B x5+ C)—we chose the PascalVOC [35] dataset for
investigating the networks’ detection accuracy. Choosing
another dataset with more diverse classes would lead to even
bigger TinyissimoYOLO networks as can be seen in Table 2
when comparing the networks’ number of parameters with
the number of classes. 90 % of the Pascal VOC training dataset
was used to train the network, with the remaining 10 %
serving as the validation set. The training data was augmented
with geometric operations such as cropping, scaling, and
shifting, as well as photometric operations including blurring,
and modifying the brightness, contrast, saturation, and hue.

VOLUME 12, 2024

C. NETWORK TRAINING AND QUANTIZATION

The hardware platforms we target offer the best performance
and full toolchain support for networks quantized to 8-bit
weight and activation precision. While smaller bitwidths can
offer further memory and storage savings [52], the lack of
native hardware support for sub-byte arithmetic would lead
to significant implementation and runtime overheads with
such aggressively quantized networks [53]. Furthermore,
quantization to sub-byte precision often incurs substantial
accuracy degradation. For these reasons, we evaluate only
8-bit quantized networks [54]. We used QuantLab' [55]
to train and quantize the evaluated networks. QuantLab is
a modular, open-source framework for quantization-aware
training (QAT) based on PyTorch, offering experiment
management facilities, support for various quantization
algorithms, and automated model conversion functional-
ity from full-precision to trainable (fake-quantized) and
deployable integer-only quantized models. We train the 8-
bit TinyissimoYOLO networks in two phases, which process
is performed using Nvidia RTX4090 GPUs: First, a full-
precision network is trained to convergence. In the second
step, we perform QAT using the TQT [56] algorithm.
QuantLab converts the original architecture to a fake-
quantized version,” where each convolution, fully con-
nected and activation layer is replaced with its quantized
equivalent. We initialize the fake-quantized networks from
the corresponding full-precision checkpoint, training with
weight-only quantization for some epochs before enabling
full-model quantization of weights and activations. The
full hyperparameters for both training phases are listed in
Table 3. After QAT has converged, the trained fake-quantized
model can be automatically converted to an integer-only
model. In the integerized model, normalization, rescaling
and activation layers are merged into requantization layers.
A requantization layer consists of channel-wise integer
multiplication, channel-wise addition, logical right shift and
clipping, effectively executing an affine transformation and
clipping in fixed-point arithmetic. This approach has been
described multiple times in literature and has been variously
termed ‘“‘integer channel normalization” [52] or “‘dyadic
quantization” [58]. Finally, the integerized model is exported
as a backend- and hardware-agnostic ONNX model, where
the exported ONNX operators are annotated with precision
information, allowing the deployment backend to select the
correct kernels. Both the fake-quantized TinyissimoYOLO
models trained in QuantLab and the deployable integer-only
models generated from them exhibited no accuracy drop
compared to their full-precision counterparts. The integer
models generated this way are used for our accuracy
evaluations in Table 2. Only the GAP9 cluster deployment
pipeline supports processing the produced ONNX files.

1 https://github.com/pulp-platform/quantlab

ZA fake-quantized network takes values in a discrete subset of R. After
converting it to its fully integerized (or true-quantized) counterpart, it can be
executed using integer arithmetic [57].

75097

IEEE Access

J. Moosmann et al.: Flexible and Fully Quantized Lightweight TinyissimoYOLO for Ultra-Low-Power Edge Systems

TABLE 1. TinyissimoYOLO network trained and evaluated on PascalVOC with different network configurations. This table shows the network performance

for the different network configurations. The naming convention of the different network configurations is: TY(TinyissimoYOLO):classes-1st layer’s
kernel-input resolution, for more details, see: Table 2.

Network mAP

Arch. mAP aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv
TY:3-3-88 62% 70% 45% 70%

TY:3-7-88 62% 71% 45% 69%

TY:3-3-112 63% 73% 46% 70%

TY:3-7-112 62% 72% 46% 68%

TY:3-3-224 68% 74% 53% 77%

TY:3-7-224 68% 73% 54% 76%

TY:10-3-88 58% 70% 66% 51% 52% 28% 72% 69% 69% 44% 62%

TY:10-7-88 58% 68% 67% 54% 54% 27% 710% 69% 69% 46% 60%

TY:10-3-112 60% 71% 71% 54% 57% 30% 73% 73% 69% 47% 59%

TY:10-7-112 57% 68% 67% 50% 50% 22% 71% 69% 68% 45% 60%

TY:10-3-224 65% 77% 74% 57% 63% 39% 74% 76% 2% 49% 66%

TY:10-7-224 54% 65% 63% 47% 50% 26% 64% 67% 65% 41% 49%

TY:20-3-88 53% 72% 68% 53% 52% 0% 70% 71% 70% 38% 44% 65% 66% 13% 61% 65% 5% 55% 9% 69% 48%
TY:20-7-88 47% 67% 60% 42% 46% 0% 70% 68% 66% 36% 12% 63% 59% 66% 66% 64% 0% 55% 24% 65% 49%
TY:20-3-112 56% 71% 70% 54% 54% 4% T1% 73% 69% 39% 38% 64% 66% T4% 68% 66% 23% 62% 36% T1% 56%
TY:20-7-112 53% 72% 64% 53% 55% 0% T1% 71% 67% 37% 34% 63% 62% T4% 61% 65% 5% 53% 35% 68% 53%
TY:20-3-224 60% 71% 67% 55% 56% 14% 1% 72% 70% 44% 51% 60% 67% 712% 67% 63% 39% 62% 60% 70% 61%
TY:20-7-224 67% 75% 72% 61% 64% 35% 15% 17% 76% 48% 66% 68% 12% 16% 12% T1% 44% 64% 73% 76% 69%
YOLOv1

20-7-448 3% 82% 76% T1% 67% 45% 82% 82% 82% 54% T2% T12% 19% 81% 76% 76% 51% 71% 76% 81% 77%

TABLE 2. TinyissimoYOLO network trained and evaluated on PascalvOC.
This table shows the different network configurations which are
evaluated. Additionally, the number of network parameters and the
corresponding network model sizes are shown.

st

Network # layer’s input net. model MMACs mAP
classes kernel res. param. Size
TY:3-3-88 3 3 88 x 88 440,592 441 KiB 32 61.8%
TY:3-7-88 3 7 88 x 88 442,512 443 KiB 47 61.5%
TY:3-3-112 3 3 112 x 112 573,712 574 KiB 55 63.1%
TY:3-7-112 3 7 112 x 112 575,632 576 KiB 79 61.9%
TY:3-3-224 3 3 224 x 224 1,638,672 1.64MiB 220 68.0%
TY:3-7-224 3 7 224 x 224 1,657,872 1.66 MiB 316 67.8%
TY:10-3-88 10 3 88 x 88 498,048 498KiB 33 583%
TY:10-7-88 10 7 88 x 88 499,968 500 KiB 47 58.4%
TY:10-3-112 10 3 112 x 112 702,848 703 KiB 55 60.4%
TY:10-7-112 10 7 112 x 112 722,048 722KiB 79 56.9%
TY:10-3-224 10 3 224 x 224 2,341,248 2.34MiB 220 64.8%
TY:10-7-224 10 7 224 x 224 2,360,448 236 MiB 317 53.8%
TY:20-3-88 20 3 88 x 88 580,128 580KiB 33 53.1%
TY:20-7-88 20 7 88 x 88 582,048 582KiB 47 47.0%
TY:20-3-112 20 3 112 x 112 887,328 887KiB 55 56.4%
TY:20-7-112 20 7 112 x 112 906,528 907 KiB 79 535%
TY:20-3-224 20 3 224 x 224 3344928 3.34MiB 221 59.5%
TY:20-7-224 20 7 224 x 224 3,346,848 3.35MiB 318 66.6%
MbV2+CMSIS [49] 20 128 x 128 0.87M 0.87MiB 34 31.6%
MCUNet [49] 20 224 x 224 12M 1.2MiB 168 51.4%
MCUNetV2-M4 [51] 20 224 x 224 1.0IM 1.01MiB 172 64.6%
MCUNetV2-H7 [51] 20 224 x 224 203M 2.03MiB 343 68.3%

As the aim of this paper is a separate evaluation of platform
efficiency and model performance, we only deploy the
fully trained and quantized models on GAP9’s cluster. For
all other targets, we use the platform-specific quantization
and deployment flows on untrained networks and without
evaluating the resulting models’ accuracy. However, it is
important to note that all of the evaluated platforms support
the execution of this or an equivalent class of integerized
models, meaning that our results are representative for all
platforms.

75098

TABLE 3. Training hyperparameters for full-precision training and
quantization-aware training (QAT) of our networks. We performed QAT
using the trained quantization thresholds (TQT) algorithm.

Phase Full-Precision QAT
Batch Size 64 64
Epochs # 1000/7000 500/1000
Optimizer SGD SGD
LR Sched. Const. Sched. Const. Sched.
LRo 5% 104 51074
Wt. Quant. N/A +5
Act. Quant.© N/A +50

4 Networks with 88 x 88 and 112 x 112 input image resolution are
trained 1000 epochs on full precision and 500 epochs QAT, while
networks with 224 x 224 input image resolution are trained with
7000 epochs and 1000 epochs QAT.

b Training epoch in which weight quantization is started.

¢ Training epoch in which activation quantization is started.

D. MCU PLATFORMS
We compare deployments on different MCU platforms,
which we introduce here.

1) ARM CORTEX-M4 AND CORTEX-M7
The used MCUs from STMicroelectronics (STM32H7A3
and STM32L4R9) each feature an ARM Cortex-M single-
core processor. The H7A3 and L4R9 MCUs use a Cortex-M7
and a Cortex-M4 operating at up to 280MHz and 120MHz
respectively, with core voltages of up to 1.3V.

Apollo4b also uses an ARM Cortex-M4 processor
running up to 192MHz with a nominal core voltage
of 0.65V. Apollo4b’s main distinguishing characteristic

VOLUME 12, 2024

J. Moosmann et al.: Flexible and Fully Quantized Lightweight TinyissimoYOLO for Ultra-Low-Power Edge Systems

IEEE Access

is its utilization of Ambiq’s proprietary subthreshold
power-optimized technology platform, designed to offer
maximum power efficiency for edge applications.

MAX78000 features an ARM Cortex-M4, a built-in CNN
accelerator which has 64 specialized processors with built-in
convolutional engine, pooling unit and dedicated 442 kB
weight memory. In addition, a 32-bit RISC-V coprocessor
supports ultra-low-power signal processing.

2) GAP9

GAP9 features 10 RISC-V cores. One core acts as a fabric
controller, orchestrating system operation, while a parallel
ultra-low-power (PULP) cluster of 9 cores implementing
custom instruction set extensions is available for efficient,
high-performance execution of compute-intensive tasks.
Additionally, it includes NE16, a dedicated on-chip hardware
accelerator for CNN inference. The GAP9 architecture is
based on the open-source system on chip (SoC) Vega [59].
The cores’ maximum operating frequency is 370 MHz
for both the 9-core cluster and the fabric controller. For
additional flexibility, GAP9 is provisioned for dynamic
voltage and frequency scaling, allowing users to trade-off
between latency and energy efficiency. The compute cluster,
consisting of 9 cores, one for orchestration and 8 workers,
offers general-purpose compute power at extreme energy
efficiency while the CNN hardware accelerator NE16 (based
on RBE [60]) is specialized for highly efficient MAC
operations. NE16 features 9 x 9x16 8 x 1bit MAC units, which
are optimally used in 3 x 3 convolutions, but it also offers
support for 1 x 1 and 3 x 3 depth-wise convolutions and fully
connected layers. GAP9 has a hierarchical memory layout,
with 128 KiB of high-bandwidth, single-cycle-accessible L1
scratchpad memory in the cluster, 1.5MiB of interleaved
L2 memory for data and code as well as 2 MiB of on-chip
flash memory. GAP9 also offers a rich set of peripherals
for connecting to external memory, sensors, and standard
interfaces such as UART, I2C, CSI, and others.

E. MCU DEPLOYMENT

Different MCU platforms require different deployment tools,
which we introduce in this section. Note that we deploy
networks to two compute domains on GAP9 (the RISC-V
cluster and the NE16 CNN accelerator) using two different
flows as described below and depicted in Fig. 2.

1) GENERAL-PURPOSE PROCESSOR DEPLOYMENT

For deployment to GAP9’s cluster, we use the DORY
framework [61] to map the precision-annotated ONNX files
generated by QuantLab. DORY is an automated deployment
utility for ultra-low-power edge platforms with hierarchical
memory layouts. It takes a precision-annotated ONNX file as
the input and generates ANSI C code which implements the
specified network on the target platform. Tiling between up
to three hierarchical memory levels (L1 scratchpad memory,
L2 main on-chip memory and L3 off-chip memory) is

VOLUME 12, 2024

Training , QAT, and

Quantization

Ai8x-
\ St MAX78000

FIGURE 2. Visualizes the training and the deployment workflow with the
corresponding tools used for each device.

~

Deployment Frameworks \
M S

STM32H7
., GAP9’s RISC-V
Cluster

automatically performed with an integer linear programming
(ILP)-based tiling algorithm which takes into account the
hardware-specific constraints (i.e., the memory size of each
hierarchical level) and various heuristics.

For deployment on the ARM Cortex-M4/M7 platforms,
we use TensorFlow-Lite Micro [43]. As such, the deployment
on the single-core ARM Cortex-M4 and M7 is performed by
quantizing the network weights to 8-bits, generating the C++
code using TensorFlow-Lite Micro, and compiling the code
for the corresponding microcontroller.

2) CNN ACCELERATOR DEPLOYMENTS
The deployment on MAX78000’s CNN accelerator was per-
formed by using Analog Devices’ ai8x-synthesis framework
to quantize the network weights, activations, and input using
a forked version of the Neural Network Distiller by Intel Al
Lab.? Finally, the C code used to deploy the network on the
MAX78000’s CNN accelerator is generated by the ‘“‘izer”
tool, which converts the quantized trained model into C code.
The complete network fits the accelerator and all the weights
can be stored inside the weight memory of the accelerator.
Deployment of the network on GAP9’s NE16 neural
engine was done in collaboration with GreenWaves Tech-
nologies. To deploy networks on the GAP9 microcontroller,
GreenWaves Technologies distributes a deployment frame-
work called NNTool as part of the GAP SDK.* NNTool is
used for 1) post-training network quantization 2) network
evaluation for activation and parameter sizing and 3) code
generation for deployment. Analogous to DORY, it calculates
a tiling of the model’s individual layers such that the data for
each tile fits into the L1 scratchpad.

3) END-TO-END EVALUATION

To perform an accurate measurement including the image
acquisition, we implemented the complete sensing pipeline
consisting of the microcontroller platforms running Tinyissi-
moYOLO and attached RGB cameras. In this way, the edge
inference can be performed with real-world data, without
relying on synthetic data from the dataset. We attached
an OV5647 RGB CMOS camera from Omnivision to the
GAP9 and attached the OVM7692 CameraCubeChip to

3https://nervanasystems. github.io/distiller
4https:// github.com/GreenWaves-Technologies/gap_sdk

75099

IEEE Access

J. Moosmann et al.: Flexible and Fully Quantized Lightweight TinyissimoYOLO for Ultra-Low-Power Edge Systems

the MAX78000. As such we are able to demonstrate the
functionality of the trained networks on two different devices.
We performed our measurements on the GAP9 evaluation Kit
and on a custom-designed PCB for the MAX78000, shown in
Fig. 3.

FIGURE 3. Left: GAP9 evaluation board with the OV5647 camera
attached. Right: custom-developed PCB featuring the MAX78000 with the
OVM7692 camera attached.

Further, Fig. 4 shows some examples of images captured on
GAP9 after processing with the TinyissimoYOLO network,
while Fig. 5 shows some other example images of a demo
running image capturing and inference on the MAX78000,
while streaming the image (after adding the detected boxes
on the MAX78000 itself) live, via UART, to an attached PC.

FIGURE 4. Example recordings of images with GAP9 and running an
inference of TinyissimoYOLO on the recorded images.

IV. EXPERIMENTAL RESULTS

To evaluate the trade-off between detection performance
and energy efficiency, we trained eighteen different network
variants on the PascalVOC dataset and report the mean
average precision (mAP) for each class in Table 1. All
network versions shown—with up to 20 detection classes
and input image resolutions of 112 x 112—can be deployed
on general-purpose MCUs such as GAP9. To compare the
performance of GAP9 with the reported performance on
the paper [22], we deployed TinyissimoYOLO (TY:3-3-
88) on GAP9. First, we deployed it on single-core MCUs
only’ to fairly compare to other single-core implementa-
tions such as STM32H7A3 featuring an ARM Cortex-M7,

5Despite GAP9 being multi-core, the network deployment was done such
that the inference runs only on one of the nine cluster cores.

75100

!

FIGURE 5. Example recordings of images with MAX78000 running an
inference of TinyissimoYOLO on the recorded images.

STM32L4R9 with an ARM Cortex-M4 and the sub-threshold
computing microcontroller Apollo4b from Ambiq, also with
a single-core ARM Cortex-M4. Then we also deployed a
parallelized implementation, for the best possible perfor-
mance on the eight-core RISC-V cluster of GAP9 without
making use of the built-in neural engine hardware accelerator,
showing the advantages of a parallel platform. Using GAP9’s
capability to set the core voltage and frequency, we provide an
analysis of different operating points, mapping a Pareto front
of the latency-efficiency trade-off. As a last step, the network
is deployed on the NE16 neural engine of GAPY.

TinyissimoYOLO was limited by the 442 kB in accelerator
weight-memory of the MAX78000, which restricted it to a
network with only 3 out of 20 available detection classes
being trained, with an input resolution of 88 x 88 pixels
to avoid relying on a specialized input streaming mode.
As GAP9 features a bigger (1.5MB) on-chip memory and
can even use external memory, we also chose a second variant
of the network, based on the results gathered. The second
version features an input resolution of 112 x 112 pixels
and is trained to detect 10 detection classes and has been
deployed on GAP9 (TY:10-3-112) in a single-core, multi-
core, and neural engine accelerated version. We compare
our implementations on GAP9 with the deployment on the
MAX78000 MCU. The single-core, multi-core, and neural
engine deployment performances are provided. We measured
the power consumption of the whole SoC which we supplied
with 1.8 V and toggled a GPIO to detect the start and end of
the CNN execution.

A. NETWORK ARCHITECTURE VARIATIONS

The 18 trained networks vary in terms of network image input
resolution, the first layer’s kernel size, and the number of
classes the network is trained for object detection. Notably,
increasing the input resolution yields an increase in the input
to the last fully connected layer, while increasing the number
of classes yields an increase in the output of the last fully
connected layer. In particular, by changing the input or the
number of classes to detect, the number of network weight
parameters will change accordingly. Therefore, Table 2 lists

VOLUME 12, 2024

J. Moosmann et al.: Flexible and Fully Quantized Lightweight TinyissimoYOLO for Ultra-Low-Power Edge Systems

IEEE Access

all the trained variants of TinyissimoYOLO and reports
the number of parameters and the memory required to
store all the network weights in quantized 8-bits, and the
mAP. Table 2 further compares the result to the networks
reported in Lin et al. [49] (MBv2+CMSIS and MCUNet) and
Lin et al. [51] (MCUNetV2-M4 and MCUNetV2-H7). While
the TiniyssimoYOLO networks which are also trained on
images with 224 x 224 resolution have much more parameters
compared to the MCUNets version one and two, they achieve
a lower mAP. However, TinyissimoYOLO with an input res-
olution of 112 x 112 has fewer parameters (about the same as
MBv2+CMSIS) but achieves higher mAP than MCUNetvl.
Additionally, MCUNet has 168§ MMACs with a detection
accuracy of 51.4% (MCUNetV2-M4 has 172 MMACs and
MCUNetV2-H7 has 343 MMACs), while the largest deploy-
able TinyissimoYOLO (TY:20-7-112) only has 57 MMACs
achieving higher detection accuracy of 56.4% mAP. There-
fore, the small resolution TinyissimoYOLO version has a
great trade-off between detection accuracy, network sim-
plicity, and deployability onto accelerated MCU hardware.
Table 1 reports the mAP for each detection class as well
as the network’s overall mAP achieved by the quantized
to 8-bit networks. We varied the network input resolution
between 88 x 88 pixels, 112 x 112 pixels, and 224 x
224 pixels. Even though we report training the network
with an input resolution of 224 x 224 pixels, the network
learning rate starting with 0.001 is unstable at the beginning
leading the network to not get trained properly. However,
by setting the initial learning rate to 0.0001, the network
training is stable again, even though it takes more epochs to be
trained.

When varying the number of object classes to predict,
from 3 classes to 20 classes, for 88 x 88 pixel resolution
the number of parameters scales by a factor of 1.3x, while
for 224 x 224 pixel resolution, the scaling factor is 2x.
Notably, changing the network’s first kernel to a kernel size
of 3 x 3to 7 x 7, we unsurprisingly note a constant increase
of 1920 parameters.

Comparing the performance of the various
TinyissimoYOLO networks, we first report the change of
the first layer’s kernel size from 3 x 3 to 7 x 7, which
increases the detection accuracy to 67% mAP for the network
TY:20-7-224. Compared to the network TY:20-3-224, this is
an increase of +7%. However, for networks of less than three
million network parameters, the kernel change leads to no
improvements for 3 detection classes, while it decreases the
detection accuracy for all remaining networks. Increasing the
input resolution constantly increases the mAP performance
in overall network detection accuracy. Notably, decreasing
the number of detection classes increases the overall mAP
performance of the network and of each detection class itself.

B. GAP9 - RISC-V MCU PERFORMANCE
We deployed two different CNNs, the original
TinyissimoYOLO (TY:3-3-88) for a fair comparison and an

VOLUME 12, 2024

—=-- GAP9 power
40 4

35 A

Power (mw)

15 4

10 4

Q 40 20] a0 0 &0
Time {ms)

FIGURE 6. TY:3-3-88 single-core execution consumes 26.14 m\W on
average over 69.77 ms, resulting in an energy consumption of 1738 pJ.

. TY:3-3-88
104 == TY:10-3-112
(7]
2
g
g
£
9]
Qo
w1
i)
(¥}
>
(@]
=
N
Q
&
©
Q}\

FIGURE 7. Single-core execution of TY:3-3-88 (in blue) achieves

1.25 MAC/cycle and accumulates to a total of 26 Mcycles, distributed to
the different layers as shown here. Single-core execution of TY:10-3-112
(in green) achieves 1.29 MAC/cycle and accumulates to a total of 42
Mcycles, distributed to the different layers as shown here.

adapted network (TY:10-3-112) for more classes and higher
accuracy.

1) SINGLE-CORE PERFORMANCE
Here we report the single-core performance of both networks
deployed on GAP9.

a: TY:3-3-88

Single-core execution on GAP9 results in 26 Mcycles,
so an equivalent of 69.77ms at the maximum frequency
of 370 MHz while we reach 1.25 MAC/cycles. The average
power consumption is 26.14 mW, which gives us an energy
consumption of 1738 pJ. In Fig. 6 we show the power
consumption of the single-core implementation, showing a
stable power consumption with a ripple, possibly from the
internal voltage regulator as we measure the whole SoC
power. In Fig. 7 we show the number of cycles by layer
in blue - we see that the convolutional layers are the most
computationally expensive, especially the first one.

75101

IEEE Access

J. Moosmann et al.: Flexible and Fully Quantized Lightweight TinyissimoYOLO for Ultra-Low-Power Edge Systems

b: 112x112 INPUT 10 CLASSES

The single-core execution time of this network is 114.15 ms
while consuming 2990 pJ per inference. We show the cycles
per layer in Fig. 7 in green, seeing again that the first layer
consumes most cycles and max-pooling is insignificant with
only 3% of the overall number of cycles.

2) GAP9 MULTI-CORE MCU PERFORMANCE

We deployed two different CNNSs, first the original Tinyissi-
moYOLO for a fair comparison and then an adapted network
for more classes and higher accuracy. Here we report the
multi-core performance of both networks.

a: TY:3-3-88
In Fig. 8 we show the speedup for execution on 8 versus
1 core, for parallelizing by columns and, for the convolutional
layers, by output channels. We first parallelized by columns,
which gives us good results for the first layers, however, leads
to low speedup on small spatial dimensions of feature maps.
Therefore we switched to parallelizing by output channels for
layers 11 and 12, gaining 245k cycles. Layer 13 can not be
parallelized by output channels, as it requires a higher stack
size than what we can allocate.

Overall we achieve a speedup of 6.14x running on 8§ versus
1 core, only needing 4.4 MCycles.

EEE speedup columns
mmm speedup channels

\c’(@\\c‘\:‘o"(@b 06’{\\0 10& 0(\“3.\\(\'_&\00““’,&\0(?00}?
PP P T P T ST
._&0 ._&0 ._50 ._&0 ._&0 ._&0 ._soqo 0\ A

FIGURE 8. TY:3-3-88 speedup from 1 to 9 cores per layer for the two
different parallelization schemes for convolutional layers.

GAP9 can run at frequencies up to 370 MHz on both
the fabric controller and the cluster while maintaining an
inference efficiency of 7.73 MAC/cycle on the multi-core
cluster. We measured energy consumption and latency for
different operating points between 50 MHz and 370 MHz,
always choosing the minimum core voltage at which the
system is still able to operate (in 50mV steps). The
MAC/cycle is not dependent on the frequency, meaning
the latency scales linearly with the frequency.

In Fig. 9 we show our results, marking Pareto front
points in green. We reach the most energy-efficient point at
150 MHz, as this allows operation at the minimum voltage
of 0.65V. At this operating point, GAP9 only consumes

75102

900
#- Pareto front
50MHz/D.65V

800 - 2
z
= 370MHz/0.8V
[®)
2 700 ' 350MHZ/0.8V
3
£
= 300MHz/0.75V
a ®
> 600
e 200MHz/0.7V

[]
& 250MHz/0.7V ALOMHZOEIN
®
56t .. 150MHz(0.65V
10 20 40 80

Latency per inference (ms)

FIGURE 9. Latency versus energy efficiency at different operating points,
showing the Pareto optimal set in green.

20

-
o
i

Power (mw)

10 1

——- GAP9 power

Q -1 40 BV 29]
Time (ms)

B BNReluConwlution0+ [l BNReluGConwolutions +
Pooling1 Fooling?

B BNReluConwolution2

BNReluConwlution3 + BNReluConvolution9 +
Fooling4 Pooling10

B BNReluComwlutions

BNReluConvolution12

BNReluConwolution13 +

BNReluConvolutiong Pooling14

FullyConnected15

BHReluConvolution11

FIGURE 10. Energy-efficient TinyissimoYOLO on GAP9 has a latency of
27.87 ms and an average power consumption of 18.16 mW.

490.21 pJ per inference and exhibits a latency of 27.9 ms.
Peak performance is reached at the maximum operating
frequency of 370 MHz, with only 11.3ms latency and an
inference energy of 721 nJ.

In Fig. 10, we show the power consumption per layer
for the most energy-efficient operating point (150 MHz
at 0.65V). We see the resulting latency, 27.87 ms, which
corresponds to an energy per inference of 490 nJ. In Fig. 11
we show the power consumption per layer for the least
latency operating point, the aforementioned 370 MHz at
0.8 V. We see the resulting latency, 11.3 ms, which with the
measured energy efficiency of 162 n"W/MHz corresponds to
an energy per inference of 721 nJ.

In both Fig. 10 and Fig. 11 we visualize the execution
times of the different layers by different colors. We can note
a tendency that layers that parallelize better consume more
power - which is expected, as the cluster then is fully used.

VOLUME 12, 2024

J. Moosmann et al.: Flexible and Fully Quantized Lightweight TinyissimoYOLO for Ultra-Low-Power Edge Systems

IEEE Access

" 1 -=-- GAP9 power
M L}
70 1 i ﬁ ll‘“& l: |L"|
"!“H [R ':‘f"lrln ol
i SONNR: g by g A
7 [H R THH nly i VR Yy i
60 1 i s n Yy B HEITORHIR
i in 1 H R R AR PO T
1 | ! - f A AT
ool f MO bR il
5501 f ' : S ALA
Sl | r)
% 4011 g i
3 i i
a [|
: :
304 i
i |
i \
204 H 1
: .
lJ
10 1
0 2 & © ?) 32
Time (ms)
B BNReluConvolution0 + [l BNReluConvolution§ + BNReluConvolution12
Pooling1 Pooling?

BNReluConwolufion13 +

[l BNReluConwolution2 BNReluConvolution8 Pooling14

BNReluConvolution3 +
Pooling4

B BNReluConwvolutions

BNReluConvolutiond +
Pooling10

FullyConnected15
BNReluConvolution11

FIGURE 11. Peak performance TinyissimoYOLO on GAP9 has a latency of
11.3 ms and an average power consumption of 55.76 mW.

7,
6,
QS_
=1
g 41
@
o
m3_
2_
l,
0,
ST EE LS G ST
T I O I L T S @00 L0
\\\0\\3\\50\\5\00\0\\)0\\’0’0‘00\‘&-
OF Q7 &V OV QN VO & 0 A A g
S S S P O S RO
9 oA e S &S &L o
& £ ¢ £ ST ¢
A S RN I SIS Q&\

FIGURE 12. TY:10-3-112 speedup from 1 to 9 cores per layer, resulting in
an average speedup of 6.77 and 8.74 MAC/cycle.

b: TY:10-3-112

We achieve an overall speedup of 6.77 when parallelizing on
9 cores. In Fig. 12 we show the speedup per layer, as before
earlier convolutional layers parallelize better due to the higher
number of columns - however, in this network, there is
no need to parallelize by output channels as the speedup
of the last convolutional layers is still above 6. At peak
performance (370 MHz) we achieve a latency of 16.87 ms
while consuming 1057 pJ per inference. Optimizing for
energy-efficiency and running at 150 MHz, latency increases
to 41.62 ms while consuming 765 pJ.

¢: COMPARISON TO ARM

In Fig. 13 we compare our deployment on GAP9 RISC-V
cores (single-core as well as multi-core) against deployments
on the H7A3, L4R9, and Apollo. Comparing the single-core
versions, GAP9 clearly outperforms the other architectures in
terms of latency (by a factor of more than 10 to the next best

VOLUME 12, 2024

W 9% 1 o0
- £
540 i; E 265
B St S 109 g5
@ @ © 10 i
£ o o
E < g
> =
240 ety 77 77| €
S 69.8 5 10 S e
2 3 =10
— S g
279 g . 12 > 174
E |oa G 1 072
! 1.3 02 03 & 0.49
10
(a) (b) (d)

H7A3@(3.3V; 192MHz)
L4RI@(3.3V; 120MHz)

Apollod@(1.8V; 192MHz)
single-GAP9@(0.8V; 370MHz)

multi-GAP9@(0.65; 150MHz)
multi-GAP9@(0.8V; 370MHz)

FIGURE 13. TY:3-3-88 performance comparison when deployed
quantized to 8-bit on different MCU architectures. The GAP9 single- and
multi-core implementation outperforms the other architectures in terms
of latency, inference efficiency, and energy per inference.

120
A100
)
X
; 80
2 BN Double buffered tensor
4 60 B Completely fit L1
> EEl Temporary buffer used locally
o 40
£
]
= 20
0
VR o T S-SR s S, VI A
FFE T IS S S
& & & & & & & & ¢
© & & & L S o N L &
RO
& L & S L @ (& (& o &
0 R S S SR SR GRS
F&FSE e & & F S
& D ¢ L > > N
i < 9 &
N S S & S
& & & & &
S 0 S 2\ &

FIGURE 14. L1 memory allocation TY:3-3-88: The autotiler tiles weights,
in and output layers for copying them into L1 where necessary. However,
most layers are small enough to not require double buffering.

architecture) and energy per inference (by a factor of almost
50). In inference efficiency, we can also outperform the other
architectures, as we can execute vectorized 8-bit operations
on GAP9 contrary to the other architectures. For our multi-
core implementation, we show the most energy efficient
(150MHz) and least latency (370 MHz) operating points
of GAPY9. Compared to the peak performance single-core
implementation we can either achieve similar latency and
around 3x reduced energy per inference or reduce latency
by a factor of around 2.5 but only be around 2x more
energy-efficient.

C. GAP9 HARDWARE ACCELERATOR PERFORMANCE
We also deployed the proposed two networks on the
Hardware accelerator on GAP9.

1) TY:3-3-88

In Fig. 15 we show the cycles and MAC/cycle per layer.
We have an array of 9 x 9 NEI6 engines that can
handle 16 multiplications at a time, so are ideal for a
multiple of 16 input channels. Note that max-pool layers
can not be executed on the accelerator, but have to be
computed on the cluster. Those two factors compromise
the MAC/cycle number for the first layer. On average we
achieved 41.22 MAC/cycle. As the weights are constantly
kept in L2, the L2 requirements are almost constant, only

75103

IEEE Access

J. Moosmann et al.: Flexible and Fully Quantized Lightweight TinyissimoYOLO for Ultra-Low-Power Edge Systems

031 80
' 3]
9 160 2
£,021 5
2 0 g
=
0.1 L0
0.0 - 0
5 O M6 A 2908009
O I R N S N g
T S G S S SR RS MR R
P WP T & FTF S
<Q &0 xq 0 xQ &o © -s°\°-\°\° © (\Qe.
SIRG) \)CP o Fy" &t < &
20" ¥ BT oW L 73 \\\\
T T EF FF T @
O F O T TS ARy
J da(‘ (’0‘\ L
N3 N3 & \00 9
& & & & &
& & &y &

FIGURE 15. Using the HW accelerator on GAP9 we can reach an average
of 41.22 MAC/cycle for TY:3-3-88, which leads to a total of 785 kcycles.

Power (mW)

[
[
v
L
!
il 3
o 3 1 3 & k]
Time (ms)
B BNReluCq 0+ [l BNReluC: ion6 + BNReluG \ution12
Pooling Pocling?
M BNReluConwolution13 +
Bl BNReluCq B BNReluC: Pooling14
BNReluC: 3+ [l BNReluC iong + B FulyConnected15
Paoling4 Pooling10
Il BNReluC B BNReluC joni1

FIGURE 16. Energy-efficient TY:3-3-88 on the GAP9 hardware accelerator
has a latency of 5.24 ms and an average power consumption of 20.04 mW.

the first convolution needs 31kB of additional dynamic L2
memory for double buffering. The L1 requirements per
layer are displayed in Fig. 14. In Fig. 16 (150 MHz, the
most energy-efficient operating point) and Fig. 17 (370 MHz,
the least latency operating point) we show the power
consumption for the network running on the GAP9 hardware
accelerator. We observe that while the hardware accelerator
is active the power consumption is higher than when only
the cluster is active (on max-pooling operations, which is
executed tiled in two parts on the first layer). At (370 MHz
we achieved a latency of 2.12 ms and an energy per inference
of 149 pJ, which is a 5.3x speedup compared to only using
the general-purpose cores. At 150 MHz the latency is 5.24 ms
while the energy per inference is 105 pJ, reducing the energy
by 79% compared to the multi-core implementation.

2) TY:10-3-112

Deploying the 112 x 112 input network on the HW accelerator
at 370 MHz we reached 42.84 MAC/cycle and a latency of
3.46 ms, while consuming only 245 pJ. Compared to the

75104

Power (mW)

ol Q2 40] 20
Time (ms)
B BNReluC lution0 + [l BNReluC + BNReluCi lution12
Paoling1 Poaling?
B BNReluConvolution13 +
B BNReluConvolution2 B BNReluConwlution8 Pooling14
BNReluConwolution3 + [l BNReluC jong + W FullyConnected15

Pooling4 Pooling10
M BNReluConwlution5 [l BNReluConvolutiont1

FIGURE 17. Peak performance TY:3-3-88 on the GAP9 hardware
accelerator has a latency of 2.12 ms and an average power consumption
of 70.30 mw.

multi-core implementation this is a 4.9x speedup. Running at
150 MHz we can improve the energy efficiency to 177 pJ per
inference while increasing the latency to 8.54 ms, reducing
the energy per inference by 77% compared to the multi-core
implementation.

a: COMPARISON TO MAX78000

In Fig. 18 we compare the most energy efficient (150 MHz)
and least latency (370 MHz) operating points of GAP9 to the
implementation on the CNN accelerated MAX78000 MCU.
Experimental results show the MAX78000 outperforms
the single-core and multi-core implementations on GAP9
in terms of latency, inference efficiency, and energy per
inference. However, the network implementation on the
neural engine of GAP9 outperforms the inference latency
and energy per inference of the MAX78000 because of the
high clock frequency available. Even though the inference
efficiency is 2.47x times less with 43.2 MAC/cycle, GAP9
with the NE16 reaches a latency of only 2.12 ms and energy
consumption of 149 pJ at peak performance, being 2.6x faster
and 1.3x more energy efficient than the MAX78000. At the
most energy efficient frequency GAP9 still reaches a slightly
lower latency than the MAX78000, but can even reduce the
energy consumption by a factor of 1.8.

By using the GAP9’s multi-core processor or the neural
engine, we gain flexibility, as it is a multi-purpose architec-
ture that allows to deploy of arbitrary networks while the
MAX78000 is limited to a specific set of layers and only
internal memory. In section Section IV-A we showed that we
can gain accuracy and train for more classes if we can use
bigger networks that can be deployed on GAP9 but not on
the MAX78000.

b: COMPARISON TY:10-3-112:
We also deployed a more general-purpose TinyissimoYOLO
network on GAP9, which has a higher input resolution and

VOLUME 12, 2024

—

. Moosmann et al.: Flexible and Fully Quantized Lightweight TinyissimoYOLO for Ultra-Low-Power Edge Systems

IEEE Access

Latency (ms)

3

)

27.9

11.3

5.5 5.2

2.1

Throughput (MACs/Cycle)

3

3

107

412 41.2

77 17

Energy per Inference ([mJ/Inf.)

0.49

(a)

MAX78000@(1.2V; 50MHz)

(b)

multi-GAP9@(0.8V; 370MHz)

(d)

GAP9-NE16@(0.8V; 370MHz)

multi-GAP9@(0.65; 150MHz) GAP9-NE16@(0.65V; 150MHz)

FIGURE 18. TY:3-3-88 performance comparison when deployed
quantized to 8-bit on the CNN accelerated MAX78000 (50 MHz) MCU
compared to the most energy efficient (150 MHz), the least latency
(370 MHz) operating points of GAP9 and the neural engine of GAP9.

2

L[4 - ="
10 = €
53 4238 428| g
- 41.6 S s
O o 10
< E 5
g 16.9 S 87 87 g |ae
8 g o
St 85 e 810 076 12
o >
£ 3
35 1.3 & 0.18 %%
(a) (b) (d)

single-GAP9@(0.8V; 370MHz)
multi-GAPI@(0.65V; 150MHz)

multi-GAP9@(0.8V; 370MHz)
GAP9-NE16@(0.65V; 150MHz)

GAP9-NE16@(0.8V; 370MHz)

FIGURE 19. Performance comparison when deploying the network
TY:10-3-112 quantized to 8-bit on the GAP9 running on the single-core
(370 MHz), multi-core (150 MHz, 370 MHz) and on the neural engine of
GAP9 (370 MHz).

10 detection classes. In Table 2 we note the network has
700k parameters. Furthermore, the input of 112 x 112 pixels
RGB image consumes another 100 kB of memory while the
in-between network calculations need at most approximately
375 kB of memory. As such, a microcontroller that needs to
run such a network requires at least 1 MB of Flash while
having 512kB of RAM. Furthermore, this network clearly
can not fit the MAX78000 anymore. We, therefore, deployed
the network on GAP9 only. In particular, we deployed the
network on one single core, on all nine cluster cores, and
on the neural engine itself. Fig. 19 shows the comparison of
the performances achieved. We note, despite the sheer size
of the network, it runs within 3.5 ms on the neural engine,
while being executed 32x and 3x slower on the single-core
and multi-core implementation, respectively.

V. CONCLUSION
This work provides a comprehensive evaluation of vari-
ous network adjustments for TinyissimoYOLO for edge
processors with a 100s-of-KiB memory budget and in a 10s-
of-milliwatt-range power envelope. We demonstrate the ver-
satility of TinyissimoYOLO by training the network to detect
up to 20 classes. Despite its small size, TinyissimoYOLO
achieves remarkably high detection accuracy, coming close
to the performance of YOLOv1 when trained on the entire
Pascal VOC dataset.

Additionally, we present an exhaustive investigation into
the network’s deployability with a fair benchmark and
discussion of single-core microcontrollers and the benefit of

VOLUME 12, 2024

parallelization. Furthermore, the novel RISC-V-based multi-
core GAP9 processor is compared with the MAX78000
accelerator and the GAP9’s neural engine (NE16). On NE16,
we find that inference at the maximum clock frequency of
370 MHz only takes 2.12ms, with an energy consumption
per inference of 105 pJ, nearly half the energy consumption
compared to the MAX78000 platform for a 3-class network
with 88 x 88 input resolution. This network’s architecture
and size are largely dictated by the MAX78000 accelerator’s
limitations, which do not apply to GAP9’s heterogeneous
architecture - layers not supported by NE16 can still
be efficiently mapped to the multi-core RISC-V cluster.
We conclude that multi-core, general-purpose platforms are
essential to achieving acceptable performance and efficiency
levels. Heterogeneous systems incorporating domain-specific
accelerators provide an efficiency boost in accelerated appli-
cations, but the presence of tightly coupled general-purpose
processors is essential to maintain flexibility.

This is illustrated by the deployment of a larger, more
powerful 10-class TinyissimoYOLO network using a larger
input resolution of 112 x 112 pixels to GAP9’s cluster and
to NE16. Even with this more powerful network, GAP9
can perform 285 inferences per second, with the object
detection update rate ultimately restricted by the exposure
time of low-power cameras rather than inference latency.
The remaining time between frames could be used for
additional processing of the inference results, e.g. for object
tracking. In conclusion, the energy efficiency and real-time
capabilities of TinyissimoYOLO make it well-suited for low-
power processors and applications such as always-on smart
cameras, where it can perform object detection efficiently.

ACKNOWLEDGMENT
To Marco Fariselli for his help in deploying
TinyissimoYOLO on the neural engine of GAP9, to Thorir
Mar Ingolfsson, for his help with DORY on GAP9, and to
Jakub Mandula for proofreading this article.

(Julian Moosmann, Hanna Miiller, and Nicky Zimmerman
contributed equally to this work.)

REFERENCES

[11 K. Wei, L. Zhang, Y. Guo, and X. Jiang, “Health monitoring based
on Internet of Medical things: Architecture, enabling technologies,
and applications,” IEEE Access, vol. 8, pp. 27468-27478, 2020, doi:
10.1109/ACCESS.2020.2971654.

[2] M.S.Diab and E. Rodriguez-Villegas, ‘““Embedded machine learning using
microcontrollers in wearable and ambulatory systems for health and care
applications: A review,” IEEE Access, vol. 10, pp. 98450-98474, 2022,
doi: 10.1109/ACCESS.2022.3206782.

[3] Q. Qi and F. Tao, “Digital twin and big data towards smart manufacturing
and Industry 4.0: 360 degree comparison,” IEEE Access, vol. 6, pp. 3585—
3593, 2018, doi: 10.1109/ACCESS.2018.2793265.

[4] (2019). Number of Internet of Things (lIoT) Connected Devices
Worldwide From 2019 to 2023, With Forecasts From 2022 to 2030
(in Billions) [Graph]. [Online]. Available: https://www.statista.
com/statistics/1183457/iot-connected-devices-worldwide/

[5] N. Ling, X. Huang, Z. Zhao, N. Guan, Z. Yan, and G. Xing, “BlastNet:
Exploiting duo-blocks for cross-processor real-time DNN inference,” in
Proc. 20th ACM Conf. Embedded Networked Sensor Syst., New York, NY,
USA, Nov. 2022, pp. 91-105, doi: 10.1145/3560905.3568520.

75105

http://dx.doi.org/10.1109/ACCESS.2020.2971654
http://dx.doi.org/10.1109/ACCESS.2022.3206782
http://dx.doi.org/10.1109/ACCESS.2018.2793265
http://dx.doi.org/10.1145/3560905.3568520

IEEE Access

J. Moosmann et al.: Flexible and Fully Quantized Lightweight TinyissimoYOLO for Ultra-Low-Power Edge Systems

[6]

[71

[8]

[91

[10]

[11]

[12]

[13]
[14]
[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

N. Carion, F. Massa, G. Synnaeve, N. Usunier, A. Kirillov, and
S. Zagoruyko, “End-to-end object detection with transformers,” in
Computer Vision—ECCV 2020. Cham, Switzerland: Springer, Aug. 2020,
pp. 213-229.

W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C. Y. Fu, and
A. C. Berg, “SSD: Single shot multibox detector,” in Computer Vision—
ECCV, vol. 9905. Cham, Switzerland: Springer, Sep. 2016, pp. 21-37, doi:
10.1007/978-3-319-46448-0.

L. Jiao, F. Zhang, F. Liu, S. Yang, L. Li, Z. Feng, and R. Qu, “A survey of
deep learning-based object detection,” IEEE Access, vol. 7, pp. 128837—
128868, 2019, doi: 10.1109/ACCESS.2019.2939201.

W. Wang, J. Dai, Z. Chen, Z. Huang, Z. Li, X. Zhu, X. Hu, T. Lu,
L. Lu, H. Li, X. Wang, and Y. Qiao, “Internlmage: Exploring large-
scale vision foundation models with deformable convolutions,” in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2023,
pp. 14408-14419, doi: 10.1109/CVPR52729.2023.01385.

R. Dagli and A. M. Shaikh, “CPPE-5: Medical personal protective
equipment dataset,” Social Netw. Comput. Sci., vol. 4, no. 3, p. 263,
Mar. 2023, doi: 10.1007/s42979-023-01748-7.

J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only
look once: Unified, real-time object detection,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jun. 2016, pp. 779-788, doi:
10.1109/CVPR.2016.91.

J. Redmon and A. Farhadi, “YOLO9000: Better, faster, stronger,” in
Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jul. 2017,
pp. 6517-6525, doi: 10.1109/CVPR.2017.690.

J. Redmon and A. Farhadi, “YOLOV3: An incremental improvement,”
2018, arXiv:1804.02767.

A. Bochkovskiy, C.-Y. Wang, and H.-Y. Mark Liao, “YOLOV4: Optimal
speed and accuracy of object detection,” 2020, arXiv:2004.10934.

G. Jocher. (2020). YOLOV5 By Ultralytics. [Online]. Available:
https://github.com/ultralytics/yolov5

C. Li, L. Li, H. Jiang, K. Weng, Y. Geng, L. Li, Z. Ke, Q. Li, M. Cheng,
W. Nie, Y. Li, B. Zhang, Y. Liang, L. Zhou, X. Xu, X. Chu, X. Wei,
and X. Wei, “YOLOvV6: A single-stage object detection framework for
industrial applications,” 2022, arXiv:2209.02976.

C.-Y. Wang, A. Bochkovskiy, and H.-Y. Mark Liao, “YOLOV7: Trainable
bag-of-freebies sets new state-of-the-art for real-time object detectors,” in
Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2023,
pp. 7464-7475, doi: 10.1109/CVPR52729.2023.00721.

G. Jocher, A. Chaurasia, and J. Qiu. (2023). YOLO By Ultralytics. [Online].
Available: https://github.com/ultralytics/ultralytics

S. S. Saha, S. S. Sandha, and M. Srivastava, ‘“Machine learn-
ing for microcontroller-class hardware: A review,” IEEE Sensors J.,
vol. 22, no. 22, pp. 21362-21390, Nov. 2022, doi: 10.1109/JSEN.2022.
3210773.

P. Warden and D. Situnayake, TinyML: Machine Learning With Tensorflow
Lite on Arduino and Ultra-Low-Power Microcontrollers. Newton, MA,
USA: O’Reilly Media, 2019.

Microsoft. (2021). Neural Network Intelligence. [Online]. Available:
https://github.com/microsoft/nni

J. Moosmann, M. Giordano, C. Vogt, and M. Magno, “TinyissimoY-
OLO: A quantized, low-memory footprint, TinyML object detection
network for low power microcontrollers,” in Proc. IEEE 5th Int.
Conf. Artif. Intell. Circuits Syst. (AICAS), Jun. 2023, pp. 1-5, doi:
10.1109/AICAS57966.2023.10168657.

D. Palossi, N. Zimmerman, A. Burrello, F. Conti, H. Miiller,
L. M. Gambardella, L. Benini, A. Giusti, and J. Guzzi, “Fully onboard
Al-powered human-drone pose estimation on ultralow-power autonomous
flying nano-UAVs,” IEEE Internet Things J., vol. 9, no. 3, pp. 1913-1929,
Feb. 2022, doi: 10.1109/JI0T.2021.3091643.

L. Lamberti, M. Rusci, M. Fariselli, F. Paci, and L. Benini, “Low-
power license plate detection and recognition on a RISC-V multi-core
MCU-based vision system,” in Proc. IEEE Int. Symp. Circuits Syst.
(ISCAS), Benin, May 2021, pp. 1-5, doi: 10.1109/ISCAS51556.2021.
9401730.

K. He, G. Gkioxari, P. Dolldr, and R. Girshick, “Mask R-CNN,” in Proc.
IEEE Int. Conf. Comput. Vis. (ICCV), Oct. 2017, pp. 2980-2988, doi:
10.1109/ICCV.2017.322.

J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional
networks for semantic segmentation,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit. (CVPR), Jun. 2015, pp. 3431-3440, doi:
10.1109/CVPR.2015.7298965.

75106

(27]

(28]

[29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

(37]

(38]

(39]

(40]

(41]

[42]

[43]

[44]

[45]

[46]

(47]

N. Zimmerman, T. Guadagnino, X. Chen, J. Behley, and C. Stachniss,
“Long-term localization using semantic cues in floor plan maps,”
IEEE Robot. Autom. Lett., vol. 8, no. 1, pp. 176-183, Jan. 2023, doi:
10.1109/LRA.2022.3223556.

N. Zimmerman, M. Sodano, E. Marks, J. Behley, and C. Stachniss, “Con-
structing metric-semantic maps using floor plan priors for long-term indoor
localization,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS),
Oct. 2023, pp. 1366-1372, doi: 10.1109/IROS55552.2023.10341595.

J. Mccormac, R. Clark, M. Bloesch, A. Davison, and S. Leutenegger,
“Fusion++: Volumetric object-level SLAM,” in Proc. Int. Conf. 3D Vis.
(3DV), Sep. 2018, pp. 32-41, doi: 10.1109/3DV.2018.00015.

A.Rosinol, M. Abate, Y. Chang, and L. Carlone, ““Kimera: An open-source
library for real-time metric-semantic localization and mapping,” in Proc.
IEEE Int. Conf. Robot. Autom. (ICRA), May 2020, pp. 1689-1696, doi:
10.1109/ICRA40945.2020.9196885.

S. Rezwan and W. Choi, “Artificial intelligence approaches for UAV
navigation: Recent advances and future challenges,” IEEE Access, vol. 10,
pp. 26320-26339, 2022, doi: 10.1109/ACCESS.2022.3157626.

J. Crespo, J. C. Castillo, O. M. Mozos, and R. Barber, “Semantic
information for robot navigation: A survey,” Appl. Sci., vol. 10, no. 2,
p. 497, Jan. 2020, doi: 10.3390/app10020497.

P. Jiang, D. Ergu, F. Liu, Y. Cai, and B. Ma, “A review of YOLO algorithm
developments,” Proc. Comput. Sci., vol. 199, pp. 1066-1073, 2022.

D. Seichter, M. Kohler, B. Lewandowski, T. Wengefeld, and H.-M. Gross,
“Efficient RGB-D semantic segmentation for indoor scene analysis,” in
Proc. IEEE Int. Conf. Robot. Autom. (ICRA), May 2021, pp. 13525-13531,
doi: 10.1109/ICRA48506.2021.9561675.

M. Everingham, S. M. A. Eslami, L. Van Gool, C. K. I. Williams,
J. Winn, and A. Zisserman, “The Pascal visual object classes challenge: A
retrospective,” Int. J. Comput. Vis., vol. 111, no. 1, pp. 98-136, Jan. 2015,
doi: 10.1007/s11263-014-0733-5.

A. Canepa, E. Ragusa, R. Zunino, and P. Gastaldo, *““Detection-based video
surveillance using deep neural networks on STM32 microcontroller,” in
Proc. 29th IEEE Int. Conf. Electron., Circuits Syst. (ICECS), Oct. 2022,
pp. 14, doi: 10.1109/ICECS202256217.2022.9970956.

1. Fedorov, R. P. Adams, M. Mattina, and P. Whatmough, *“Sparse: Sparse
architecture search for CNNs on resource-constrained microcontrollers,”
in Proc. Adv. Neural Inf. Process. Syst., vol. 32,2019, pp. 1-19.

M. Risso, A. Burrello, F. Conti, L. Lamberti, Y. Chen, L. Benini, E. Macii,
M. Poncino, and D. J. Pagliari, “Lightweight neural architecture search
for temporal convolutional networks at the edge,” IEEE Trans. Comput.,
vol. 72, no. 3, pp. 744-758, Mar. 2023, doi: 10.1109/TC.2022.3177955.
E. Liberis, L. Dudziak, and N. D. Lane, “UNAS: Constrained neural archi-
tecture search for microcontrollers,” in Proc. 1st Workshop Mach. Learn.
Syst., New York, NY, USA, 2021, pp. 70-79.

H. Benmeziane, K. El Maghraoui, H. Ouarnoughi, S. Niar, M. Wistuba,
and N. Wang, “Hardware-aware neural architecture search: Survey and
taxonomy,” in Proc. 13th Int. Joint Conf. Artif. Intell., Aug. 2021,
pp. 4322-4329.

S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing deep
neural networks with pruning, trained quantization and Huffman coding,”
2015, arXiv:1510.00149.

T. Liang, J. Glossner, L. Wang, S. Shi, and X. Zhang, ‘“Pruning
and quantization for deep neural network acceleration: A survey,”
Neurocomputing, vol. 461, pp. 370-403, Oct. 2021.

R. David, J. Duke, A. Jain, V. Janapa Reddi, N. Jeffries, J. Li, N. Kreeger,
1. Nappier, M. Natraj, T. Wang, P. Warden, and R. Rhodes, “TensorFlow
lite micro: Embedded machine learning for TinyML systems,” Proc.
Mach. Learn. Syst., vol. 3, pp. 800-811, Aug. 2021.

A. Kumar, S. Goyal, and M. Varma, ‘“‘Resource-efficient machine learning
in 2 KB RAM for the Internet of Things,” in Proc. 34th Int. Conf.
Mach. Learn., 2017, pp. 1935-1944.

L. Lai, N. Suda, and V. Chandra, “CMSIS-NN: Efficient neural network
kernels for ARM cortex-M CPUs,” 2018, arXiv:1801.06601.

L. Wulfert, C. Wiede, M. H. Verbunt, P. Gembaczka, and A. Grabmaier,
“Human detection with a feedforward neural network for small micro-
controllers,” in Proc. 7th Int. Conf. Frontiers Signal Process. (ICFSP),
Sep. 2022, pp. 14-22, doi: 10.1109/ICFSP55781.2022.9924667.

M. Giordano, L. Piccinelli, and M. Magno, “Survey and comparison of
milliwatts micro controllers for tiny machine learning at the edge,” in
Proc. IEEE 4th Int. Conf. Artif. Intell. Circuits Syst. (AICAS), Jun. 2022,
pp. 94-97, doi: 10.1109/AICAS54282.2022.9870017.

VOLUME 12, 2024

http://dx.doi.org/10.1007/978-3-319-46448-0
http://dx.doi.org/10.1109/ACCESS.2019.2939201
http://dx.doi.org/10.1109/CVPR52729.2023.01385
http://dx.doi.org/10.1007/s42979-023-01748-7
http://dx.doi.org/10.1109/CVPR.2016.91
http://dx.doi.org/10.1109/CVPR.2017.690
http://dx.doi.org/10.1109/CVPR52729.2023.00721
http://dx.doi.org/10.1109/JSEN.2022.3210773
http://dx.doi.org/10.1109/JSEN.2022.3210773
http://dx.doi.org/10.1109/AICAS57966.2023.10168657
http://dx.doi.org/10.1109/JIOT.2021.3091643
http://dx.doi.org/10.1109/ISCAS51556.2021.9401730
http://dx.doi.org/10.1109/ISCAS51556.2021.9401730
http://dx.doi.org/10.1109/ICCV.2017.322
http://dx.doi.org/10.1109/CVPR.2015.7298965
http://dx.doi.org/10.1109/LRA.2022.3223556
http://dx.doi.org/10.1109/IROS55552.2023.10341595
http://dx.doi.org/10.1109/3DV.2018.00015
http://dx.doi.org/10.1109/ICRA40945.2020.9196885
http://dx.doi.org/10.1109/ACCESS.2022.3157626
http://dx.doi.org/10.3390/app10020497
http://dx.doi.org/10.1109/ICRA48506.2021.9561675
http://dx.doi.org/10.1007/s11263-014-0733-5
http://dx.doi.org/10.1109/ICECS202256217.2022.9970956
http://dx.doi.org/10.1109/TC.2022.3177955
http://dx.doi.org/10.1109/ICFSP55781.2022.9924667
http://dx.doi.org/10.1109/AICAS54282.2022.9870017

J. Moosmann et al.: Flexible and Fully Quantized Lightweight TinyissimoYOLO for Ultra-Low-Power Edge Systems

IEEE Access

[48] A. Moss, H. Lee, L. Xun, C. Min, F. Kawsar, and A. Montanari,
“Ultra-low power DNN accelerators for IoT: Resource characterization
of the MAX78000,” in Proc. 20th ACM Conf. Embedded Networked
Sensor Syst., New York, NY, USA, Nov. 2022, pp. 934-940, doi:
10.1145/3560905.3568300.

[49] J. Lin, W. Chen, Y. Lin, J. Cohn, C. Gan, and S. Han, “MCUNet: Tiny
deep learning on 10T devices,” in Proc. 34th Conf. Neural Inf. Process.
Syst., 2020, pp. 11711-11722.

[50] J. Lin, W. Chen, H. Cai, C. Gan, and S. Han, “Memory-efficient patch-
based inference for tiny deep learning,” in Proc. 35th Conf. Neural Inf.
Process. Syst., 2021, pp. 2346-2358.

[51] J. Lin, W.-M. Chen, H. Cai, C. Gan, and S. Han, “MCUNetV2:
Memory-efficient patch-based inference for tiny deep learning,” 2021,
arXiv:2110.15352.

[52] M. Rusci, A. Capotondi, and L. Benini, ‘“Memory-driven mixed low
precision quantization for enabling deep network inference on microcon-
trollers,” Proc. Mach. Learn. Syst., vol. 2, pp. 326-335, May 2020.

[53] G. Rutishauser, F. Conti, and L. Benini, “Free bits: Latency optimization
of mixed-precision quantized neural networks on the edge,” in Proc. IEEE
5th Int. Conf. Artif. Intell. Circuits Syst. (AICAS), Jun. 2023, pp. 1-5.

[54] S.K.Esser,J. L. McKinstry, D. Bablani, R. Appuswamy, and D. S. Modha,
“Learned step size quantization,” 2019, arXiv:1902.08153.

[55] M. Spallanzani, G. Rutishauser, M. Scherer, A. Burrello, F. Conti,
and L. Benini, “QuantLab: A modular framework for training and
deploying mixed-precision NNs,” in TinyML Summit. Burlingame, CA,
USA: Hyatt Regency San Francisco, Mar. 2022. [Online]. Available:
https://cms.tinyml.org/wp-content/uploads/talks2022/Spallanzani-
Matteo-Hardware.pdf

[56] S.Jain, A. Gural, M. Wu, and C. Dick, “Trained quantization thresholds
for accurate and efficient fixed-point inference of deep neural networks,”
Proc. Mach. Learn. Syst., vol. 2, pp. 112128, Jun. 2020.

[57]1 A. Gholami, S. Kim, Z. Dong, Z. Yao, M. W. Mahoney, and K. Keutzer,
“A survey of quantization methods for efficient neural network inference,”
2021, arXiv:2103.13630.

[58] Z.Yao,Z.Dong,Z. Zheng, A. Gholami, J. Yu, E. Tan, L. Wang, Q. Huang,
Y. Wang, M. W. Mahoney, and K. Keutzer, “HAWQV3: Dyadic neural
network quantization,” in Proc. 38th Int. Conf. Mach. Learn., vol. 139,
2021, pp. 11875-11886.

[59] D. Rossi, F. Conti, M. Eggiman, A. D. Mauro, G. Tagliavini, S. Mach,
M. Guermandi, A. Pullini, I. Loi, J. Chen, E. Flamand, and L. Benini,
“Vega: A ten-core SoC for IoT endnodes with DNN acceleration and
cognitive wake-up from MRAM-based state-retentive sleep mode,” IEEE
J. Solid-State Circuits, vol. 57, no. 1, pp. 127-139, Jan. 2022, doi:
10.1109/1SSC.2021.311488]1.

[60] F. Conti, G. Paulin, A. Garofalo, D. Rossi, A. Di Mauro, G. Rutishauser,
G. Ottavi, M. Eggiman, H. Okuhara, and L. Benini, “Marsellus: A hetero-
geneous RISC-V AI-IoT end-node SoC with 2—-8 B DNN acceleration and
30%-boost adaptive body biasing,” IEEE J. Solid-State Circuits, vol. 59,
no. 1, pp. 128-142, Jan. 2024, doi: 10.1109/JSSC.2023.3318301.

[61] A.Burrello, A. Garofalo, N. Bruschi, G. Tagliavini, D. Rossi, and F. Conti,
“DORY: Automatic end-to-end deployment of real-world DNNs on low-
cost IoT MCUSs,” IEEE Trans. Comput., vol. 70, no. 8, pp. 1253-1268,
Aug. 2021, doi: 10.1109/TC.2021.3066883.

JULIAN MOOSMANN (Graduate Student
Member, IEEE) received the B.Sc. and M.Sc.
degrees in electrical engineering and information
technologies from ETH Ziirich, Ziirich, Switzer-
land, in 2019 and 2023, respectively, where
he is currently pursuing the Doctor of Science
degree with the Integrated Systems Laboratory in
conjunction, Center for Project-Based Learning
D-ITET.

-~ From 2022 to 2023, he was a Research Assistant
with the Center for Project-Based Learning D-ITET, ETH Ziirich. His
research interests include combination of computer vision, event-based
sensing, low-power systems, wireless sensor networks, tiny machine
learning/onboard intelligence, and battery-operated distributed systems.

VOLUME 12, 2024

HANNA MULLER (Graduate Student Member,
IEEE) received the B.Sc. and M.Sc. degrees in
electrical engineering and information technolo-
gies from ETH Ziirich, Ziirich, Switzerland, in
2017 and 2020, respectively, where she is currently
pursuing the Ph.D. degree with the Integrated
Systems Laboratory. Her research interests include
low-power systems, wireless sensor networks,
and onboard intelligence—especially for obstacle
avoidance and localization of nano-drones.

NICKY ZIMMERMAN (Graduate Student
Member, IEEE) received the M.Sc. degree in infor-
matics from Universita della Svizzera Italiana,
where she is currently pursuing the Ph.D. degree
with IDSTA. Her M.Sc. thesis titled “Embedded
Implementation of Vision-Based Navigation for
Nano-Drones.” Previously, she was with General
Motors and Intel.

GEORG RUTISHAUSER (Graduate Student
Member, IEEE) received the B.Sc. and M.Sc.
degrees in electrical engineering and information
technology from ETH Ziirich, in 2015 and 2018,
respectively, where he is currently pursuing the
Ph.D. degree with the Integrated Systems Labora-
tory. His research interests include algorithms and
hardware for reduced-precision deep learning and
their application in computer vision and embedded
systems.

LUCA BENINI (Fellow, IEEE) received the Ph.D.
degree in electrical engineering from Stanford
University, Stanford, CA, USA, in 1997.

He was the Chief Architect of the Plat-
form2012/STHORM Project with STMicroelec-
tronics, Grenoble, France, from 2009 to 2013.
Currently, he holds the Chair of Digital Cir-
cuits and Systems with ETH Ziirich, Ziirich,
Switzerland, and a Full Professor with the Univer-
sity of Bologna, Bologna, Italy. He has published
more than 1000 peer-reviewed articles and five books. His current research
interest includes energy-efficient computing systems’ design from embedded
to high performance.

Dr. Benini is a fellow of the ACM and a member of the Academia
Europaea. He was a recipient of the 2016 IEEE CAS Mac Van Valkenburg
Award and the 2019 IEEE TCAD Donald O. Pederson Best Article Award.

MICHELE MAGNO (Senior Member, IEEE)
received the master’s and Ph.D. degrees in elec-
tronic engineering from the University of Bologna,
Bologna, Italy, in 2004 and 2010, respectively.

Currently, he is a “Privatdozent” with ETH
Ziirich, Ziirich, Switzerland, where he is the Head
of the Project-Based Learning Center. He has
collaborated with several universities and research
centers, such as Mid University Sweden, where he
is also a Guest Full Professor. He has published
more than 150 articles in international journals and conferences, in which he
got multiple best paper and best poster awards. His research interests include
wireless sensor networks, wearable devices, machine learning at the edge,
energy harvesting, power management techniques, and extended lifetime of
battery-operated devices.

75107

http://dx.doi.org/10.1145/3560905.3568300
http://dx.doi.org/10.1109/JSSC.2021.3114881
http://dx.doi.org/10.1109/JSSC.2023.3318301
http://dx.doi.org/10.1109/TC.2021.3066883

