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ABSTRACT Cybersecurity challenges pose a significant threat to Healthcare Cyber Physical Systems (CPS)
because they heavily rely on wireless communication. Particularly, jamming attacks can severely disrupt
the integrity of these CPS networks. This research introduces a decentralized system to address this issue.
Therefore, this paper suggested a system that leverages trust and blockchain technology to detect jamming
attacks in healthcare CPS effectively. It proposes a layered model to improve CPS networks’ lifetime and
performance. In smart healthcare environments, it ensures secure and reliable communication between sensor
nodes, wearable sensors, medical devices, and monitoring systems. Results show that the suggested approach
outperforms the baseline model in identifying and minimizing jamming assaults, with an average percentage
difference of 15.71% more detection rate, 20.21% less packet loss rates, 16.65% less node-level energy
consumption, reduced network latency of 8.29%, and 9.63% more network throughput.

INDEX TERMS Smart healthcare, cyber-physical systems, jamming attacks, sensor nodes, trust.

I. INTRODUCTION
The world of technology has seen a major transformation
with the rise of Cyber Physical Systems (CPS), affecting
various sectors through the merger of mobile tech, wireless
innovations, and the blending of physical and digital
operations. [1]. These systems unite tangible objects with
digital communication, creating a dynamic network. The
physical parts of CPS, such as sensors and actuators, gather
and act on data from the environment. At the same time, the
cyber aspect involves computing tools that process this data
for instant analysis and decision-making [2]. This integration
allows real-world objects to translate vast amounts of data into
actionable insights, aiming for seamless interaction between
the physical and digital realms to foster continuous integration
and smart decision-making [3], [4].
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This breakthrough is set to revolutionize industries includ-
ing energy, healthcare, and business, particularly impacting
healthcare due to the critical nature of patient data reliant
on continuous health monitoring via sensors [2]. It is critical
to assure trust in data with various sensors interacting and
communicating the system [5]. With CPS handling significant
sensitive data, establishing strong security measures is
essential to safeguard data integrity, confidentiality, and
availability from cyber threats [2].
As the reliance on CPS grows, especially in healthcare

for remote care and quick diagnostics, ensuring top-notch
security for data transfer becomes imperative due to the
sensitive information involved. However, many CPS devices
are vulnerable to unauthorized access and data breaches [2],
[6]. This paper proposes a blockchain solution to counteract
jamming attacks in healthcare CPS, offering a robust
alternative to traditional security methods and showing
promise over other technologies like Deep Learning (DL), AI,
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and Federated Learning (FL). In this perspective, blockchain
implementation is particularly designed to defend against these
challenges.
In contrast to the traditional Machine Learning (ML)

approaches with inflexible and non-scalable systems in
emerging healthcare environments [7], blockchain technology
provides high reliability due to the decentralized design and is
compliant against jamming attacks. Furthermore, with a static
and immutable ledger, the transactions over it can undoubtedly
have even higher security than the present DL and FL ways.
That is, where FL may fall short in maintaining privacy
and reliability of the data across distributed networks [8],
blockchain offers cryptographic mechanisms to ensure data
confidentiality and reliability. The smart contract technology
coming under blockchain technology provides immediate
and automatic responses to any kind of attack. It means
the level of flexibility and efficiency that the user would
conventionally not have been able to secure from using AI
methods. Unsurpassed by any AI model in operation with the
help of huge training data and enormous computing power,
blockchain smart contracts provide quick, efficient decision-
making [9]. This means that the effects of jamming attacks on
healthcare operations are lessened. This research centers on
bolstering the security and dependability of healthcare systems
by integrating blockchain and smart contract technologies
to secure data and evaluate trust. The paper’s significant
contributions include:

1) The introduction of a sophisticated Trust-based lay-
ered framework for healthcare CPS, supported by a
blockchain-empowered fog layer, aiming to enhance
trust and security in these systems.

2) Achieving a superior detection rate and a reduction in
packet loss, surpassing current leading methods.

The remaining paper is structured as follows: Section II
presents a complete background of CPS and its applications.
Section III contributes a detailed related work, whereas
Section IV describes the research gap of the study. Section V
provides a scenario based on a reactive jamming attack.
Section VI illustrates the proposed plan. Section VII
demonstrates the experimentation and results. Section VIII
presents the discussion on the acquired results of the study.
Finally, Section IX delves into the conclusion of the paper
along with its possible future directions.

II. BACKGROUND
This section details the background of CPS, and
a functionality-based blockchain is proposed to be
implemented.

A. APPLICATIONS OF CYBER PHYSICAL SYSTEMS
CPS finds applications in various fields, including the
following:

1) Smart Grids: Integration of CPS into smart grid
management enables the monitoring and optimization
of power generation, distribution, and consumption.
This technology facilitates integrating renewable energy

sources, grid stability management, and responsive
demand strategies, fostering a reliable and sustainable
power grid infrastructure [10].

2) Smart Transport Systems: CPS significantly improves
transportation systems through real-time monitoring,
data analytics, and informed decision-making. Notable
CPS-driven applications include smart transportation
infrastructure, autonomous vehicles, vehicle-to-vehicle
communication, and smart traffic flow solutions, all
contributing to reduced congestion and improved road
safety [11].

3) Healthcare and Telemedicine: By integrating sensors,
wearable technology, and data analytics for remote
patient monitoring, individualized treatment, and effi-
cient healthcare delivery, CPS has valuable applications
in healthcare. These CPS applications improve patient
care standards and facilitate early disease detection [12].

4) Industrial Automation and Production: CPS enables
smart automation and optimization of manufacturing
processes, resulting in increased productivity, consis-
tency, and adaptability. CPS technologies streamline
supply chain management, smart factory operations,
and digital twin simulations, reducing downtime and
increasing productivity [13].

5) Smart Cities: CPS plays a crucial role in developing
smart cities that enhance the quality of life for
their citizens. Applications include waste management,
environmental surveillance, automated transportation,
energy efficiency, and infrastructure management.
Through resource optimization, CPS and data-driven
decision-making contribute to sustainable and livable
urban environments [1].

B. CPS AND BLOCKCHAIN
The convergence of blockchain and CPS can revolutionize
numerous sectors, which include transportation, healthcare,
manufacturing, and smart cities. Blockchain provides a
decentralized database and cryptography techniques for
storing and accessing the associated database [14]. With
its secure and distributed ledger for tamper-proof records
of transactions and sensor data, not only improves CPS
security and dependability but also streamlines data sharing in
CPS networks by facilitating direct communication via smart
contracts and decentralized consensus mechanisms [15]. This
integration improves identity management in CPS by enabling
secure, decentralized authorization and verification processes
that effectively reduce the risks associated with unauthorized
access and data breaches [16]. Blockchain has become a key
element in reorganizing CPS systems for greater security and
effectiveness, as shown in Fig. 1.
This comprehensive integration redefines CPS systems,

thereby improving their security and efficacy. IoT devices
also play a vital role by contributing private data to shared
blockchain transactions that ensure transparency, accountabil-
ity, and dispute prevention for all parties involved [17]. In line
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FIGURE 1. CPS and Blockchain.

with these transformative possibilities, the research conducted
here involves evaluating existing cyber physical security
measures, developing strategies to ensure uninterrupted
CPS functionality, investigating advanced data transmission
techniques, and implementing a blockchain-based security
mechanism that ensures scalability, fault tolerance, and
resilience. In addition to preventing single-point failures,
this mechanism creates a decentralized, tamper-resistant CPS
environment [18].

C. CPS AND CYBER SECURITY
Cyber Physical Systems represent an industry-transforming
convergence of physical components, computational intelli-
gence, and networked communication [19]. However, this
integration heightens the importance of cybersecurity. CPS
combines the advantages of the physical and digital domains,
thereby optimizing functionality and efficiency. However,
it also introduces vulnerabilities that could be exploited
by malicious actors, resulting in severe repercussions [20].
Critical infrastructures, manufacturing processes, healthcare
systems, and transportation infrastructures are exposed to
various cyber threats due to the interconnected nature of
CPS [19]. The cyber threats that pose attacks on CPS are
numerous and widespread. To procure unauthorized access
to CPS networks, attackers could exploit system weaknesses
like inadequate access controls or outdated software [21].
Prohibited access to CPS networks can cause operational

disruption, loss of control, and possibly physical loss.
Exploiting sensors’ data or signals could compromise the
accuracy and reliability of CPS functions, leading to decision-
making mistakes. Additionally, Denial-of-Service (DoS)
attacks could saturate CPS networks, disrupting services and
diminishing crucial processes [21]. CPS systems can be taken
captive by ransomware attacks that require payment to restore
control. Because CPS relies on real-time communication, any
interference with the correspondence channels could affect
the integrity of the system and allow attackers to insert vicious
commands or steal vulnerable information [21], [22]. The
ever-changing nature of cyber-related threats underscores
the necessity for extensive security measures to assure

FIGURE 2. Reactive Jamming Attack.

CPS’s security and safety and its reliability across different
sectors [19].

D. JAMMING ATTACKS
Jamming attacks are launched in wireless infrastructure by
intentionally intruding with signals sent between nodes. These
attacks manipulate weaknesses in wireless channels, hindering
the usual activity of communications systems [23]. The
consequences of the jamming attack are severe and can
make crucial systems unavailable, damage the transmission of
connected devices, and reduce the efficiency of the targeted
network. These attacks increase interference or noise in
the wireless communication range, impeding authorized
devices’ transmission or reception of data. This interference
causes packet loss, signal quality degradation, and increased
latency [24]. Jamming attacks can be executed using different
methods, including jamming transmitters, software-based
techniques, and software-defined radio manipulation.

Onemethod is reactive jamming, which involvesmonitoring
the communication channel and transmitting interference
only when legitimate communication is detected, making
it harder to detect and mitigate [25]. Such attacks have

101880 VOLUME 12, 2024



M. Anwar et al.: BBAD: Blockchain-Backed Assault Detection for Cyber Physical Systems

TABLE 1. Various Attacks Impact.

far-reaching repercussions, affecting IoT devices, wireless
networks, vital infrastructure, and military communications.
Jamming attacks can compromise transportation, healthcare,
emergency communication systems, and wireless network
security and privacy [26].

E. REACTIVE JAMMING ATTACK
A reactive jamming attack is a sophisticated cybersecurity
threat that exploits vulnerabilities in wireless communication
networks. Unlike Continuous Wave (CW) jamming, which
involves continuous interference transmission across a range
of frequencies, reactive jamming strategically disrupts com-
munication only when it detects legitimate transmissions [27].
This approach makes the attack more challenging to detect and
counteract. In a reactive jamming attack scenario, the attacker
monitors the wireless communication channel, awaiting the
transmission of legitimate signals by authorized devices.

Once such signals are detected, the attacker rapidly responds
by transmitting interference or noise over the channel. This
interference overwhelms legitimate signals, rendering them
unreadable or causing them to be misinterpreted by receiving
devices [28]. Reactive jamming attacks often leverage the
dynamic nature of wireless networks, where the attacker
can effectively identify communication patterns, frequencies,
and timing to disrupt transmissions [29]. Figure 2 illustrates
the reactive jamming attack, whereas Table 1 showcases the
impact of various attacks in CPS.

III. RELATED WORK
This review delves into the complex world of cybersecurity
threats, focusing on jamming attacks targeting Healthcare CPS.
It discusses the DAE-TRUSTDLmodel, extensively reviewed
in the work of [30], which capitalizes on Cognitive Radio (CR)
technology to detect and neutralize jamming sources in IoT
frameworks. Despite its innovative approach, misleading IoT
devices could compromise the model’s effectiveness, leading
to potentially flawed spectrum allocation by Fusion Centers
(FC). Moreover, Reference [31] proposes an Edge-AI-based
(EAB) detection strategy for jamming, promising enhanced
defense in IoT wireless networks. This method integrates
sophisticated AI algorithms and immediate data processing at
the network’s edge. However, this Edge-AI methodology has
challenges, such as being dependent on predefined features for

detection and having very high resource demands; therefore,
it is unfriendly to CPS settings with resource constraints.
Reference [40] follows a blockchain-based solution for

the security of data. The authors proposed that data has
to be selected using a combination of RSA hashing and
Differential Evolution. However, many issues could be
associated with this approach, such as reducing computational
costs and the dependence on large data for training.
The proposed blockchain model focused on decentralized
consensus mechanisms and designed smart contracts. This
method increases security and protection against threats
while reducing computational demands. The importance of
AI techniques, such as DL, FL, and ML, to safeguard the
security of the CPS is described in [41]. Although the AI
approach provides speedy ways of assessing the incidents, its
generalization, accuracy, coverage, and variations in noise are
some of the problems it faces. Few blockchain-based models
also propose smart capabilities for increasing accuracy by
overcoming the problematic issues related to different kinds
of bandwidth limitations and deviations in noise. It reduces the
bandwidth requirements by using another optimized execution
consensus algorithm and uses cryptographic hashing for data
integrity to lessen the impact of noise fluctuations.
The model in [42] shows how the PatternProof Malware

Validation (PoPMV) algorithm can be implemented in
Blockchain technology in Industry Cyber Physical Systems
(ICPS). In combination, those two advanced methods of
DL (specifically, Long Short-Term Memory (LSTM)) and
reinforcement learning aim to increase both the security of
ICPS and the speed of its processing. However, despite its
benefits, the algorithm faces some challenges. For instance,
when workflow tasks fail on various computing nodes, the
algorithm experiences increased computation time. Moreover,
existing methods may struggle to efficiently detect known and
unknown attacks in distributed fog cloud microservices, par-
ticularly in healthcare applications. The proposed blockchain
model incorporates decentralized consensus mechanisms
to uphold data integrity and employs smart contracts for
automated security enforcement. By utilizing the unalterable
ledger of the blockchain, the model guarantees transparent
record-keeping, enabling swift incident response. Moreover,
the model includes dynamic microservice allocation and
comprehensive attack detection algorithms, enhancing security
and resilience.
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TABLE 2. Comparison Among State-of-the-Art.

Reference [43] presented a method that uses DL to
improve the security of anomaly detection in healthcare
CPS. Their research uses neural networks to identify
abnormal actions and potential risks in real-time. However,
DL techniques face challenges in terms of scalability
and interpretability, especially in complex healthcare CPS
settings. Whereas the proposed blockchain-based approach
enhances the trustworthiness and integrity of the data while
also complementing the anomaly detection capabilities of
DL models. Reference [44] presents a blockchain-based
two-factor authentication system for the LoRaWAN join
process. In a different context, Reference [45] explores
the security performance of wireless blockchain networks
against malicious jamming, utilizing the RAFT consensus
mechanism. Reference [46] proposes a pursuing-evasion game
among jammers and authorized nodes as a defense strategy
against jamming attacks. This approach involves device nodes
retreating from jammer locations to restore communication.
Reference [47] put forward a Bayesian game-theoretic

mitigation strategy. Reference [48] introduces a reinforcement
learning-based technique for addressing jamming attacks.
Similarly, [49] proposes a 2-D mobile communication scheme
using a deep Q-network approach with deep convolutional
neural networks and macro-action techniques to expedite
learning in dynamic scenarios. While proactive defense
strategies hold promise, many mechanisms are centralized,
limiting their applicability in highly mobile networks.
In this context, [48] presents an FL-based mutable jamming
attack defense strategy incorporating an on-device federated
jamming detection process and a model-free Q-learning
process with an adaptive exploration-exploitation epsilon-
greedy policy. Table 2 presents the comparison among
different state-of-the-art and Table 3 provides state-of-the-art
details.

IV. RESEARCH GAP
Based on comprehensive analysis, key areas of research gap
and limitations have been identified in the cybersecurity

frameworks for healthcare CPS. The existing models, like
anomaly detection based on DL and resilience enhancement
through fog computing, often encounter limitations in
scalability and performance when applied to large-scale
healthcare CPS deployments. These models struggle to
handle the volume and complexity of data generated by
interconnected healthcare devices and systems. Numerous
current solutions concentrate on particular elements of
cybersecurity, such as identifying anomalies or safeguarding
data through encryption, without considering the wider
demands for interoperability and integration in healthcare CPS
environments. This absence of interoperability could impede
the smooth transmission and examination of healthcare data
among different systems and devices.
Moreover, many existing solutions rely on centralized

security measures, such as intrusion detection systems and
encryption techniques, which can introduce single points of
failure and vulnerabilities. It can often bring along an intrinsic
lack of transparency and result in security incidents. The
proposed framework uses blockchain technology to overcome
such constraints by rendering a decentralized approach
to lightweight consensus and improved data structures
tailor-made for healthcare CPS. It, therefore, enhances
the scalability and performance of blockchain technology,
enabling a better healthcare environment for cybersecurity.
This strategy includes distributed security features that include
decentralized consensus and an indestructible ledger that
eliminates vulnerable areas and increases the security and
integrity of information.

V. SCENARIO: REACTIVE JAMMING ATTACK IN
HEALTHCARE CPS
The following scenario is helpful in the healthcare CPS dis-
cussion of issues with reactive jamming and its implications.

A. BACKGROUND
The CPS in smart healthcare centers monitors patients’ vital
signs in real time. The CPS includes various sensors, wearable
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TABLE 3. State-of-the-art Details.

gadgets, and an overall monitoring approach. Patients depend
on this system to favor continuous monitoring of their health.
Any disturbance or alteration to the information could result
in serious negative consequences.

B. SCENARIO DESCRIPTION
• Network Configuration:

– The Healthcare CPS network consists of 100 sensor
nodes (N = 100) distributed throughout the facility.

– These sensor nodes continuously collect and
transmit vital sign data (e.g., heart rate, blood
pressure, temperature) to the central monitoring
system.

– Communication between sensor nodes and the
central system occurs wirelessly, making the
network susceptible to jamming attacks.

• Attack Initiation (Pt ):
– At a specific time step (t), an attacker initiates a

reactive jamming attack (Pt = 0.05).
– The attacker aims to disrupt the communication

between sensor nodes and the central monitoring
system.

• Node Detection and Confirmation:
– Upon the initiation of the attack, affected sensor

nodes (Na) detect the sudden disruption in data
transmission based on trust assessment (Pdetect).

– These nodes flag the anomaly as a potential attack.
– Neighboring nodes utilize trust-based information

to validate the attack (Pvalidate).
• Alert Generation and Countermeasures:

– Affected nodes (Na) generate alerts (Palert) to inform
the central system and administrators about the
attack.

– The central system receives the alerts and
immediately investigates and mitigates the attack.

– Some affected nodes attempt to implement
trust-based countermeasures (Pcountermeasure) to
bypass the jamming interference, such as switch-
ing communication frequencies or adjusting
transmission power.

• Network Resilience and Unaffected Nodes:
– Despite the attack, a portion of the sensor nodes (Nu)

remains unaffected (Nu = 80).

– Unaffected nodes continue to transmit accurate data
to the central system.

– Unaffected nodes refrain from generating false alerts
(Pno_alert) to avoid unnecessary disruptions.

• Challenges and Consequences:

– The reactive jamming attack disrupts the healthcare
CPS network, leading to temporary data loss and
delays in vital sign monitoring.

– The central system’s response time is crucial
in mitigating the attack and resuming normal
operations.

– Countermeasures implemented by affected nodes
may or may not be successful (Pno_countermeasure) in
overcoming the jamming interference.

– Administrators must analyze the attack patterns and
trust data to enhance the system’s security and adapt
to evolving threats.

Theorem 1: In the presence of a reactive jamming
attack (Pt > 0), the sensor nodes (N ) in the
healthcare CPS network experience disruptions in data
transmission.

Proof: The reactive jamming attack initiated by the
attacker (Pt > 0) interferes with wireless communication
between sensor nodes (N ) and the central monitoring system,
resulting in disruptions in data transmission. Thus, the theorem
is proven.
Lemma 1: Affected sensor nodes (Na) detecting the attack

based on trust assessment (Pdetect > 0) correctly flag the
anomaly as a potential attack.

Proof: When the reactive jamming attack occurs
(Pdetect > 0), sensor nodes with trust-based anomaly detection
capabilities correctly identify the sudden disruption in data
transmission as a potential attack. Thus, the lemma is
proven.
Proposition 1: Utilizing trust-based information, neighbor-

ing nodes can effectively validate the legitimacy of a reactive
jamming attack (Pvalidate > 0).

Proof: Neighboring nodes collaborate and utilize
trust-based information to validate the legitimacy of a reactive
jamming attack. This trust-based approach is an effective
method to confirm the presence of an attack. Thus, the
proposition is proven.
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FIGURE 3. The proposed model architecture.

VI. PROPOSED WORK: BLOCKCHAIN-BACKED ASSAULT
DETECTION IN HEALTHCARE CYBER PHYSICAL SYSTEMS
This section presents a framework for detecting cyber attacks,
specifically jamming attacks, on Healthcare CPS using
blockchain technology based on our previous work [8]. It seeks
to enhance the security and reliability of communication
channels in smart healthcare infrastructures by addressing
the disruptions caused by these malicious jamming attacks.
By integrating blockchain into both the Fog and CPS layers,
the approach significantly strengthens the defense mechanism
of the smart healthcare system.
As shown in Fig. 3, the research blueprint advocates

for a dual-layered architecture: the CPS device layer and
the Fog Layer, each playing a pivotal role in ensuring the
uninterrupted and secure exchange of information across the
healthcare system. This framework is dedicated to mitigating
the impact of jamming attacks on Healthcare CPS, promising
a more secure, dependable, and trustworthy smart healthcare
environment through the strategic application of blockchain
technology across critical layers.

A. FOG LAYER
This section describes how CPS can enable the Fog Layer, the
CPS, and the device layer, which includes the communication
of the sensor nodes employed in the CPS layer in the smart
healthcare system. Sensor nodes are liable for gathering vital
data and play an essential part in the system’s operation.

Attacks that block Healthcare CPS are tackled through these
layers, which ensure communication safety and reliability in
smart healthcare systems. Integrating blockchain technology
into our structure increases health systems’ security, reliability,
and security with smart technology. Through encryption and
further security approaches, the fog nodes are regarded as
reputed service providers that ensure security. Fog layers
make it simpler for the nodes of the CPS layer to exchange
information and assess each other’s trustworthiness. It consists
of the following modules:

1) The Trust Parameter Aggregation Module: It collects
and aggregates trust-related parameters derived through
the CPS layer. The parameters include information
relating to the authenticity of the source, the quality of
the communication, and behavior patterns. Aggregation
plays a crucial role in preparing data to aid in trust
analysis and assessment. This module is created to
warrant that the data is properly structured and formatted
for successive analysis.

2) Smart Contracts Module: Integration of the Smart
Contracts Modules inside this layer is vital since it
allows the registration of the fog and sensor nodes to
the blockchain. The system oversees the registration of
sensor nodes in the blockchain, monitors their existence,
and assigns an initial trust value. Furthermore, fog nodes
are crucial in enabling registration in the blockchain
network. The primary function of this module is to
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guarantee the accurate registration and identification
of sensor and fog nodes in the blockchain system,
thereby augmenting the security and transparency of
the network.

3) BlockchainModule: Thismodule stores the trust-related
data in the blockchain to ensure its transparency,
immutability, and accessibility. The data is ready
to be recorded on the blockchain after it has been
collected and analyzed. It also registers the systems,
sensor, and fog nodes through automated smart contract
rules. Blockchain ensures that recorded data cannot be
changed or deleted, which results in a reliable historical
record of transactions in the CPS environment.

4) Trust Calculation Module: It uses a Hybrid model to
calculate the trustworthiness of the nodes. It evaluates
each node’s trust using both behavior and reputation
metrics. It calculates the overall trust scores before
transmitting them for further analysis. This process
is necessary to evaluate the node’s reliability in the
network.

5) Trust Analysis Module: This module analyzes the
computed scores in real time to detect trust deviation
patterns. Thus, it will monitor suspicious patterns from
data sources and computed trust scores. From the
historical trust data and predefined thresholds, it detects
suspicious patterns related to the reactive jamming
nodes. This module is a network security response that
is initiated upon the discovery of any anomaly or attack.

6) Topology Update Module: It is very instrumental in
keeping the integrity and security of the network by
updating the data in the nodes and their levels of trust
by identifying and deleting the malicious nodes from
the topology.

B. THE CPS LAYER
The CPS Layer has the following modules:

1) Trust Parameter Collector Module: This Module
operates in the CPS layer and is essential in collecting
sensor trust-related data. It collects information about
the source’s identity, communication quality, and
behavior patterns. These parameters are vital for
evaluating the dependability of nodes and, in particular,
identifying the possibility of reactive jamming attacks.
The Module’s data collection provides input for trust
analysis and evaluation.

2) Encryption Module: After acquiring trust data, the
Encryption Modules charged with protecting it are then
charged with encrypting it. They secure the data to
safeguard its confidentiality and warrant its security
throughout transmission. Healthcare settings insist on
security to safeguard sensitive patient information. This
module utilizes encryption methods to protect the trust
parameters of the Fog layer for further processing.

3) Shift to Fog LayerModule: It is an intermediary element
that connects CPS to the Fog Layer. CPS and the
module’s role is to transmit the encrypted parameters

related to trust from the CPS layer to the Fog layer. The
ease of processing trust-related data can be seen in the
Fog layer, where trust analysis and evaluation occur.

Algorithm 1 Description: Algorithm 1 improves Health-
care CPS privacy and trust. First, it starts with a system of
good trust and better security. Second, it introduces the CPS
and Fog Layers background of the algorithm. Step 3 would
be placing sensor nodes in the CPS Layer in a well-thought-
out manner to enhance data collection. Finally, Step 4 would
install Fog nodes in the Fog Layer to enhance proper data
processing and transmission. Function: Step 5 is paramount
and central because it aims to boost trust and security
by gathering trust-related features from the Sensor Nodes,
encrypting this information, and forwarding it to the Fog
Layer for further processing. These improve private medical
information protection and create an improved, secure network
environment in the Healthcare CPS.

C. METHODOLOGY FOR DETECTING REACTIVE JAMMING
ATTACKS IN CPS USING A HYBRID TRUST MODEL AND
BLOCKCHAIN
The proposed strategy is designed as a multilayer defense to
counter such cyber threats robustly. It sets the reactive jamming
attack detection technique and provides a comprehensive
framework with functions as shown in the referenced
algorithm. It covers the reactive jamming attack detection
technique and introduces a comprehensive framework as
depicted in the referenced Algorithm. 1.

1) TRUST MODEL DESIGN
First, in the trust model, we define the key metrics to measure
the trust of CPS nodes. It computes a Hybrid Trust Score (2TS )
that is computed from a reputation score (ρ) based on historical
actions and a Behavior Score (β) representing activities of the
present. This dual score ensures a balanced trust evaluation,
considering both past behaviors and present operations.

1) Define the trust assessment metrics: The metrics used
are as follows:
a) Reputation Score (ρ): This score is derived from

the track record of data transmissions (6TX ) and
detected attack incidents (1AT ) in a specific
timeframe, providing a historical perspective on
trust, as shown in Eq. 1.

ρ =
6TX

6TX +1AT
(1)

b) Behavior Score (β): t assesses real-time metrics
such as communication reliability (CRT ), respon-
siveness, (RSTm), and consistency of data (DCn)
offering an up-to-the-minute trust evaluation.

β = ω1 × CRT + ω2 × RSTm + ω3 × DCn (2)

In Eq. 2,ω1,ω2,ω3 are weight factors representing
the importance of each behavior metric.

c) Hybrid Trust Score Calculation: This phase
zeroes in on pinpointing reactive jamming attacks
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Algorithm 1 Reactive Jamming Attack Detection
Algorithm
1 Input: Trust-related data, Sensor nodes, Fog nodes
2 Output: Enhanced security and trust in Healthcare CPS
3 Initialization:
4 Function DefineLayers:

Data: None
Result: CPSLayer, FogLayer

5 CPSLayer← CreateCPSLayer();
6 FogLayer← CreateFogLayer();
7 return CPSLayer, FogLayer ;

8 Function CreateCPSLayer:
Data: None
Result: SensorNodes

9 foreach sensor node s do
10 DeploySensorNode(s);

11 return SensorNodes;

12 Function CreateFogLayer:
Data: None
Result: FogNodes

13 foreach fog node f do
14 DeployFogNode(f );

15 return FogNodes;

16 Set:
17 Function InitializeSensorNodes:

Data: None
Result: Enhanced security and trust in Healthcare CPS

18 foreach sensor node s do
19 TrustParams← CollectTrustParameters(s);
20 EncryptedData← EncryptTrustData(TrustParams);
21 TransmitDataToFogLayer(EncryptedData);

22 Do Process:
23 Function InitializeFogNodes:

Data: None
Result: Enhanced security and trust in Healthcare CPS

24 foreach fog node f do
25 AggregatedTrustData←

AggregateTrustDataFromCPSLayer();
26 InitializeSmartContracts(f );
27 RegisterNodesInBlockchain(f , SensorNodes, FogNodes);

28 Function CalculateTrustScores:
Data: None
Result: Enhanced security and trust in Healthcare CPS

29 foreach fog node f do
30 TrustScores← CalculateTrustScores(f );
31 AnalyzeTrustScores(TrustScores);
32 IdentifyAttacksAndDeviation(TrustScores);
33 RespondToAttacksAndDeviation(TrustScores);
34 InitializeSmartContracts(t);
35 StoreTrustScoreToBlockchain(t , SensorNodes,

TrustScore);

36 Check:
37 Function UpdateTopology:

Data: None
Result: Enhanced security and trust in Healthcare CPS

38 foreach sensor node s do
39 UpdateNodeStatusFromFogLayer(s);
40 if MaliciousNodeDetected(s) then
41 RemoveNodeFromTopology(s);

in CPS. Nodes actively monitor for red flags
indicating possible jamming, like unexpected
packet drops, signal fluctuations, or odd traffic
flows. Upon suspecting a jamming attempt, a node
flags it and initiates a trust verification process.
It employs blockchain-enabled smart contracts to
alert 2TS for cross-validation. These neighbors
then corroborate the alert using the shared trust
data on the blockchain, reaching a consensus via
smart contracts. If the threat is confirmed by a
sufficient number of peers, an alert is issued,
prompting counteractions such as frequency or
power adjustments.

2TS = α × ρ + (1− α)× β (3)

In Eq. 3, α is a weighting factor representing
the relative importance of reputation-based trust
assessment compared to behavior-based trust
assessment, and its value ranges from 0 to 1.

d) Blockchain Integration:
Incorporating blockchain into the CPS enhances
data security and trustworthiness. It secures
trust scores and behavior logs in an immutable
blockchain ledger, accessible to authorized net-
work nodes. Smart contracts on the blockchain
streamline the trust assessment and verification,
executing algorithms and consensus protocols to
authenticate trust scores network-wide. This setup
ensures secure data exchange regarding detected
threats and countermeasures among nodes and
fortifies overall communication security in the
smart healthcare CPS.
i) Storing Data with Blockchain Technology: By

leveraging blockchain technology, a secure
and unalterable system for storing critical
data is established, including trust scores and
historical behavior records of nodes. This
strategy empowers the network with a robust
mechanism for maintaining data integrity and
historical accuracy, which are essential for
evaluating the trustworthiness of each node.

ii) Automated Registration with Smart Contracts:
smart contracts are utilized in the blockchain
framework to register various network compo-
nents, such as systems, sensor nodes, and fog
nodes. These smart contracts are ingeniously
designed to execute the registration process
automatically, providing secure, tamper-proof,
and transparent documentation of all network
participants. This implementation simplifies
the registration process and significantly
boosts the network’s security posture by
offering an immutable and transparent record
of all entities involved.
Algorithm 2 defines the process for registering
a system in the CPS layer using a blockchain.
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Algorithm 2 System Registration in CPS Layer
Input :System ID (sysID), Gateway ID (gatewayID),

Blockchain (blockchain)
Output :Registration Result (registrationResult)

1 Initialization Steps:
2 Function RegisterSystem(sysID, gatewayID,

blockchain):
3 while condition do
4 if SystemExists(sysID, gatewayID,

blockchain) == False then
5 register_SID(sysID, blockchain);
6 concerned_gateway(gatewayID,

sysID, blockchain);
7 return "System registered successfully";

8 else
9 return "System ID already registered";

The method begins with an initialization
stage in which it checks if the system
registration database contains the given System
ID (sysID), Gateway ID (gatewayID), and
Blockchain (blockchain). The algorithm then
performs a registration check in Step 2, and
if the system cannot be located (based on
the result of Step 1), it proceeds with the
system registration procedure. The process
of registering the System ID (sysID) with
the designated Blockchain (blockchain) is
covered in Step 3. Step 4 requires notifying the
relevant Gateway (textitgatewayID) about the
newly registered system and relaying critical
details such as the System ID (textitsysID) and
Blockchain (textitblockchain). The algorithm
finally completes its execution in Step 5 by
returning the result, which is usually ‘‘System
registered successfully.’’ On the other hand,
if in Step 1 the condition will return True,
that is, the system is already registered, then
it will jump to Step 2 to Step 4 and go to
Step 5, where it has to return ‘‘System ID
already registered.’’ It is a significant method
of effective management and monitoring of
the system in such a way that the identity and
registration of the system are assured in a CPS
environment.
Algorithm 3 observes the rules of sensor node
registration in the blockchain-based system.
It is a part of the core algorithm started by
the first step (the ‘‘RegisterNode’’ function),
and its result is repeated running. Step two:
if the node has already been captured in the
blockchain, the algorithm has to decide. It goes
on to the third step of extending an error in the

Algorithm 3 Sensor Node Registration Rules
Input :Node address (node.address), Blockchain

(blockchain)
1 Initialization:
2 Function register_node(node.address,

blockchain):
3 while condition do
4 if node_exists(node.address,

blockchain) == true then
5 error();

6 else
7 register_node(node.address,

blockchain);

case of finding already existing nodes. If the
node is not found on the blockchain, then the
fourth step follows, which is the invocation of
the ‘‘RegisterNode’’ function. After that, the
node gets registered on the blockchain. For
this, it is imperative to maintain the integrity
and authenticity of all sensor nodes registered
in the blockchain system since they will allow
the management of information securely and
systematically.

Algorithm 4 Fog Node Registration Smart Contract
Input :Node address (node.address), Blockchain

(blockchain)
Output :Registration result

1 Initialization:
2 Set:
3 while condition do
4 if node_exists(node.address, blockchain) ==

true then
5 return error();

6 else
7 register_fog_node(node.address,

blockchain);
8 return "Fog node registered successfully";

Algorithm 4 is essential for facilitating fog
node registration in a blockchain application.
The initial step is to establish the rules. The
method needs two critical inputs to function,
namely the address of the node and the target
blockchain, to produce a registration result.
There are no particular steps involved in
the initialization phase of Step 2. The third
crucial step ensures that fog nodes remain
unique by having the program verify if the
node address entered is already registered
in the designated blockchain. The algorithm
moves on to Step 4 and quickly responds
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with an error to preserve the integrity of
the system if an existing node is detected,
as indicated by the blockchain check. Step 5 is
triggered, effectively registering the node
if it is not on the blockchain. By sending
the result message ‘‘Fog node registered
successfully,’’ the algorithm comes to an end
in Step 6, guaranteeing the safe and efficient
administration of fog node registrations inside
the blockchain-based system.

Algorithm 5 Blockchain Integration for Trust Data
and Secure Communication
Input: Monitoring status
Output: None

1 Set:;
2 while monitoring do
3 collected_data←

Data_Collection_from_CPS_Layer();
4 encrypted_data←

EncryptWithPKI(collected_data, recipient_public_key);

5 trust_scores← calculate_trust_scores(collected_data);
6 store_trust_data(trust_scores);
7 while trust_scores do
8 create_transaction(type =′ trust_data′, data =

trust_scores);
9 add_transaction_to_blockchain(transaction);

10 end
11 if detect_jamming_attack(trust_scores) then
12 generate_alert();
13 adjust_transmission_settings();
14 end
15 secure_communication(encrypted_data);
16 wait(data_collection_interval);
17 end

Algorithm 5 is intended to improve data
trust and security in a CPS environment.
Step 1 starts ongoing monitoring during the
‘‘Set’’ phase. Data is gathered in Step 2 from
the CPS layer, and in Step 3, Public Key
Infrastructure (PKI) is used to encrypt the data
using the public key of the recipient. In order
to promote data integrity and trustworthiness,
Step 4 computes trust ratings based on the
gathered data and stores them using a trust data
storage method. Step 5 creates transactions
with corresponding trust scores in a nested
loop. Step 6 adds these transactions to a
blockchain, creating an unchangeable and
safe ledger for trust data. If an attack is
detected, Step 8 notifies the system operators
by generating alerts, and Step 9 modifies the
transmission settings to lessen the impact of the
attack. Lastly, Step 10 transmits the encrypted
data to ensure secure communication, and
Step 11 adds a waiting period to help with

systematic data gathering at predetermined
intervals.

D. REACTIVE JAMMING ATTACK DETECTION
The steps in a reactive jamming attack are as under:

a) Observation and Initial Detection by Nodes: Every
node in our system constantly monitors the
communication channels for signs of a reactive
jamming attack. They are looking for red flags
like unexpected packet loss, odd signal strength
fluctuations, and traffic flow anomalies.

b) Detection of Potential Attacks: Upon spotting
patterns that might indicate a jamming attempt,
a node raises an alarm and starts a verification
process rooted in trust. It uses the blockchain’s
smart contracts to alert its neighbors about
the suspected jamming, sharing2TS for further
scrutiny.

c) Verification Through Collective Trust: The neigh-
boring nodes, upon receiving this alert, dive into
the blockchain data to examine the claim’s validity.
Leveraging smart contracts and a system of
consensus among themselves, they assess whether
the suspected attack is genuine, using trust scores
and observed behaviors as their guide.

d) Alert Generation and Reaction: If enough neigh-
bors concur that an attack is underway, the node
that spotted the trouble sounds the alarm and initi-
ates counteractions. These might involve tweaking
the communication frequencies, adjusting the
power levels of transmissions, or even rerouting
traffic to dodge the jamming.

2) Adapting and Keeping the System Up-to-Date:
The strategy does not stop at detection and response.
It involves ongoing adjustments and enhancements to
stay ahead of attackers:

a) Dynamic Model Adaptation: Our hybrid trust
model is not static but designed to evolve
with the network’s environment. It continually
refreshes trust scores and adjusts its parameters,
like the trust metric weight factors (ω1, ω2, ω3)
and α and the balance between reputation and
behavior assessments, based on live data from the
blockchain and observed attack patterns.

b) Record-keeping and Analysis for Improvement:
Nodes log every detected attack, trust scores,
and the responses onto the blockchain. This
rich trove of data serves as a foundation for
system administrators to analyze trends, fine-tune
the model for better accuracy, and enhance the
system’s resilience.

VII. EXPERIMENTATION AND RESULTS
The experiment used a high-performance Intel Core i7
processor with 16GB of RAM and an SSD to ensure
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TABLE 4. Simulation Environment and Details.

quick data retrieval. We used Cooja for our simulation
environment, deploying 50 CPS nodes and 10 fog nodes to
create a realistic CPS scenario. We included five attacking
nodes to simulate attack conditions. The simulations ran
for a full hour, allowing us to gather ample data for
our analysis. We crafted a virtual IoT network in Cooja,
portraying IoT devices as nodes, and utilized it to pilot
our trust-based jamming attack detection mechanism. The
integration of essential blockchain components was achieved
on the Contiki-NG OS, with the web3.js library facilitating
core blockchain operations, including the creation of blocks
and processing transactions. Further, we ventured into
developing Ethereum smart contracts using Solidity, which
were then deployed on a simulated Ethereum blockchain to
actualize our concepts. The Ethereum framework supported
our implementation of blockchain-based data storage and
the execution of smart contracts. To develop these smart
contracts, we employed Remix, an intuitive web-based
IDE designed specifically for Ethereum smart contract
creation. To simulate blockchain behaviors accurately in
our experiment, we chose the BlockchainSim simulator.
This combination of hardware configuration and simulation
tools created a reliable and effective environment for testing
our proposed blockchain-based attack detection mechanism
for CPS environments.Table 4 provides a summary of the
experimentation setup.

A. EVALUATION PARAMETERS
In order to detect reactive jamming attacks in a smart
healthcare system, key parameters must be monitored
to identify potential disruptions. The packet loss rate is
an essential metric in which the interference caused by
an attacker during an attack results in packet loss rates
that exceed a predefined threshold. Signal-to-Noise Ratio
(SNR) is also monitored; a higher SNR indicates signal

FIGURE 4. Attack Detection Rate.

transmission with minimal interference. During an attack,
the interference introduced by the attacker reduces the SNR
below a predetermined threshold. The transmission delay,
or the time it takes for data packets to travel between nodes,
is crucial. Due to channel interference, normal operations
feature low transmission delays, whereas reactive jamming
attacks introduce transmission delays. These parameters reveal
the presence of a reactive jamming attack, allowing for timely
detection and response.

1) ATTACK DETECTION RATE
In our context, The attack detection rate refers to a system’s
ability to identify and respond to reactive jamming attacks
effectively. Figure 4 illustrates the detection rate of reactive
jamming attacks for the BBAD approach compared to the
baseline approach EAB [31]. At simulation time 10, BBAD
achieves a detection rate of 0.60 (i.e., 60%), notably higher
than the EAB detection rate of 0.45(45%). At simulation
time 30, BBAD reaches 0.77 (i.e., 77% ) while Base is 0.64
(i.e., 64%). Finally, at 60, BBAD has a 98% detection rate
while Base has 92%. The percentage difference between
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both approaches is approximately 15.71%, indicating that
the BBAD approach has an average detection rate of around
15.71% compared to the EAB approach. The advanced hybrid
trust model, which uses specific parameters like SNR, packet
loss rate, and transmission delay, improves the detection of
reactive jamming attacks.

FIGURE 5. Packet Loss Rate.

2) PACKET LOSS RATE
Figure 5 defines packet loss rate as the proportion of data
packets in a network that fail to reach their intended destination.
The BBAD approach begins the simulation (at time 0) with a
packet loss rate of 0.45 (i.e., 45%), while the EAB approach
begins with 0.51 (i.e., 51%). A gradual reduction in packet
loss rates for both approaches is observed as the simulation
progresses. The BBAD approach achieves a significantly
lower packet loss rate of 0.1 at simulation time 60 than the
EAB approach, which reaches 0.15. The BBAD approach
consistently outperforms EAB across all simulation times
in terms of packet loss rate. The percentage difference in
the average packet loss rates between the two approaches
is calculated as 20.21%, highlighting the BBAD approach’s
improved performance. Due to the trust model’s capacity to
identify and isolate potential malicious nodes, disruptions and
interferences in the transmission of data packets are prevented.

FIGURE 6. Energy Consumption.

3) ENERGY CONSUMPTION
Figure 6 In the context of our analysis, energy consumption
refers to the energy usage in the network during the simulation

of reactive jamming attacks. At the initial simulation time of
10, the BBAD approach consumes 8.36% of energy, while
the EAB approach consumes 9.36%. It signifies better energy
utilization by the BBAD approach. As the simulation advances
to time 20, the BBAD approach demonstrates a consumption
of 7.92%, outperforming the EAB approach, which consumes
8.81%. By the time the simulation reaches 60, the BBAD
approach achieves an energy consumption rate of 2.45%, while
the EAB approach consumes 3.15%. It reflects a significant
improvement in energy efficiency for the BBAD approach
throughout the simulation. The percentage difference for the
BBAD approach is approximately 16.65% lower than that
of the EAB approach. It indicates that the BBAD method
is more energy-efficient in the context of reactive jamming
attack detection. This is due to the integration of a fog
computing layer, which enhances energy efficiency. The fog
layer reduces the need for extensive data transmission by
bringing processing and decision-making closer to the data
source.

FIGURE 7. Network Latency.

4) NETWORK LATENCY
Figure 7 Network latency refers to the time delay experienced
by data packets as they traverse the network. The BBAD
approach has a latency of 165 units at an initial simulation
time of 10, whereas the EAB approach has a latency of
155. As the simulation progresses, the network latency
values for both approaches decrease gradually. At simulation
time 60, the BBAD approach reaches 80 units of latency,
whereas the EAB approach reaches 78 units. The percentage
difference is 8.29%, indicating that the BBAD approach
has a slightly higher average network latency than the EAB
approach. This difference may be due to the BBAD strategy’s
enhanced security measures and real-time monitoring. While
the advanced trust model and mechanisms of the BBAD
approach provide increased protection against attacks, the
additional layers of security and verification processes
may slightly increase network latency. Nevertheless, this
trade-off between enhanced security and slightly increased
latency is frequently deemed acceptable, as it ensures the
integrity and dependability of data transmission in the
network.
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FIGURE 8. Network Throughput.

5) NETWORK THROUGHPUT
Network latency is the time required for data packets to
travel from their source to their destination in a network.
Figure 8 represents no network latency at the beginning of
the simulation (time 0) because no data is being transmitted.
At simulation time 30, the network latency for the BBAD
approach is 80 units, whereas the Base approach experiences
a latency of 68 units. It indicates that the BBAD approach
has a slightly higher network latency. As the simulation time
reaches 60, the network latency values for both methods
decrease. The BBAD approach experiences a network latency
of 99 units, while the Base approach has a latency of 89 units.
The percentage difference is 9.63%, indicating that the BBAD
approach maintains a lower average network throughput than
the EAB approach.

VIII. DISCUSSION
Using a hybrid trust model in the proposed healthcare CPS
systems augments the effectiveness of detection approaches.
The hybrid model integrates two fundamental trust evaluation
techniques: reputation-based and behavior-based. Reputation-
based trust refers to the process through which nodes in
a system create and uphold their reputations via prior
interactions. It effectively enables the system to differentiate
between trustworthy and suspicious nodes. In contrast,
assessing trust based on behavior involves continuously
monitoring nodes’ actions in real-time, considering their
patterns of packet forwarding and communication. All these
combined form a substantial ratio of increased ability for the
system to detect potential threats, especially active jamming
attacks. This way, the network’s trustworthiness could be
determined not only from its reputation built in the past but
also from the behavior of the current one.

Another way is how blockchain technology would enhance
the evaluation of trust. It acts as a strong and secure kind
of ledger, made precisely to check the recorded trust and
reliability of every single node. Authenticity in the trust
information is a prime concern against being exploited by
an adversary. Furthermore, with the help of blockchain
technology, smart contracts can also be formulated, which
can further bring in an even higher level of efficiency in
the system for assessing and confirming the trust process.

The rules can trigger, in case the defined condition is met,
a response to the potential threat instantly, so they enhance
the system in its capability to fight the attempts of being
blocked. Implication: ‘‘The hybrid trust model for CPS-based
networks with blockchain technology’’ implies robust and
scalable security for protecting the CPS-based network from
an ever-growing cyberattack vector.

A. FUTURE DIRECTION
In demand to tackle the ever-changing role of cybersecurity in
healthcare CPS, it is essential to define precise paths to future
research and enhancements. Scalability and processing speed
should be improved due to the blockchain infrastructure’s
use of more sophisticated algorithms for consensus. It can
completely alter CPS security and be applied to other areas of
vital importance, such as smart cities, industrial automation,
and smart buildings, thereby making the world a more secure
and efficient interconnected environment. Identifying areas of
future research and improvement in advancing cybersecurity
measures and protecting the security of CPS networks are
listed below:

1) Scalability enhancement: Strategies to boost the
capacity of our framework built on blockchain are
being investigated to ensure that it can manage the
growing amount of health data in addition to network
members. This could mean analyzing ways to improve
the size of blocks and consensus algorithms–network
throughput to enable large-scale implementations
without sacrificing speed.

2) Use of Emerging technologies: Such AI might be useful
in future applications, and it is possible only when some
limitations are solved. There are challenges such as
scalability, data privacy, and integrity, or other problems
that need to be solved in order to be able to utilize AI
in the cybersecurity framework. Future research should
focus on developing algorithms and methodologies that
can resolve the scalability problems; then, AI-based
solutions will also operate effectively with vast data and
changes in surroundings. Also, it is necessary to increase
the possibilities of solutions that protect privacy and data
encryption. These dimensions are vital to protecting
sensitive information and ensuring the confidentiality
of Artificial Intelligence (AI)-powered systems.

3) Usability enhancement: The primary goal will be to
increase the user-friendliness of the suggested system,
making it more straightforward to implement, manage,
and maintain in real-world healthcare settings. It could
mean developing interfaces that are easy to use and
streamlined configuration processes and supplying
intuitive management tools that allow healthcare
professionals and administrators to maximize the
system’s capabilities.

4) Adapting to Changing Threats: Monitor and contin-
uously adjust the cybersecurity framework to deal
with new security threats and vulnerabilities for
healthcare environments using CPS. It includes staying
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current with changing cybersecurity threats, performing
regular reviews of the security risks, and implementing
proactive security measures, such as using threat
intelligence to detect irregularities and automating the
incident response.

IX. CONCLUSION
This paper introduces a hybrid trust model that includes
blockchain technology and smart contracts to find possibilities
for jamming attacks across CPS networks. The proposed
framework shall deploy a unique set of trust assessment
techniques, rather than on the reputation and behavior of
the nodes, to warrant an accurate and intensive evaluation
of the latter’s reliability. For example, blockchain technology
is very resilient in nature, offering a permanent way of data
storage since it always assures that the integrity of data is
highly regarded for maintaining safety from unauthorized
changes. In addition, smart contracts, systems, sensor nodes,
and fog nodes. Smart contracts automatize and secure the
registration process to assure all network entities that the
records are safe and transparent. The proposed integrated
approach, while ensuring scalability and flexibility, provides
a resilient way to protect CPS networks from jamming attacks.
This method allows for real-time response and continuously
improves the network’s security. Further, the design addressed
the requirements concerning the technology devices that can
guarantee reliable and secure communication in the healthcare
environment, such as the Internet of Things. The loss of
packets is greatly minimized, and thus, the detection rate
from the blockchain application technology is higher than
that of the reference paper. This study shows that the system
distinguished and removed instances of interference very well
and, therefore, helped improve the safety and efficiency of
the healthcare services in the network of the CPS. In future,
we aim to expand the suggested method and evaluating its
effectiveness across real life healthcare test-bed and network
configurations. Additionally, we also aim to use cutting-edge
AI and ML techniques to increase the trust evaluation process
to identify a wide range of other attacks.
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