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ABSTRACT Offline reinforcement learning (RL) has garnered significant interest due to its safe and
easily scalable paradigm, which essentially requires training policies from pre-collected datasets without
the need for additional environment interaction. However, training under this paradigm presents its own
challenge: the extrapolation error stemming from out-of-distribution (OOD) data. Existing methodologies
have endeavored to address this issue through means like penalizing OOD Q-values or imposing similarity
constraints on the learned policy and the behavior policy. Nonetheless, these approaches are often beset by
limitations such as being overly conservative in utilizing OOD data, imprecise OOD data characterization,
and significant computational overhead. To address these challenges, this paper introduces an Uncertainty-
Aware Rank-One Multi-Input Multi-Output (MIMO) Q Network framework. The framework aims to enhance
Offline Reinforcement Learning by fully leveraging the potential of OOD data while still ensuring efficiency
in the learning process. Specifically, the framework quantifies data uncertainty and harnesses it in the
training losses, aiming to train a policy that maximizes the lower confidence bound of the corresponding
Q-function. Furthermore, a Rank-One MIMO architecture is introduced to model the uncertainty-aware
Q-function, offering the same ability for uncertainty quantification as an ensemble of networks but with
a cost nearly equivalent to that of a single network. Consequently, this framework strikes a harmonious
balance between precision, speed, and memory efficiency, culminating in improved overall performance.
Extensive experimentation on the D4RL benchmark demonstrates that the framework attains state-of-the-
art performance while remaining computationally efficient. By incorporating the concept of uncertainty
quantification, our framework offers a promising avenue to alleviate extrapolation errors and enhance the
efficiency of offline RL.

INDEX TERMS Self-supervise learning, computer vision, contrastive learning, deep learning, transfer
learning.

I. INTRODUCTION
Offline reinforcement learning (RL), also known as batch RL,
addresses the challenge of training a policy solely from a fixed
dataset without additional interaction with the environment.

The associate editor coordinating the review of this manuscript and

approving it for publication was Jiachen Yang .

This approach offers benefits in terms of data efficiency,
scalability, and safety, particularly in real-world applications
such as navigation and healthcare [10], [25], [26], leading
to a drastically increasing attention in recent years [13],
[14], [23]. However, learning from pre-collected datasets
presents a well-known challenge: the extrapolation error
when performing policy evaluation on out-of-distribution
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(OOD) data. Specifically, estimating the Q-values of the
learned policy using the offline dataset is prone to bias
due to the distributional shift caused by differences in
visitation distribution between the learned policy and the
behavior policy used for collecting the dataset. This bias, once
combined with deep network fitting in deep RL algorithms,
leads to a significant extrapolation error characterized by
the Q-function’s significant overestimation of OOD data,
as evidenced in [13]. Addressing this error in offline RL
proves challenging due to the absence of interaction for
collecting additional data, a process common in conventional
RL methods, to rectify it.
Confronted with the inherent limitations of the problem,

offline RL algorithms overcome the challenge by proposing
different losses or training procedures capable of mitigating
extrapolation errors. Early methods directly limit the
distributional shift by constraining the learned policy to
be similar to the behavior policy [12], [13], [14], [50].
This approach has a notable drawback: the learned policy
is heavily influenced by the behavior policies, leading
to suboptimal results in datasets collected by non-optimal
behavior ones. Later methods adopt a different approach by
making conservative estimates of future rewards, aiming to
learn a value function that serves as a strict lower bound to the
true value function [23], [25], [26]. Typically, this involves
penalizing Q-functions for OOD actions. While these methods
offer more freedom for learning better policies, the penalizing
term often lacks precise characterization of OOD data (e.g.
equally penalizes the OOD actions), resulting in overly
conservative value functions [7]. Recent methods, considering
uncertainty about the value function [7], [21], [52], have been
proposed to address the excessively pessimistic nature of
the aforementioned approaches. These methods commonly
employ separate Q-functions as a Q-ensemble, enabling
uncertainty-aware penalization. By penalizing conflicting
actions and favoring decisions that are consistent across
the models, they generate pessimistic Q-values to train
the learned policy [2], [6], [14], [53], and have proven to
achieve state-of-the-art performances. However, the use of
separate Q-functions incurs high computational and memory
complexity. Moreover, these methods introduce additional
hyperparameters and require a large number of ensemble
members to be effective, posing difficulties for large and
complex datasets.
Taking into account the shortcomings of prior approaches

as a whole, which include a conservative use of OOD
data, imprecise characterization of such data, and substan-
tial computational overhead, we propose the end-to-end
Uncertainty-Aware Rank-One MIMO Q Network framework
for improving offline RL. Our framework fully leverages
uncertainty quantification to effectively utilize OOD data,
thereby enhancing the learning process while ensuring fast
training and memory efficiency.

Our contribution can be listed in detail as follows:
• Firstly, we introduce a novel architecture, i.e. Rank-
One MIMO Q network, for approximating the naive Q

ensemble. The Rank-One MIMO Q network combines
a common shared network with mini rank-one network
adapters, allowing these adapters to fuse the common
shared network to assemble ensemble members. This
network can handle multiple inputs and generate multiple
outputs simultaneously. As a result, the proposed network
offers the same capability for uncertainty quantification
as an ensemble of networks but with a cost nearly
equivalent to that of a single network. This result is
achieved by recognizing that members of an ensemble
can collectively acquire and retain certain common
knowledge about the environment, thereby eliminating
the necessity for individual learning and storage. In
our design, within each layer, the MIMO Q network
stores shared knowledge in the shared network weight
matrix. Individual members can then augment this
shared knowledge with their unique insights using
their independent weights, modeled by two vectors.
This design minimizes the parameter overhead of our
MIMO Q compared to the naive ensemble, thanks to the
utilization of a shared body. Furthermore, the MIMOQ is
facilitated with matrix vectorization to enable uncertainty
prediction in a single forward pass, optimizing prediction
speed efficiency.

• Secondly, we propose pessimistic training losses as
a means to leverage uncertainty quantification for
effectively utilizing OOD data. These losses are based
on maximizing the lower confidence bounds (LCB)
of Q values, which have been proven to be a precise
characterization of OOD data. Specifically, our proposed
losses are designed to train the MIMO Q network and
the policy network based on the conservatively estimated
Q value suggested by the min-valued MIMO Q head.
This design enables efficient estimates of the LCB of
Q-values with only one hyper-parameter, the number
of Q heads, for controlling pessimism. Furthermore,
the backward pass only needs to propagate through
the min-valued Q member instead of all the ensemble
members, as conventionally done in the naive ensemble
method. This further enhances the speed of the learning
process.

• Thirdly, we enhance training stability and mitigate
overestimation without the need for an OOD sampling
scheme by incorporating two components: (1) max-
imizing entropy for OOD actions while maximizing
likelihood for in-distribution actions. It plays a crucial
role in preventing excessive exploitation of OOD
actions, thereby reducing the risk of diverging Q-values,
while simultaneously encouraging the exploitation of
trustworthy in-distribution actions. These additions are
particularly effective for low-coverage datasets, such as
expert datasets; (2) employing a lazy policy improvement
trick. This not only saves computational costs but also
enhances the stability of policy evaluation.

• Finally, we conduct extensive experimental results
and rigorous ablation studies. The experimental result
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FIGURE 1. Illustration of the proposed workflow: Our framework adopts a conventional actor-critic setup, where the online Q
network and target Q network are alternated by the proposed Rank-One MIMO Q, while the policy is modeled by a stochastic
Gaussian actor. As the framework prohibits direct interaction with the environment, transitions are sampled from a
pre-collected offline dataset. These sampled transitions are then utilized to calculate the target, employing the
minimum-valued head of the target network and policy entropy. Finally, the calculated target is backed up to the online
network using mean square error during training.

demonstrates that the framework achieves state-of-the-art
performance on the D4RL benchmark [11] while being
computationally friendly compared to strong baselines.
The ablation studies are carefully chosen to provide a
better understanding of the framework.

Broadly, this work highlights the importance of developing
efficient, stable ensembling techniques specifically designed
for offline RL. Additionally, it underscores the potential of
offline RL as a testbed for validating uncertainty estimation
techniques and raises intriguing research questions for future
exploration.
The paper is organized as follows: Section I introduces

the topic, followed by Section II, which delves into related
work. Section III provides background information on offline
RL, and Section IV thoroughly outlines our methodology,
encompassing the Rank-One MIMO Q network and the
Uncertainty-Aware Rank-One MIMO Q Network framework.
Section V presents the experiment setup. Section VI shows
the experimental results, and Section VII conducts an ablation
study. Finally, Section VIII draws the paper to a conclusion
and explores potential avenues for future research.

II. RELATED WORK
A. OFFLINE REINFORCEMENT LEARNING
This paper primarily delves into model-free offline Rein-
forcement Learning (RL). Early methods pinpoint the core
issue in offline RL as extrapolation error [13] and suggest
using policy constraints to ensure that the learned policy
remains close to the behavior policy. These constraints
include adding behavior cloning (BC) loss [46] in policy
training [12], using the divergence between the behavior
policy and the learned policy [13], [14], [25], applying
advantage-weighted constraints to balance BC and advan-
tages [39], penalizing the prediction-error of a variational

auto-encoder [41], and learning latent actions from the
offline data [55]. While policy-constraint methods excel
in performance on datasets derived from expert behavior
policies, they struggle to discover optimal policies when
confronted with datasets featuring suboptimal policies. This
limitation arises from the stringent constraints imposed on
the learned policies [28], [35]. Furthermore, these methods
necessitate precise estimation of the behavior policy, a task
typically challenging in complex settings characterized by
multiple sources of behavior or high-dimensional environ-
ments. Subsequent methods circumvent these limitations by
instead learning a pessimistic Q-function, which serves as
a lower bound estimate of the true value function. This is
performed by penalizing their Q-value [8], [25], [26] or using
V-learning [24], [32]. While offering increased flexibility
for improved policy learning, the penalizing terms in these
methods often lack a precise characterization of OOD data.
For instance, CQL [26] uniformly penalizes the Q-values of all
OOD samples, a practice proven to result in conservative value
functions, as demonstrated in [7]. Our method overcomes the
limitations of previous approaches by adopting uncertainty
quantification to selectively penalize OOD data. While our
approach shares similarities with CQL [26] in promoting
conservatism in Q-learning, it distinguishes itself by explicitly
measuring the uncertainty of OOD actions rather than applying
a uniform penalty.
It’s worth noting that uncertainty quantification has

been used in online RL [4], [5], [33], [36], [43], [53].
However, offline RL poses their own challenge for uncertainty
quantification compared to online RL, primarily due to
the limited coverage of offline data and the distribution
shift of learned policies. Several existing model-based and
model-free approaches have been proposed to overcome
this challenge. In model-based offline RL, representative
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works include MOPO [54] and MOReL [22], which utilize
an ensemble dynamics model for uncertainty quantification,
while BOPAH [27] combines uncertainty penalization with
behavior-policy constraints. However, model-based methods
may suffer from additional computation costs and may
perform sub-optimally in complex environments [9], [19].
In contrast, our work conducts model-free learning, which
is less affected by these problems. In addition, model-
free learning is also considered more favorable due to
its simplicity and potential for high performance. To be
noticed, while there are similar approaches proposed in
model-free offline RL, our work stands apart from them.
To be specific, UWAC [51] uses dropout-based uncertainty for
model-free offline RL but relies on policy constraints for value
function learning [15]. In comparison, our method with the
proposed MIMO Q network demonstrates greater robustness
to distributional shifts compared to the ensemble and dropout-
based approaches. EDAC [3] also employs ensemble Q
networks, but it diversifies gradients to penalize OOD actions,
and PBRL [6] penalizes OOD actions through direct OOD
sampling and associated uncertainty quantification, whereas
our method doesn’t require further OOD sampling.

B. EFFICIENT UNCERTAINTY QUANTIFICATION IN
SUPERVISED LEARNING
Our work draws inspiration from recent advancements in
efficient uncertainty quantification in Supervised Learning
to identify appropriate approaches. It is well-known that
ensembles have demonstrated their effectiveness in estimating
uncertainty in RL, just as they have in supervised deep
learning [3], [6], [44]. Despite the availability of other
technical methods for uncertainty estimation [30], [38],
ensembles consistently outperform them, albeit at a higher
computational cost. Therefore, in supervised learning, much
of the current research on ensembles is aimed at improving
computational efficiency, with proposals for reducing compute
or memory footprint during training and inference on large
ensembles [18], [31], [48]. Several architectures have been
proposed to enable shared knowledge among ensemble
members. The multi-head approach [29], [37], [47] designs
ensembles that share a big ‘‘trunk’’ network and have
separate ‘‘head’’ networks for each ensemble member. While
multi-head approaches offer reduced computational costs
compared to typical ensembles by sharing many layers,
they often lack ensemble diversity [18]. On the other hand,
MIMO [18] overcomes this problem by modifying both
the input and output layers to be a multi-input multi-
output network, allowing each ensemble member to take
different paths throughout the full network. However, MIMO
networks are reported to struggle with fitting more than
2 subnetworks [40], necessitating special care for the
shared body layers [40], [45]. Our work shares similarities
with the MIMO approach, an improved version of the
multi-head approach. However, we explicitly model shared
knowledge and each ensemble member individually, a strategy
that has been proven to be effective for fitting multiple

sub-networks [48]. Beyond the domain of supervised learning,
within the realm of offline reinforcement learning, there is
limited empirical evidence showcasing the effectiveness of
these approaches. Inspired by efficient methods in supervised
learning, our work aims to leverage these techniques to benefit
offline reinforcement learning.

III. BACKGROUND
Offline reinforcement learning (RL) is a research field that
distinguishes itself from online RL by enabling training
without the need for active interaction with the environment.
This involves utilizing a fixed dataset, collected by an
unknown behavior policy, to learn a policy that maximizes
the cumulative reward of a target environment. By leveraging
previously collected data, offline RL offers a more practical
and efficient solution for RL training in complex domains
where online interaction is not feasible or too expensive.

This paper considers the fully-observed Markov Decision
Process (MDP) as commonly utilized in offline RL research.
Mathematically, the MDP is defined by a tuple M =

(S,A, P, ρ0,R, γ,H ). Therein, S is a set of state s, A is a
set of actions a, P is the transition probability of the dynamics
in the form P(st+1|st , at ), ρ0 is the initial state distribution, R
is reward function, γ ∈ (0, 1] is a scalar discount factor, and
H is the horizon.
Within a MDP, offline RL try to learn a policy π(at |st )

which is the probability of taking action at conditioned on the
current state st . A trajectory distribution, which is a sequence
of H + 1 states and H actions, can be further derived as
τ = (s0, a0, . . . , sH ) where H can be infinite. The probability
density function for a given trajectory τ under policy π is as
below:

pπ (τ ) = ρ0 (s0)
H−1∏
t=0

π (at | st) P (st+1 | st , at) . (1)

In offline RL, a dataset comprising multiple pre-collected
transitions is given, conveniently denoted asD = {(s, a, s′, r)}.
Here, s′ represents the next state resulting from taking action
a at the current state s and receiving a return r . This dataset
is gathered by an unknown behavior policy πβ . The primary
objective of offline RL is to learn an optimal π∗ policy that
maximizes the expected cumulative return of the learned policy
π . The objective can be formulated as follows:

π∗
= argmax

π
Eτ∼pπ

[
6H−1
t=0 γ tR (st , at)

]
. (2)

The optimal policy’s corresponding Q-function satisfies the
Bellman operator as shown below:

T Qθ (s, a) := R(s, a) + γ Es′∼P(·|s,a)

[
max
a′

Qθ−

(
s′, a′

)]
,

(3)

where θ represents the parameters of the Q network, and θ−

represents the parameters of the target-network, which is a
copy of the Q network with momentum update for training
stabilization [34].
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Offline RL poses challenges due to the distribution shift
when training policies from a pre-collected dataset. Value
function evaluated on the greedy action a′ in the Bellman
operator T Q(s, a) = R(s, a) + γ Es′

[
maxa′ Q(s′, a′)

]
tends to

have extrapolation errors, as the combination of state-action
pairs (s′, a′) may have rarely occurred in the dataset D.
To overcome this issue, early model-free offline RL methods
incorporate conservatism by constraining learned policies to
be similar to the behavior policy or penalizing values of OOD
actions. However, these methods often limit the generalization
of value functions beyond the offline data and lack precise
characterization of OOD data. Uncertainty quantification
is a promising way to enhance performance. Online RL
typically uses upper-confidence bound (UCB) to encourage
exploration, while offline RL focuses on fixed training data
and uses lower-confidence bound (LCB) to estimate Q-values
and avoid risky actions. Leveraging the LCB is supported by
strong theoretical evidence in offline RL. Recent theoretical
analyses, such as those discussed in [21], [52], prove the
importance of uncertainty quantification in achieving provable
efficiency in RL. Pessimistic Value Iteration [21] introduces
an ϵ-uncertainty quantifier, which serves as a penalty and
enables provable efficient pessimism in offline RL. In the
context of linear MDPs, a LCB-penalty [1], [20] is proposed
and is a known ϵ-uncertainty quantifier. In the context of
function approximation, it is shown that the bootstrapped
uncertainty provides an estimation of the LCB-penalty and
enables efficient pessimism in many complex offline RL
tasks [6]. This is achieved by utilizing the Q learning form
below, where theK bootstrapped Q-functions in critic are used
to quantify the epistemic uncertainty.

T̂ Qkθ (s, a)
= R(s, a)

+ γ Ês′∼D,a′∼π (·|s)
[
Q̄θ−

(
s′, a′

)
− βUθ−

(
s′, a′

)]
(4)

Uθ− (s, a)

= Std
(
Qk

θ− (s, a)
)

=

√√√√ 1
K

K∑
k=1

(
Qk

θ− (s, a) − ¯Qθ− (s, a)
)2

. (5)

In this formulation, Qkθ represents the k th Q-function
in the ensemble of bootstrapped Q-functions, while Q̄
is the mean among the target-networks. The empirical
Bellman operator T̂ aims to estimate the expected maximum
Q-value E

[
R(s, a) + γ maxa′ Qθ−

(
s′, a′

)
| s, a

]
based on the

offline dataset, as a′ is sampled from the learned policy
that is designed to maximize the Q-function. The epistemic
uncertainty, U , is quantified by the deviation among the
bootstrapped Q-functions, and is used as a penalization in
estimating the Q-functions. From a Bayesian perspective,
the ensemble approach allows for estimation of the posterior
distribution of the Q-functions, yielding similar values in areas
with rich data and diverse values in areas with scarce data.
A potential drawback of this approach is its high computational

FIGURE 2. Demonstration of how to generate ensemble weights for two
ensemble members from one rank-one layer. It’s important to note that the
training weight stored in each rank-one layer consists of only the shared
weight and two vectors for each member. The actual weights for each
member are calculated on demand following equation 6.

cost, which can be attributed to the use of a naive ensemble
and its non-efficient objective forms [3], [6], [16].

IV. METHODOLOGY
A. RANK-ONE MIMO Q NETWORK (MIMO Q)
Inspired by recent work in efficient ensemble [18], [48],
we introduce the MIMO Q for fast and memory-efficient
Q ensembling. The philosophy behind our method is
that members of the ensemble can share certain common
knowledge about the environment, which need not be learned
and stored individually. Instead, this knowledge can be
acquired collectively and stored in a shared weight matrix,
which individual members can then use to learn their own
unique knowledge with their own individual weights. As a
result, we can model the ensemble as the product of a shared
matrix and a rank-one matrix personalized for each member,
enabling us to combine both collective and individual learning
in a powerful and efficient way.
Following this philosophy, we design the architecture of

MIMO Q network accordingly. The MIMO Q network will
function as an ensemble of K members, as usual, meaning it
will receive K inputs and produce corresponding K outputs.
However, the MIMO Q network is constructed by stacking
multiple special layers, referred to as rank-one layers, akin
to building a multilayer perceptron from dense layers, rather
than creating K independent networks for each member in
the ensemble. The pivotal aspect unfolds within the rank-one
layer, meticulously crafted to model both a shared weight and
K individual weights. Specifically, the learnable weights for a
rank-one layer consist of a shared weight that is common
across all ensemble members, as well as K independent
weights that correspond individually to each of theK ensemble
members. Mathematically, the shared weight is essentially a
conventional dense layer, denoted by W ∈ Rm×n, where m
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represents the input dimension and n represents the output
dimension. On the other hand, one independent weight consists
of a pair of vectors, v ∈ Rm and s ∈ Rn, with dimensionsm and
n respectively. The layer comprises K ensemble independent
weights, implying that there are K pairs of trainable vectors
vk and sk , for k ranging from 1 to K . During the forward pass,
the rank-one layer constructs the actual ensemble weights Wk
by fusing the shared weight and the individual weights. This
fusion is formulated using the following procedure:

Wk = W ◦ (vks⊤k ), (6)

where ◦ is element-wise multiplication and (vks⊤k ) is the dot
product to recover the rank-one matrix from two vectors.
Figure 2 visualizes the process of creating actual weight for
each member of the ensemble having two members.

To make the ensemble weight generation process paralleliz-
able on a device, vectorization can be used. This allows the
forward pass to be computed with respect to multiple ensemble
members at once. The computation is accomplished through
manipulation of matrix computations for a mini-batch [49].
Specifically, let x represent the feature map inputing to a neural
network layer. The output feature map, y, are then given by:

ybk = 8
(
W⊤
k xb

)
= 8

((
W ◦ vks⊤k

)⊤

xb

)
= 8

((
W⊤ (xb ◦ vk)

)
◦ sk

)
, (7)

where 8 denotes the activation function and the subscript
b represents the index in the mini-batch. The output, ybk ,
represents next layer’s featuremap input from the k th ensemble
member. To enable vectorization of these computations,
matrices V and S are defined such that their rows consist
of the vectors vk and sk for all examples in the mini-batch.
With this, the equation above can be expressed in a vectorized
form as follows:

Y = 8(((X ◦ V )W ) ◦ S), (8)

where X is the mini-batch input. By computing equation 8,
we can obtain the next layer’s feature map input for each
ensemble member in a mini-batch-friendly way. This allows
us to take full advantage of parallel accelerators to implement
the ensemble efficiently. To match the input and the ensemble
weight, we can divide the input mini-batch into K sub-batches
and each sub-batch receives an ensemble weight Wk , k =

{1, . . . ,K } or we can repeat the input mini-batch K times.
For evaluation, when the test batch size is B and there are

K ensemble members, we optimize efficiency by repeating
the input mini-batch K times, resulting in an effective batch
size of B× K . This allows all ensemble members to compute
the output for the same B input data points in a single forward
pass.
Diversity in the weights of ensemble members is a crucial

factor for an ensemble to achieve high performance and reduce
the number of members required for effective uncertainty

quantification. Encouraging diversity during training can be
achieved through the use of a loss function (e.g., diversity
loss) [3], but this approach incurs additional computational
costs. Instead, we adopt an alternative method by initializing
individual weights as random sign vectors [48], which has
been found to yield satisfactory results without incurring any
extra computational overhead.

B. UNCERTAINTY-AWARE RANK-ONE MIMO Q NETWORK
FRAMEWORK
Considering PBRL as the baseline, the proposed framework
based on bootstrapped uncertainty quantification builds on
the actor-critic scheme, consisting of policy evaluation and
policy improvement phases. The Uncertainty-Aware Rank-
One MIMO Q Network framework additionally modifies both
the policy evaluation loss and the policy improvement loss to
include the benefits of the framework.

In our policy evaluation, we integrate two key components:
an effective term designed to approximate the lower
confidence bound (LCB) of the Q-value predictions, and a
value bonus derived from OOD action entropy. The proposed
Bellman equation is as follows:

T̂ Qkθ (s, a) = R(s, a)

+ γ Ês′∼D,a′∼π (·|s′)

×

[
min

k=1,...,K
Qk

θ−

(
s′, a′

)
− α logπφ

(
a′

| s′
)]

.

(9)

Let’s delve into the details of each component. Addressing
extrapolation error using the uncertainty quantification
approach is done by maximizing the LCB of the Q-values.
Instead of using equation 4 to compute the expected target,
our framework chooses the worst-case Q-value, which can
be interpreted as an approximation of the lower confidence
bound (LCB) of the Q-value predictions. Mathematically,
suppose Q(s, a) follows a Gaussian distribution with mean µ

and standard deviation σ . Let
{
Qk (s, a)

}K
k=1 be realizations

of Q(s, a). The expected minimum of the realizations can be
approximated using the work of Royston et al. [42], which
also employed in [3], [12], [14], and [17] as:

E
[

min
k=1,...,K

Qk (s, a)
]

≈ µ(s, a) − F−1
(

K −
π
8

K −
π
4 + 1

)
σ (s, a). (10)

In the equation,F denotes the cumulative distribution function
of the standard Gaussian distribution. This relation reveals
that using the minimum value approximates the penalty
on the ensemble mean of the Q-values minus the standard
deviation scaled by a coefficient that depends on the number
of ensembles, denoted by K . This approximation enables
the estimation of the LCB in a computationally efficient
manner. Furthermore, in the backward pass, employing this
approximation results in the loss being backpropagated solely
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TABLE 1. The average normalized scores and standard deviations of all algorithms across four seeds in the D4RL benchmark [11]. The highest-performing
scores are highlighted for each dataset. The state-of-the-art scores referenced in this study are from [6] and [53].

through the minimum-value Q network rather than through all
ensemble members. This property is particularly advantageous
in the context of our framework, as its computational costs
remain insensitive to K .
Regarding the value bonus, the Q-function receives an

additional boost from the entropy of actions generated by the
learned policy in the next stage, which has a high probability
of being OOD data. This approach encourages the Q-function
to avoid over-reliance on any specific high-value OOD data,
thereby preventing the exploitation of OOD data, which easily
leads to over-estimation.
In the policy improvement, we use the combination of

(1) minimum MIMO Q value, (2) the entropy of policy-
generated action, and (3) the likelihood of action in the dataset
to derive the corresponding policy by solving the following
maximization problem:

πφ = max
φ

Ês,a∼D,a′∼π (·|s)[ min
k=1,...,K

Qk (s, a′)

− α logπφ

(
a′

| s
)
+ β logπφ (a | s)], (11)

where φ represents the policy parameters.
The technique of maximizing entropy is utilized to

encourage a diverse set of actions in a given state. This is
achieved by treating the policy as a probability distribution
over actions given a state and maximizing its entropy,
as done in SAC [17]. By doing so, the policy becomes
less deterministic, allowing the agent to explore more
effectively and reducing the risk of overfitting the training
data. Furthermore, maximizing entropy has a regularizing
effect on the policy evaluation process. Encouraging the
policy to take a diverse set of actions also reduces the risk of
exploiting maximum actions (highly likely to be adversarial
examples), which can lead to diverging Q-values in the
long run. From another perspective, using a high-entropy
Gaussian policy has the effect of smoothing out the Q

target, which improves the robustness of the Q-function to
outliers. Furthermore, in the context of offline RL, we must
balance the use of in-distribution and out-of-distribution data,
which respectively be sampled from the dataset and sampled
from the learned policy. While OOD data can be useful for
seeking a better optimistic result, in-distribution data is more
trustworthy and should be given some priority. Therefore,
the log-likelihood term in the loss function is designed to
incentivize the policy to favor actions that are in distribution,
ensuring a balanced and effective learning strategy. The
maximization of the log-likelihood term is particularly useful
in low-coverage environments, such as expert datasets. In high-
coverage environments, this term may be less important
and can be eliminated without any impact on performance.
As a whole, our objective for policy improvement allows us
to avoid penalizing OOD data using some additional high
computational cost losses, as is done in some other approaches
such as PBRL, CQL [6], [26].
It is worth noting that updating the policy network too

frequently not only incurs higher computational costs but can
also introduce instability during policy evaluation. Therefore,
in our approach, we update the policy network after a certain
number of policy evaluation updates. This ensures a balance
between computational efficiency and stability in the learning
process.
The overall architecture of our framework is illustrated in

figure 1.

V. EXPERIMENTAL SETUP
Our method is evaluated on the D4RL benchmark [11],
which consists of various continuous-control tasks and
datasets. Specifically, we evaluate our method on three
environments (HalfCheetah, Hopper, and Walker2d) in
the Gym domain, using five types of datasets for each
environment: random-v2, medium-v2, medium-replay-v2,
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medium-expert-v2, and expert-v2. Themedium-replay dataset
contains experiences collected during the training up to a
medium-level policy, while the random/medium/expert dataset
is generated by a single random/medium/expert policy. The
medium-expert dataset is a combination of the medium and
expert datasets.

In all experiments, we train our algorithms for 3000 epochs,
which corresponds to 1000 training steps per epoch and
a total of 3 million steps. This training setup and com-
mon hyper-parameters follow the guidelines of PBRL and
EDAC [3], [6]. The reported results are normalized using d4rl
scores, which provide a measure of performance relative to
expert and random scores. The normalization formula is as
follows:

scorenormalized = 100 ∗
score− scorerandom

scoreexpert − scorerandom
. (12)

For evaluation, each algorithm is assessed based on 10 tra-
jectories, with 1000 steps per trajectory, and the returns are
averaged over 4 random seeds.
For specific hyper-parameters, we employ an adaptive

learning rate α based on (SAC) algorithm [17]. The value
of α is determined dynamically during training. The number
of members in the ensemble, denoted as K , is selected through
a random search within the range of 2 to 20. As for β, in the
case of expert datasets, we perform a random search within the
range of [0, 1e3], while for other datasets, the random search
is conducted within the range of [0, 1]. We update the policy
network every 2 policy evaluation updates to strike a balance
between computational efficiency and stability.

VI. EXPERIMENTAL RESULT
A. RESULT ON BENCHMARK DATASETS
We compare our method with several state-of-the-art algo-
rithms: (1) BCQ, [13] aiming to mitigate extrapolation error
by constraining the action space of the trained policy to
be similar to the behavior policy, learned from the dataset,
(2) IQL [24], adopting an implicit Q-learning approach
where the Q-function is learned based on a learned
V-function without directly querying a Q-function with OOD
actions. (3) BEAR [25], which enforces policy constraints
using the Maximum Mean Discrepancy (MMD) distance,
(4) UWAC [51], an improvement on BEAR that incorporates
dropout uncertainty-weighted updates, (5) CQL [26], which
learns conservative value functions by minimizing Q-values
of OOD actions, (6) MOPO [54], which quantifies uncertainty
through ensemble dynamics in a model-based setting,
(7) TD3-BC [12], which incorporates adaptive behavior
cloning constraints to regularize the policy during training,
(8) EDAC [3], which utilizes a diversified Q-ensemble to
enforce conservatism, (9) PBRL [6], which applies uncertainty
penalization and OOD sampling. It is worth noting that EDAC
and PBRL are related to our method since all these methods
employ a Q-ensemble for conservatism.

Table 1 reports the performance of the average normalized
score with standard deviation. Based on the results, our

FIGURE 3. The forward time cost and memory of MIMO Q w.r.t the
ensemble size. The result is relative to the single model cost.

TABLE 2. Computational costs on hopper-medium using Tesla V100.

framework achieves state-of-the-art performance, significantly
surpasses other techniques. Especial, on average, our approach
nearly doubles the scores achieved by methods such as BCQ
and BEAR. Moreover, it outpaces the closest competitor
(PBRL) by a substantial margin of +9.23.

A detailed examination of individual tasks reveals that our
framework demonstrates superior performance compared to,
or is at least on par with, the previous strongest approach.
Notably, our framework exhibits significant improvements
over the second-best result with a large margin when
handling messy data, such as random or medium replay. This
remarkable enhancement can be attributed to the effective
uncertainty quantification capabilities of our framework,
which is particularly advantageous in handling this type of
data.

B. TIME AND SPACE COMPLEXITY
The naive ensemble relies on employing separate models for
each member, resulting in linear increases in forward cost
and memory cost as the ensemble size grows. In contrast, our
approach utilizes the shared weight across the ensemble. The
only extra weights introduced are individual weights, which
incur an extremely small overhead thanks to the utilization
of rank-one vectors. As a result, the cost remains nearly
unchanged, equivalent to that of a single network, even as
the ensemble size increases as shown in Figure 3.
Mathematically, in our approach, the only additional

memory required is for storing the sets of vectors v1, . . . , vk
and s1, . . . , sk , which have low memory overhead compared
to weight matrices. Assuming the Q network consists of L
fully connected layers with dimensions m× n, the ensemble
weight size is reduced from LmnK in the naive ensemble
to Lmn + K (m + n). This reduction in memory usage is a
significant advantage of our approach.
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FIGURE 4. An illustration of the behavior of the Rank-One Q Network on
the synthetic regression dataset. yi denotes the prediction of each head.

To better understand the empirical efficiency of our
framework, we present a runtime analysis in Table 2. The
results demonstrate that our method not only achieves the best
runtime performance but also maintains exceptional memory
efficiency. Remarkably, it operates 1.82 times faster than CQL
and 5.87 times faster than PBRL. In terms of memory usage,
our framework is the most efficient, requiring only 0.97GB,
compared to CQL’s 1.4GB and PBRL’s 1.8GB. Given that our
method outperforms others while also being significantly more
efficient in terms of runtime and memory usage compared to
other strong baselines, we consider the improvements to be
substantial.

VII. ABLATION STUDY
A. UNCERTAINTY QUANTIFICATION ABILITY
To gain a better understanding of the effectiveness of
uncertainty quantification, we present a simple prediction
task as an illustration. In this task, we train the Rank-One
MIMO Q network using training data on the R1 plane,
specifically within the range of [−7.0, 7.0]. The input variable
x is generated from a Gaussian-distributed sinusoid function.
For test data, we extend the data range to [−10, 10],
following the same underlying function. We visualize the
testing data points along with the corresponding uncertainty
quantification in figure 4. As depicted in the figure, the
uncertainty quantification gradually increases as we move
from the in-distribution data points to the OOD data points.
This visual representation demonstrates the Rank-one MIMO
Q’s ability to perform regression with reliable uncertainty
quantification, even on OOD data.

B. THE EFFECT OF K
We conducted experiments by varying the parameter K
and recorded the corresponding outcomes in table 3. The
experimental results confirm that adjusting the parameter
K effectively controls pessimistic behavior, aligning with
the theoretical expectations. Lower values of K tend to

TABLE 3. The effect of K on final performance and Q estimation on
walker2d-medium-expert.

TABLE 4. Component-wise analysis on the walker-2d medium-expert
dataset.

yield more optimistic results, while higher values of K
lead to greater pessimism. The optimal outcome lies in
finding an approximate value of K that strikes a balance
between optimism and pessimism, resulting in the best overall
performance.

C. COMPONENT-WISE ANALYSIS
We provide experimental results of the framework when
different components are omitted. The baseline model we
used is the basic framework, which does not incorporate the
entropy bonus or the in-distribution likelihood maximization.
Table 4 presents the ablation results, indicating the impact of
these additional components. It is evident that our framework
achieves the best performance when leveraging both the
entropy and in-distribution likelihood maximization.
Interestingly, both the entropy and likelihood terms

introduce a certain level of pessimism, as evidenced by
the corresponding average Q values of 267.1 and 258.9,
respectively. On the other hand, not using either term yields
a higher Q value. Nevertheless, the performance remains
satisfactory even without the inclusion of these components.
It is worth noting that in the case of expert datasets such as
walker2d-expert, the inclusion of in-distribution likelihood
maximization plays a crucial role. Without it, achieving
good results becomes highly unstable and challenging. The
in-distribution likelihood maximization component provides
stability and enhances the performance of the model when
working with expert datasets.

VIII. CONCLUSION
In conclusion, this paper introduces a novel framework
for offline reinforcement learning that utilizes uncertainty
quantification to effectively leverage reliable OOD data.
The proposed framework for precisely learning a policy
through maximizing the lower confidence bound of the
Q-function, along with the Rank-One Multi-Input Multi-
Output architecture, strikes a balance between computational
cost and precision, providing good overall performance.
Extensive experiments on the D4RL benchmark show that our
proposed framework achieves state-of-the-art performance
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while being computationally friendly. Our findings contribute
to the advancement of offline RL research and pave the way
for future research in leveraging uncertainty quantification in
an efficient way for addressing challenges in offline RL.
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