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ABSTRACT Proton Exchange Membrane Fuel Cells (PEMFCs) play a crucial role in the advancement of
clean hydrogen vehicles. Their ability to convert hydrogen into electricity makes them promising candidates
to replace conventional engines. However, optimizing their performance and efficiency necessitates accurate
modeling techniques capable of simulating their behavior. In this context, this paper proposes an advanced
approach for precise parameter estimation in PEMFCmodels. Employing an EnhancedWalrus Optimization
(EWO) algorithm integrated with Lévy flight exploration, the approach tackles the inherent nonlinearity
of PEMFC systems. The technique aims to minimize the squared error between measured and simulated
terminal voltage, thereby ensuring superior accuracy and robustness compared to established algorithms. The
effectiveness of the proposed model is validated through comparisons between theoretical simulations and
experimental measurements. The findings demonstrate the efficacy of the EWO algorithm, consistently out-
performing previously published algorithms and achieving notably lower errors. Moreover, the incorporation
of Lévy flights enhances the algorithm’s capabilities, leading to expedited convergence and more accurate
parameter estimations. Beyond facilitating precise parameter estimation, this enhanced modeling strategy
opens avenues for refining design and optimization strategies in fuel cell research and development. The
major contributions of this paper include the enhancement of the WO algorithm, evaluation of theoretical
model accuracy, and robustness assessment of the EWO in optimizing the PEMFC model. By furnishing
accurate models validated through experimental evidence, this enhanced modeling strategy paves the way
for refining design and optimization strategies in fuel cell research and development.

INDEX TERMS Accurate modeling, artificial intelligence, optimization methods, parameter estimation,
PEM fuel cells.

I. INTRODUCTION
A. PROBLEM UNDER STUDY
The limited characteristics and ecological ramifications of
fossil fuels mandate a transition towards environmentally

The associate editor coordinating the review of this manuscript and
approving it for publication was Lei Wang.

friendly energy alternatives [1]. Fuel cells, which con-
vert chemical energy into electricity through electrochem-
ical reactions, emerge as promising candidates in this
endeavor [2]. In terms of clean energy technologies, fuel
cells stand out due to their outstanding efficiency and
emission-free power generation capabilities [2], [3]. Unlike
conventional power generators, fuel cells produce energy
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through the electrochemical reaction of hydrogen and oxy-
gen [4], [5]. This clean process significantly reduces the
environmental impact, particularly in terms of greenhouse gas
emissions and air pollution [6]. Proton exchange membrane
fuel cells (PEMFCs) [7], solid oxide fuel cells (SOFCs)
[8], and molten carbonate fuel cells (MCFCs) [9] are three
distinct types of fuel cells that find application in various
domains. SOFCs, known for their versatility in fuel usage and
ability to operate at higher temperatures, are well-suited for
stationary power generation [10]. Furthermore, the modular
design of fuel cells allows for scalability, accommodat-
ing both compact, portable devices and large-scale power
plants [11]. As such, fuel cells present a viable option for
various applications, including residential, commercial, and
industrial energy supply [12].

PEMFCs have gained recognition for their remarkable effi-
ciency and minimal emissions [13]. The focus of this study
centers on the precise modeling of PEMFCs, with the goal of
paving the way for optimized design strategies that contribute
to a cleaner and more sustainable future. In the midst of the
global transition towards cleaner energy sources, PEMFCs
play a crucial role in reducing reliance on fossil fuels, curbing
pollution, and ensuring energy security [14]. Their growing
prominence in sectors such as transportation [15], distributed
generation, and microgrids underlines the importance of this
research, which explores the field of these clean energy
options and future advancements in fuel cell technology [16].
The construction of accuratemodels for PEMFCs has become
a pivotal point for researchers [17] who seek to establish
reliable models using software programs that closely cor-
relate with experimental results [18]. The significance of
PEMFC modeling lies in its impact on analyses, particularly
in microgrids and smart grid applications [19].

B. LITERATURE REVIEW
Various modeling approaches are employed [20], [21],
encompassing analytical, empirical, semi-empirical, and the-
oretical methods to simulate PEMFC performance [22].
Theoretical extraction of PEMFC parameters involves both
conventional and metaheuristic methods [23]. Reference [24]
focuses on PEMFC parameter estimation, highlighting the
challenges posed by nonlinear systems for accurate model-
ing. The review emphasizes the use of empirical equations
for design purposes. The contribution of this reference is:
(1) reviews existing methods, (2) introduces novel tech-
niques like neural networks and bio-inspired algorithms, (3)
aims to aid researchers in developing even better estima-
tion techniques. The drawbacks mentioned in that reference
are: (1) GA has weak exploitation capability, (2) Harmony
Search Algorithm (HSA) suffers from premature conver-
gence. Reference [25] presents two novel iterative techniques
for solving a critical nonlinear equation in PEMFCmodeling,
along with a hybrid optimization algorithm that outper-
forms existing methods in estimating PEMFC parameters
for enhanced model accuracy. In [26], a semi-empirical

PEMFC model is implemented using novel grey wolf opti-
mization algorithm. This methodology is tailored to capture
the dynamic behavior of PEMFCs in real-world conditions,
offering advantages over traditional optimization techniques.
The study in [27] employs an empirical performance degra-
dation model, assessing the contributions of aging factors
to PEMFC power loss by fitting parameters to measured
polarization curves. The drawbacks mentioned in this refer-
ence are: (1) The physical-based approaches for degradation
modeling face challenges, (2) The data-driven approaches
rely on experimental data which may lack understanding of
degradation states, and (3) Difficulty in predicting accurate
lifespan. The study presented in [28] evaluates six optimiza-
tion techniques on PEMFC models, identifying performance
disparities and highlighting the most accurate one supported
by MATLAB validations. The limitation in this reference
is the high failure rate in production of fuel cells, leading
to high costs and low reliability. In [29], three metaheuris-
tic optimization techniques are introduced to determine the
parameters of PEMFCs, demonstrating that these methods
solve the optimization problem with minimal differences in
performance. In [30], a semi-empirical approach is proposed
that combines variational Bayes for parameter estimation
and Sobol sensitivity analysis for PEMFC modeling, offer-
ing a high level of accuracy and reduced computational
effort while quantifying parameter sensitivity and uncer-
tainty under varying conditions. The limitations mentioned
in this reference are: (1) The complexity of equations in
mechanism models leads to long computation times, (2) The
data-driven models require a large amount of data and are
time-consuming to build. The study in [31] examines the
degradation prediction of a PEMFC stack through semi-
empirical and data-driven models to forecast long-term stack
performance degradation with improved accuracy. The draw-
backs mentioned in this reference are: (1) Obtaining test
data for the whole life cycle is challenging, (2) The degra-
dation processes of leaking current impact the performance.
Reference [32] presents a novel semi-empirical model for
PEMFC voltage estimation, optimizing parameters using the
lightning search algorithm and validating the model under
various conditions. The drawbacks mentioned in this refer-
ence are: (1) The semiempirical model for voltage prediction
needs correction through experimentation, (2) The param-
eters in the model vary with ambient conditions, affecting
accuracy, and (3) Semiempirical models lack the complexity
and accuracy. Reference [33] proposes a new optimization
algorithm, Combined Owl Search Algorithm, for estimating
optimal parameters in PEMFC fuel cell stacks, achieving
lower errors compared to existing methods. A novel Dande-
lion Optimizer is proposed in [34] to accurately identify the
parameters of the PEMFCmodel, addressing challenges asso-
ciated with nonlinearity and the unknown parameters, with
comparative analysis with existing optimization algorithms.
The drawbacks mentioned in this reference are: (1) Meta-
heuristic optimizers face challenges related to convergence
to local minima, (2) Other optimizers have slow convergence
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to local optima, and (3) The need for accurate extraction of
PEMFC parameters highlights the limitations in modeling
and validation of PEMFCs.

C. MAIN CONTRIBUTION
The primary objective of this study is to develop robust and
reliable fuel cell models, specifically focusing on PEMFCs.
The research endeavors to establish a theoretical model that
accurately represents PEMFC behavior, aligning closely with
experimental data. This model incorporates seven unknown
design variables and effectively captures the nonlinear rela-
tionship between current and voltage (I-V). An objective
function is employed to minimize the sum of squared errors
(SSE), facilitating the determination of optimal values for
these variables. Various optimization algorithms shall be used
in a study to validate a robust model for the PEMFC such
as Remora Optimization Algorithm (ROA), Dynamic Harris
Hawks Optimization with Mutation Mechanism (DHHO/M),
and Harris Hawks Optimization with Differential Evolu-
tion (HHO-DE) [35]. To validate the model’s robustness in
this study, an Enhanced version of the Walrus optimization
(EWO) algorithm is proposed and tested across various pres-
sure and temperature conditions.

The Warlus optimization (WO) algorithm, introduced in
2024 by Muxuan Han et al., is an innovative nature-inspired
metaheuristic algorithm. It distinguishes itself by achieving
a balance between exploration and exploitation, resulting in
rapid convergence and high efficiency. The WO algorithm is
applicable to a wide range of optimization challenges. Recog-
nizing its impressive performance, an enhanced version of the
WO algorithm is investigated to address the complexities of
PEMFC modeling. The objective is to leverage the strengths
of the WO algorithm while introducing targeted modifica-
tions to improve the accuracy and efficiency of PEMFC
parameter extraction. The key contributions of this work can
be written as follows:

1) Enhancement of theWO: Developing an improvedWO
variant, named EWO, which achieves superior perfor-
mance in optimization tasks.

2) Evaluation of theoretical model accuracy: Assessing
the effectiveness of the model by comparing simulated
I-V curves with experimental data.

3) Robustness demonstration of the EWO: Validating the
algorithm’s robustness by comparing its outcomes with
those of alternative optimization algorithms and verify-
ing its capability to minimize the objective function.

D. PAPER STRUCTURE
The paper is organized to offer a thorough exploration of the
aforementioned topics. Section II outlines the mathematical
model of the PEMFC. Following that, Section III covers
the formulation of the optimization problem, containing the
objective function and constraints. Section IV provides a
detailed description of the newly devised and improved opti-
mization algorithm, EWO. Subsequently, Section V presents

the simulation outcomes and numerical comparisons with
alternative algorithms. Finally, Section VI concludes the
paper by summarizing key findings and proposing directions
for future research, providing insights into potential advance-
ments and applications.

II. PEMFC MATHEMATICAL MODEL
The mathematical formulation used to describe the PEMFC
in our investigation is presented in this section. The PEMFC
model selection aligns with the framework outlined in [36],
which has demonstrated its efficiency in accurately modeling
the cell’s behavior and has served as a benchmark in numer-
ous prior research efforts. The terminal voltage (Vstack ) of the
PEMFC is expressed using Equation (1), which takes into
consideration the number of series-connected cells (Ncells).
The total voltage of the stack is the sum of the voltages across
each individual cell. Connecting cells in series increases the
total output voltage of the stack. This Equation is the funda-
mental element for subsequent analysis in this work [37].

Vstack=Ncells. (Enernst−vact−v�−vconc) (1)

where Enernst is the Nernst potential which calculates the the-
oretical voltage of a fuel cell under open-circuit conditions.
It is dependent on the temperature and pressure [38]. vact is
the activation overpotential. v� represents the voltage loss
due to the resistance. It is influenced by the conductivity
of the materials used in the cell. vconc is the concentration
overpotential. Equation (2) calculates the theoretical open-
circuit voltage of a PEMFC, Enernst [37].

ENernst = 1.229 − 0.85 × 10−3 (
Tfc−298.15

)
+ 4.3085 × 10−5Tfcln

(
PH2

√
PO2

)
(2)

Here, Tfc denotes the temperature of the PEMFCmeasured in
Kelvin. PH2 and PO2 represent the partial pressures of hydro-
gen and oxygen, respectively. The voltage drops vact ,v�, and
vconc are determined by (3)-(5), respectively.

vact = −
[
ξ1 + ξ2Tfc + ξ3Tfcln

(
CO2

)
+ξ4Tfcln

(
Ifc

)]
(3)

where CO2 =
PO2

5.08·106
· exp

(
498/Tfc

)
v� = Ifc (Rm + Rc) ;Rm =

ρml
MA

(4)

where ρm

=

181.6
[
1 + 0.03

(
Ifc
MA

)
+ 0.062

(
Ifc
303

)2 (
Ifc
MA

)2.5]
[
λ − 0.634 − 3

(
Ifc
MA

)]
· exp

[
4.18

(
Tfc−303
Tfc

)]
vconc = −β · ln

(
1 −

J
Jmax

)
(5)

where ξ1, ξ2, ξ3, and ξ4 are empirical coefficients. CO2 is the
concentration of oxygen. Ifc is the fuel cell current. Rm and Rc
represent the membrane and contact resistances, respectively.
ρm is the membrane resistivity, which varies with current
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density and temperature. l is the thickness of the membrane,
and MA is the membrane surface area. β is an empirical
coefficient. J is the current density, and Jmax is the maximum
current density. λ is a design variable that affects various
aspects of the fuel cell’s performance. It is assumed to be
between 13 and 23. β is a design variable from 0.0136 to 0.5.
These equations collectively constitute a comprehensive

model for analyzing the performance of PEMFCs, consid-
ering various factors that impact cell voltage. The compre-
hension and optimization of these parameters are essential
for enhancing fuel cell efficiency and overall performance.
The control parameters (ξ1, ξ2, ξ3, ξ4, λ, Rc, and β) play a
critical role in building a comprehensive and precise model
of PEMFC performance. These variables need to be meticu-
lously determined to facilitate the application of this model
in power system investigations and the refinement of fuel
cell designs for diverse applications. With the mathematical
groundwork of the PEMFC model established, Section III
outlines the problem formulation, encompassing the objective
function, for optimizing the identified design variables.

III. PROBLEM FORMULATION
Due to limited data availability from manufacturers, the
PEMFC model incorporates nonlinear characteristics, pos-
ing a challenge for accurate modeling [37]. To tackle this
obstacle, the optimal values for the control parameters are
estimated by minimizing the SSE between the model’s
predicted voltage and the empirically measured fuel cell volt-
age [39]. Formulated as a non-convex optimization problem,
this minimization task seeks to align the model’s predictions
closely with the experimental data. The mathematical repre-
sentation of this objective function is provided in Equation (6)
[40]:

SSE =

Nsamples∑
m=1

[
VFC,exp(m) − VFC,e st (m)

]2 (6)

where Nsamples represents the total count of measured volt-
ages. VFC,exp denotes the terminal voltage of the PEMFC as
observed in the experiments, expressed in volts (V). VFC,est
signifies the terminal voltage of the PEMFC estimated by the
model, also in volts (V). In order to ensure that the estimated
values remain within practical and realistic ranges, the fitness
function incorporates seven design variables. These variables,
which are denoted as ξ1−ξ4, λ, Rc, as well as β, are subject to
both maximum and minimum bounds, which are represented
as inequality constraints. Eventually, the ability to reduce
the SSE and improve the model’s accuracy is facilitated by
modifying these variables utilizing the EWO. To accomplish
this, the suggested optimization approach employs the MAT-
LAB software. With the objective function established and
the design variables identified alongside their constraints, the
subsequent section delves into the optimization solution’s
core, presenting a novel approach that addresses the optimiza-
tion problem effectively.

IV. EWO ALGORITHM DETAILS
A. STANDARD WALRUS OPTIMIZER ALGORITHM
The WO algorithm is a newly developed metaheuristic
algorithm that draws inspiration from the diverse behaviors
of walruses in nature. This algorithm simulates the social
structures and capabilities exhibited by these marine mam-
mals [41]. Walruses are known for their keen sense of touch,
a trait integrated into the WO algorithm through the model-
ing of populations and their reactions to perceived danger
and safety cues. Moreover, it considers the social dynam-
ics and hierarchies within walrus groups, which consist of
adults, juveniles, and females. These elements guide the
WO’s search process, balancing exploration and exploitation
effectively. This section elaborates on the core concepts form-
ing the WO algorithm.

Initialization: The WO optimization process commences
with an initial population of candidate solutions randomly
generated within the predetermined lower and upper bounds
established for the optimization problem’s design variables.
This diverse starting point ensures adequate search space
exploration for potential optima. As the WO progresses, the
agents are guided by social and environmental cues, allowing
them to refine their positions and approach closer to reaching
optimal solutions.

Danger and Safety Signals (The Guiding Force of Wal-
rus Behavior): The WO algorithm relies on the idea of
‘‘safety’’ and ‘‘danger’’ signals, mirroring the responsiveness
of walruses to their surroundings. These signals influence
the individual behavior of each agent and guide the entire
population toward regions likely to contain optimal solutions.
The danger signal reflects the risk associated with an agent’s
current position. It is calculated using Equation (7). This
danger signal gradually weakens throughout optimization,
encouraging agents to converge towards promising solutions.

On the other hand, the safety signal represents the attrac-
tiveness of an agent’s current location. It is calculated using
Equation (11). This signal increases with each iteration, pro-
moting exploitation. By effectively balancing these opposing
forces, the WO algorithm navigates the search space effi-
ciently [41].

Danger_signal = A× R (7)

A = 2 × α (8)

α = 1 −
t
T

(9)

R = 2 × r1 − 1 (10)

Safety_signal = r2 (11)

In the previous equations, A and R signify the risk elements,
the parameter α decreases from 1 to 0 across the optimization
process. The stochastic variables r1 and r2 range between
0 and 1, with r2 specifically indicating the safety signal.
The variable t is used to denote the current iteration step,
whereas T represents the maximum predetermined number
of iterations.
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The Migration stage: The migration stage represents the
exploration aspect, where walrus agents attempt to get into
new zones of the search space. During this stage, the location
of each agent is reorganized based on migration step β,
as well as a random number r3.
The walrus position update equation is as follows [41]:

X t+1
ij = X tij +Migration_step (12)

Migration_step =
(
X tm − X tn

)
× β × r23 (13)

β = 1 −
1

1 + e
−10(t−0.5T )

T

(14)

where X t+1
ij represents the updated location in iteration i

along dimension j. X tm and X tn denote two positions cho-
sen at random. Diversifying the Population (Reproduction
Stage): This stage models different behaviors for three cate-
gories: males, females, and young walruses. Male walruses
act as scouts, exploring new regions of the search space.
Their positions are redistributed. Female walruses repre-
sent exploitation, focusing on refining promising solutions.
Young walruses introduce additional diversification. Their
positions are updated based on interactions with both parents,
incorporating exploration and exploitation elements while
adding randomness for further exploration. Through these
diverse reproduction strategies, the WO algorithm maintains
a balance between exploring new regions and exploiting
promising solutions, enhancing its ability to find optimal
results. The formulation of this stage can be expressed as
shown in Equations (15)-(17) [41]:

femalet+1
ij = femaletij + α ×

(
maletij − femaletij

)
+ (1 − α)

×

(
X tbest − femaletij

)
(15)

Juvenilet+1
ij =

(
O− Juveniletij

)
× P (16)

O = X tbest + Juveniletij × LF (17)

whereO denotes the benchmark location for safety, andP cor-
responds to the risk factor associated with juvenile walruses.

B. ENHANCED WALRUS OPTIMIZATION ALGORITHM
Lévy flight is a movement pattern characterized by sharp
changes in direction and long-distance jumps with shorter
steps [42]. This stochastic behavior, represented by Lévy
distributions, has been shown to significantly improve opti-
mization algorithms [43], [44]. By incorporating Lévy flights,
algorithms can more adeptly evade local optima, explore
diverse regions successfully, and detect globally optimal
solutions. Lévy flights can be integrated into optimization
algorithms by adjusting the position updates of candidate
solutions. Its effectiveness depends on the precise tuning of
parameters such as the distribution’s scale and exponent.

The EWO improves upon the original WO by adopting
the Lévy flight strategy. This addition allows the algorithm
to explore broader areas within the search space, thereby
improving the algorithm’s efficiency in finding optimal solu-
tions. Including Lévy flights changes how positions are

FIGURE 1. Flowchart of the EWO algorithm.

updated within the WO, demonstrating the effectiveness of
metaheuristic optimization approaches. Consequently, the
EWO reveals enhanced convergence capabilities, positioning
it as a powerful tool for problem optimization. The formula-
tion of the Lévy function can be expressed mathematically as
shown in Equation (18) [45]:

LF = 0.01×
u× σ

|v|
1
γ

,σ =

 0 (1 + γ ) ×sin
(πγ

2

)
0

(
1+γ
2

)
×γ×2

(
γ−1
2

)


1
γ

(18)

The parameters u and v, being random variables that range
from 0 to 1, introduce variability and randomness into the
model. The flowchart in Figure 1 depicts the optimization
process using the EWO algorithm.

V. SIMULATION RESULTS AND ANALYSIS
A. CASE 1: PERFORMANCE OF 6 kW Nedstack PS6 PEMFC
In this case, the focus is on the Nedstack PS6 PEMFC,
whose output power is 6 kW. The analysis of this PEMFC
is executed through the utilization of Matlab, with the simu-
lation being conducted at a temperature of 338 K, whilst both
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FIGURE 2. Convergence curves for case 1.

FIGURE 3. I-V curves for case 1.

oxygen and hydrogen pressures are set at 1 atm. The fuel cell
consists of a total of 65 cells that are connected in series.
The membrane possesses a thickness measuring 1.78 mm.
Another specification is the fuel cell’s surface area, which
measures 240 cm2. The maximum current density that the
fuel cell can withstand is 5A/cm2 [37]. Figure 2 illustrates
the convergence curves of four different algorithms: transient
search optimization (TSO), harris hawk optimization (HHO),
particle swarm optimization (PSO), and EWO over a series of
2000 iterations. The graph outlines the optimal score of the
fitness function that each algorithm achieved as the iterations
progressed. The EWO algorithm demonstrated the highest
efficiency, converging to its best score in the fewest iterations.
In contrast, TSO exhibited a slower convergence, requiring
over 1200 iterations to become stable. The graph also features
a subplot that zooms in on the final four iterations, highlight-
ing the advantage of the proposed algorithm.

The analysis of the fuel cell’s electrical characteristics is
explained through two figures. Figure 3 outlines the I-V char-
acteristics, comparing the computed estimates and 29 individ-
ual voltage measurements. The correspondence between the
estimated and measured voltage values is marked, indicating
a reliable match. Also, Figure 4 exemplifies the correlation
between the PEMFC’s current and its output power. Similar
to the I-V characteristics, this figure compares the estimated

FIGURE 4. I-P curves for case 1.

TABLE 1. Design variables for case 1.

power values to measured data points across varying current
levels, verifying the accuracy of the computational estimates
against practical measurements. Both figures are essential in
understanding the performance of the 6 kW Nedstack PS6
fuel cell.

Table 1, in addition, offers a comparative analysis of the
newly developed EWO method against other optimization
methods, such as the TSO, the HHO, and the PSO. It shows
the optimal candidate solutions for various design parameters
in the optimization. These solutions represent the optimal
outcomes in minimizing the SSE between the calculated and
observed terminal voltages of a PEMFC.

Figure 5 displays a plot of internal voltage losses against
the current for a 6 kW Nedstack PS6 fuel cell. The x-axis
represents the current in amperes, and the y-axis represents
the voltage losses in volts. The plot details the different
elements of voltage loss. It exhibits that with an increase in
current, there is a corresponding increase in both total voltage
losses and ohmic losses. Conversely, the concentration and
activation losses tend to stay relatively unchanged across the
current range presented.

The following two figures are presented to examine the
performance characteristics of a 6 kWNedstack PS6 PEMFC
at various temperatures. Figure 6 compares I-V curves for
the PEMFC at temperatures of 15, 40, and 60◦C. The x-axis
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FIGURE 5. Graphical analysis of voltage losses at varying current levels
for case 1.

FIGURE 6. I-V curves at various temperatures for case 1.

FIGURE 7. I-P curves at various temperatures for case 1.

represents the fuel cell current in amperes, while the y-axis
represents the voltage of the stack in volts. The graphs indi-
cate that as the temperature rises, the voltage for a given
current also increases. At 60◦C, the voltage remains higher
across the current range compared to the voltage at 15◦C
and 40◦C. Next, Figure 7 illustrates the comparison of I-P
curves under the same temperature conditions. It is evident
from the power curves that the output power undergoes minor
adjustments with temperature variations. Noticeably, the out-
put power is highest at 60◦C and lowest at 15◦C.
Following that, the simulations were carried out under

different pressures while maintaining a fixed temperature to
assess the impact of pressure adjustments on the voltage. The

FIGURE 8. I-V curves at various pressures for case 1.

FIGURE 9. I-P curves at various pressures for case 1.

results of these simulations are clearly illustrated in the I-V
and I-P graphs depicted in Figures 8 and 9. Analysis of these
figures shows a clear increase in voltage with higher pres-
sures. This observation, combined with comparative results
obtained from changing temperatures at constant pressure,
concludes that temperature variations have a more consider-
able effect on the fuel cell’s voltage and power output than
changes in pressure.

B. CASE 2: PERFORMANCE OF 250 W PEMFC STACK
Through the second case, an evaluation is conducted on
the performance of a 250 W PEMFC stack, comprising
24 cells in series, in order to optimize it using various
algorithms. With an active area of 27 cm2 in addition to a
maximum current density of 860 mA/cm2, the PEMFC stack
shows notable results. The optimization algorithms compared
include the mayfly optimization algorithm (MOA), hybrid
grey wolf optimizer with circle search (GWO-CS), and the
HHO.Table 2lists the best values achieved by the EWO rel-
ative to those obtained by the other mentioned algorithms in
the literature. The results for the EWO show a lower SSE,
indicating more precise optimization.

Figure 10 graphically shows how the SSE decreases over
iterations for all the algorithms studied. Importantly, the
figure contains a detailed inset of the final five iterations,
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TABLE 2. Design variables for case 2.

FIGURE 10. Convergence curves for case 2.

FIGURE 11. I-V curves for case 2.

pinpointing the results of the proposed EWO algorithm. This
detailed part emphasizes the EWO’s effectiveness in the
optimization process, indicating its closer proximity to the
optimal solution.

Figure 11 displays the I-V polarization characteristics for
a 250W PEMFC stack, comparing measured data points with
estimated values derived from an EWO model. A strong cor-
relation between the calculated andmeasured values indicates

FIGURE 12. I-P curves for case 2.

FIGURE 13. Graphical analysis of voltage losses for case 2.

an effective match between the observed values and the pre-
dictions of the EWOmodel. Similarly, Figure 12 presents the
I-P curves for the same PEMFC stack. The graph demon-
strates a strong correlation between the actual measurements
and the estimated values, with the computed curve closely
tracing the measured data points, thereby validating the
model’s accuracy in predicting the output power.

Figure 13 shows how various internal losses in a 250W
PEMFC stack are related to the current. It offers a clear view
of how the voltage losses in the PEMFC stack vary with the
current.

The next two figures examine how a 250W PEMFC stack
performs at different temperatures. Figure 14 shows a com-
parison of I-V curves at temperatures of 15, 40, and 60◦C. The
curves show that the voltage rises with temperature. At 60◦C,
the voltage remains higher across the current range compared
to the voltage at 15◦C and 40◦C. Also, Figure 15 illustrates
the comparison of I-P curves under the same temperature con-
ditions. The output power shifts slightly as the temperature
changes. The highest output power is observed at 60◦C, and
the lowest at 15◦C.

Expanding on that, the simulations were performed at dif-
ferent pressures, keeping the temperature constant. The out-
comes are graphically illustrated in Figure 16 and Figure 17.
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FIGURE 14. I-V curves at various temperatures for case 2.

FIGURE 15. I-P curves at various temperatures for case 2.

FIGURE 16. I-V curves at various pressures for case 2.

An evident rise in voltage is observed with increasing pres-
sure. However. temperature variations influence the fuel cell’s
voltage and power output more obviously than pressure dif-
ferences.

C. CASE 3: PERFORMANCE OF AVISTA SR-12 500 W PEMF
In this case, the AVISTA SR-12 500 W PEMFC stack, com-
prising 48 cells in series is evaluated for optimization against
other algorithms. With an active area of 62.5 cm2 besides
a maximum current density of 0.672 A/cm2, the PEMFC
stack shows remarkable results. The optimization analysis

FIGURE 17. I-P curves at various pressures for case 2.

FIGURE 18. Convergence curves for case 3.

compared EWO with other known algorithms, namely chaos
game optimization (CGO), neural network optimizer (NNO),
and grasshopper optimizer (GHO).Table 3presents a com-
parison of the optimal values attained by the EWO with
those acquired by other competing algorithms. The results
for the EWO show a reduced SSE, indicating a higher level
of optimization precision. Fig. 18 represents the trend of
SSE minimization over iterations, featuring a magnified sub-
figure focusing on the outcomes of the EWOalgorithmwithin
the last five iterations. This detailed perspective sheds light
on the performance of the EWO. Fig. 19 displays the current-
voltage polarization characteristics of the AVISTASR-12 500
W PEMFC, comparing measured data points with values pre-
dicted by an EWO model. A clear correlation exists between
the predicted andmeasured values. Likewise, Fig. 20 presents
the I-P curves for the same PEMFC, showing a visible link
between the actual measurements and the estimated values.

Figure 21 illustrates the relationship between different
internal losses within the AVISTA SR-12 500W fuel cell and
the current. It provides an overview of how the voltage losses
within the PEMFC stack change with the current.

The upcoming two figures investigate the functioning char-
acteristics of the AVISTA SR-12 500 W fuel cell stack at
various temperatures. Fig. 22 compares I-V curves at tem-
peratures of 15, 40, and 60◦C. The curves show that the
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FIGURE 19. I-V curves for case 3.

FIGURE 20. I-P curves for case 3.

TABLE 3. Design variables for case 3.

voltage rises with temperature. Also, Fig. 23 illustrates the
comparison of I-P curves under the same temperature con-
ditions. The output power shifts slightly as the temperature
changes.

For this case, using the approaches used in prior cases, the
simulations were done under various pressures at a constant
temperature. The results are illustrated in Fig. 24 and Fig. 25.
There is an increase in voltage as the pressure goes up.

FIGURE 21. Graphical analysis of losses for case 3.

FIGURE 22. I-V curves at various temperatures for case 3.

FIGURE 23. I-P curves at various temperatures for case 3.

FIGURE 24. I-V curves at various pressures for Case 3.

D. CASE 4: PERFORMANCE OF TEMASEK 1 kW PEMF
With this case, the Temasek 1 kW PEM fuel cell, com-
prising 20 cells in series was evaluated for optimization in
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FIGURE 25. I-P curves at various pressures for case 3.

FIGURE 26. Convergence curves for case 4.

TABLE 4. Design variables for case 4.

comparison with other algorithms. With an active area of
150 cm2 and a maximum current density of 1.5 A/cm2, the
PEMFC stack shows remarkable results [46]. The optimiza-
tion algorithms compared involve the kepler optimization
algorithm (KOA), marine predator algorithm (MPA), and
HHO. Table 4 enumerate the superior results achieved by the
EWO against those obtained by the competing algorithms.
The results for the EWO archive a lower SSE, suggesting
refined accuracy in optimization. Fig. 26 represents the curve
of SSE minimization across iterations.

Fig. 27 displays the current-voltage relationship for the
Temasek 1 kW PEMFC, comparing measured data points
with estimated values. There is a strong correlation between
the calculated and measured values. Similarly, Fig. 28
presents the I-P curves for the same PEMFC.

Fig. 29 illustrates the relationship between different inter-
nal losses within the Temasek 1 kW PEM fuel cell and the

FIGURE 27. I-V curves for case 4.

FIGURE 28. I-P curves for case 4.

FIGURE 29. Graphical analysis of losses for case 4.

current. It offers an insight into the variation of voltage losses
within the PEMFC stack as a function of current flow.

The following two figures investigate the performance
characteristics of the Temasek 1 kW PEMFC stack at various
temperatures. Fig. 30 shows a comparison of I-V curves at
temperatures of 15, 40, and 60◦C. Also, Fig. 31 illustrates
the comparison of I-P curves under the same temperature
conditions.

Consistent with previous testing conditions, the simula-
tions were carried out at various pressures while maintaining
a constant temperature. The results are depicted in Fig. 32 and
Fig. 33.
The proposed EWO demonstrated its effectiveness by

closely approximating the best results of the control variables
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FIGURE 30. I-V curves at various temperatures for case 4.

FIGURE 31. I-P curves at various temperatures for case 4.

FIGURE 32. I-V curves at various pressures for case 4.

for the minimum SSE in PEMFCs. The performance of the
EWO-based PEM fuel cell model highlights its superiority.
This was further validated through a comparative analysis of
experimental and theoretical simulation results. The deploy-
ment of the EWO has resulted in an accurate determination
of the design variables for the PEMFC.

The parametric T-test is implemented to investigate the
population characteristics. The T-test uses the results from
30 independent runs. Table 5 displays the detailed T-test out-
comes for the four cases of the studied PEMFCs, presenting
h-and p-values. These findings indicate that the EWO-based
model is robust and demonstrates competitiveness.

FIGURE 33. I-P curves at various pressures for case 4.

TABLE 5. Parametric test findings.

VI. CONCLUSION
In conclusion, this article introduces an innovativemethod for
accurately estimating parameters in PEMFC models through
the use of an Enhanced WO algorithm. The goal is to
develop a reliable theoretical model for PEMFCs that aligns
closely with experimental data, thereby advancing optimiza-
tion techniques in fuel cell research. The work emphasizes
the importance of precise PEMFC modeling, addresses the
complexities of modeling nonlinear systems, and highlights
the necessity for better optimization methods. The EWO
algorithm, introduced here, shows superior capability in
optimizing the fitness function. A mathematical model of
the PEMFC is presented, detailing essential parameters like
activation overpotential, resistance voltage loss, and concen-
tration overpotential. This model was tested under various
pressures and temperatures, with simulated current-voltage
(I-V) curves compared to experimental data across four test
scenarios. In the 6 kW Nedstack PS6 scenario, the EWO suc-
cessfully improved terminal voltage, demonstrating its ability
to fine-tune the design variables. In the AVISTA SR-12 500
W scenario, the optimizer minimized the SSE, highlighting
its efficiency optimization potential. The investigation of the
250W stack further confirmed EWO’s efficiency, and the
Temasek 1 kW case offered insights into the algorithm’s
smooth and speed convergence. Future research directions
may include further enhancements to the modeling approach
and exploring additional optimization algorithms for PEMFC
parameters estimation.
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