
Received 7 May 2024, accepted 20 May 2024, date of publication 23 May 2024, date of current version 31 May 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3404657

Classification and Recognition of Lung Sounds
Based on Improved Bi-ResNet Model
CHENWEN WU, NA YE , AND JIALIN JIANG
College of Electronic and Information Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu 730070, China

Corresponding author: Na Ye (731443570@qq.com)

This work was supported in part by the National Natural Science Foundation of China under Grant 72061022, and in part by the Natural
Science Foundation of Gansu Province under Grant 21JR7RA293.

ABSTRACT Lung sound classification is an important diagnostic task in the medical field. By analyzing
respiratory sounds, doctors can help diagnose various respiratory system diseases. Chronic respiratory
diseases worldwide are usually associated with abnormal lung sounds, which are clinically related to
conditions such as bronchitis or chronic obstructive pulmonary disease. In recent years, the outbreak of
COVID-19 has once again sparked research into lung sound classification. However, due to the environ-
mental noise and heart sounds mixed in abnormal lung sounds, further improvements are still needed for
accurate classification. In this paper, an improved Bi-ResNet network structure model is proposed to enhance
the accuracy of lung sound classification and fully utilize feature extraction information. The model still
processes the extracted lung sound features in parallel, but by introducing skip connections and increasing
the use of direct connections, it allows information to be directly transmitted and fully integrates original
and processed features within the network. This improved structure enables the model to learn features
from the data at a deeper level, enhancing the expressiveness of the features. Additionally, the improved
Bi-ResNet model combines convolutional neural networks (CNN) and residual networks (ResNet), and uses
two types of features, the lung sound short-time Fourier transform (STFT) and wavelet transform (Wavelet),
for model training and analysis. This comprehensive approach captures lung sound data information more
comprehensively, differentiating between different types of lung sounds and providing better diagnostic
assistance to doctors, thereby promoting early diagnosis and treatment of respiratory system diseases.
Through experiments, the proposed model achieved a classification accuracy of 77.81% on the Int. Conf.
on Biomedical Health Informatics (ICBHI) 2017 dataset, representing a 25.02% improvement over the Bi-
ResNet model, with an F1 score of 71.05%.

INDEX TERMS Lung sound classification, Bi-ResNet model, deep learning, Fourier transform, wavelet
transform.

I. INTRODUCTION
Chronic Respiratory Disease (CRD) is one of the four major
chronic diseases worldwide, characterized by reduced respi-
ratory function caused by various chronic non-communicable
diseases. According to statistics from theWorld Health Orga-
nization, approximately 400,000 people worldwide die from
chronic respiratory diseases each year, with the majority of
deaths attributed to Chronic Obstructive Pulmonary Disease
(COPD). COPD is a chronic progressive respiratory system
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disease that is mainly characterized by airflow limitation,
difficulty in breathing, coughing, and increased sputum pro-
duction [1], [2]. Severe COPD can lead to a decrease in
quality of life, reduced ability to work, and even disability.
Currently, there are over 300 million COPD patients world-
wide, and this number is expected to continue to increase
by 2030.

Despite the significant burden that Chronic Obstructive
Pulmonary Disease (COPD) poses on individual and soci-
etal health, the diagnosis and treatment of COPD still
face numerous challenges in many countries, including
China. Epidemiological survey data shows that there are
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TABLE 1. The three low problems of chronic obstructive lung disease.

approximately 100 million COPD patients in China, with
a prevalence rate of 13.7% among individuals aged 40 and
above. COPD ranks third in terms of mortality and disease
burden, but it has not received enough attention [3]. The three
major bottlenecks currently impeding COPD management
in China are insufficient diagnosis, non-standardized treat-
ment, and poor control levels, as indicated by the three lows
(as shown in Table 1). Firstly, early symptoms of COPD are
similar to other respiratory system diseases, making them
easily overlooked or misdiagnosed. Secondly, many patients
still lack effective treatment after diagnosis, leading to disease
progression and serious consequences. Additionally, due to
the uneven distribution of medical resources, some regions
have insufficient access to timely diagnosis and treatment for
COPD patients [4].
In recent years, the application of machine learning and

deep learning technologies in the field of medicine has
made significant progress, providing new opportunities for
early diagnosis and classification of Chronic Obstructive Pul-
monary Disease (COPD). Machine learning is a method that
can automatically discover patterns and make predictions by
analyzing and learning from large amounts of data. It can be
applied to the processing and analysis of respiratory sound
data, assisting doctors in accurately diagnosing COPD and
classifying different types of patients. By training and test-
ing on a large amount of respiratory sound data, machine
learning can automatically classify and identify respira-
tory sounds, thereby eliminating the subjectivity in doctors’
judgments [5], [6]. Common machine learning algorithms
include Support Vector Machine (SVM), Neural Network
(NN), and Random Forest (RF). However, due to the lim-
ited number of COPD samples and the issue of imbalanced
classification, traditional machine learning algorithms may
lead to misjudgment and overfitting when processing COPD
data.

Compared to traditional machine learning algorithms,
deep learning algorithms can better handle complex medical
data and improve the accuracy of diagnosis and classifi-
cation of Chronic Obstructive Pulmonary Disease (COPD),
assisting doctors in predicting pulmonary diseases as an aux-
iliary [7], [8]. Deep learning is a machine learning method
based on artificial neural networks, which can automati-
cally extract features and learn patterns throughmulti-layered
neural network models. Deep learning has achieved signifi-
cant results in medical image processing, disease prediction,
and drug development, and is gradually being applied to
the classification of lung sounds. Deep learning algorithms
can automatically perform feature extraction and training
in lung sound classification, reducing the workload of

human involvement and improving the accuracy and speed
of classification. However, there are still some challenges,
such as designing suitable deep learning models, optimiz-
ing model performance, and fully utilizing the extracted
features.

In general, machine learning and deep learning technolo-
gies provide new methods and tools for the early diagnosis
and classification of Chronic Obstructive Pulmonary Disease
(COPD). Through further research and development, these
technologies are expected to become important adjuncts in
the management of COPD, improving the accuracy of diag-
nosis and the effectiveness of treatment, and reducing the
burden of COPD on individuals and society’s health. How-
ever, it is important to note that machine learning and deep
learning technologies still need to be validated and improved
in clinical practice to ensure their safety and efficacy.

To address the above problems, the Convolutional Neural
Networks (CNN) architecture is combined with the ability
to overcome the diversity of the speech signal itself and
the Residual Network (ResNet) module as a better classifier
than the CNN for mutual fusion and adaptation in speech
recognition. Therefore, it is essential to assist healthcare
professionals in using deep learning to identify abnor-
mal lung sounds to predict and diagnose lung diseases
accurately in the future. This study proposes an improved
Bi-ResNet model with a data augmentation approach to
improve the recognition accuracy of abnormal lung sounds.
The model effectively solves the problem of using fea-
ture information to extract richer features, improving
the accuracy of lung sound classification and the model’s
precision.

The primary contribution of this study is as follows:
(1) Feature extraction: the information extraction from

lung sound signals using short-time Fourier transform and
wavelet transform.

(2) Data augmentation: a non-linear mixed data augmen-
tation method was used to increase the amount of data on
abnormal lung sounds to help model training.

(3) Feature fusion: after parallel processing of the extracted
features, the ResNet module correctly identifies abnormal
lung sounds.

(4) Improved Bi-ResNet model: the model improves the
structure of the ResNet model by introducing shortcut con-
nections and residual networks, and then uses a bilinear
CNN model combined with residual blocks for feature pro-
cessing and fuses multidimensional features to make full
use of the information of the original extracted features.
Finally, the fused features are classified using the resid-
ual block which improves the classification performance
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and also allows the network to be trained at a deeper
level.

The rest of the study is structured as follows: Section II
describes related research work, Section III elaborates on
data preprocessing techniques and feature extraction, and
Section IV elucidates the improved Bi-ResNet model and the
optimizer and loss function. Section V arranges the validation
of the model’s effectiveness. Finally, Section VI summarizes
the study.

II. RELATED WORK
This study primarily concerns traditional and deep
learning-based lung sound classification methods.

A. MACHINE LEARNING-BASED CLASSIFICATION
METHODS
The earliest classification methods applied to lung sound
classification were based on traditional machine learning.
In the early days, they primarily focused on feature extraction
and simple classification of lung sounds. Machine learn-
ing algorithms can automate the identification of abnormal
breath sounds to assist doctors in accurate diagnosis and
treatment, enabling early screening and prevention. How-
ever, machine learning algorithms can help doctors analyze
breath sound data to improve the effectiveness of respiratory
system treatment. For example, machine learning algorithms
can automatically classify and analyze breath sound data
to study lung disease pathogenesis and treatment options.
Earlier approaches using machine learning to classify lung
sounds relied primarily on Vector Quantization (VQ) tech-
niques with the k-nearest neighbor (KNN)method, producing
less accurate classification results. For example, Bahoura and
Pelletier [9] used the VQ machine classification method with
Mel-scale Frequency Cepstral Coefficients (MFCC) feature
extraction to achieve a roaring tone accuracy of 77.5%, higher
than other feature extraction methods. Jindal et al. [10] used
the KNN machine classification method to add the burst
tone parameters to the vector space, improving detection
accuracy. Previous lung sound classification studies include
machine learning methods, probabilistic statistical classifi-
cation methods, and support vector machine (SVM)-based
lung sound classification. Bahoura and Pelletier [11] discov-
ered that the combination of MFCC+GMMmethods had the
highest sensitivity and accuracy using the Gaussian Mixture
Model (GMM) to classify the lung sounds into two main cat-
egories: normal and wheeze. Moreover, the Hidden Markov
Model (HMM) has been used to differentiate normal from
abnormal lung sounds [12] or normal from emphysematous
sounds [13], both in the context of maximum likelihood esti-
mation for feature extraction. Simultaneously, SVM-based
classifiers have been applied to lung sound classification
research, with more satisfactory classification results. For
example, Abbasi et al. [14] used SVMs to distinguish between
normal and abnormal lung sounds and achieved a classifica-
tion performance better than feed-forward neural networks
(NN) and probabilistic NN. The research on classification

methods is gradually improving as the research on lung
sounds deepens, and machine learning-based lung sound
classification methods are gradually moving towards deep
learning.

B. DEEP LEARNING-BASED CLASSIFICATION METHODS
Deep learning has recently attracted much attention due to its
unrivaled success in various applications, including clinical
diagnosis and biomedical engineering. Studying the intrinsic
connection between lung sounds and lung diseases can pro-
vide an important basis for diagnosing acute lung diseases
in the clinic. Meanwhile, Jan Feiba and colleagues [15] have
elaborated on the classification of pathological lung sounds
and the sources of noise interference of lung sound signals in
the lung sound monitoring system. They have highlighted the
current existence of the short-time Fourier transform(STFT),
wavelet analysis identification, and higher-order spectral
analysis feature extraction methods for analyzing and identi-
fying pathological lung sounds. The Breath Sounds Database
was originally compiled to support the scientific challenges
of the International Database Organization (IDO) [16], but
it is now difficult to access pure breath sounds. Among
them, the compilation of the ICBHI2017 challenge dataset
further contributes to the study of respiratory diseases, espe-
cially with the current scarcity of medical data, allowing the
intrinsic connection between lung sounds and lung disease
illnesses to be better explored. Different lung sounds in the
ICBHI2017 dataset are collected in different ways, leading
to an imbalanced data situation, and most deep learning
models require massive amounts of data. Sangmin et al. [17]
proposed a simple patch-mixing augmented learning method
to identify mixed features in latent space, achieving state-
of-the-art performance on the ICBHI dataset with a 4.08%
improvement over the previous leading score. The lung sound
data processing using deep NN frequently requires huge data.
A set of new techniques using device-specific fine-tuning,
connection-based enhancement, blank region cropping, and
smart filling are proposed [18], making more efficient use
of small data. This achieves a state-of-the-art performance
improvement of 2.2% over the latest results for four-class
classification on the ICBHI dataset.

Li et al. [19] proposed an automated unscheduled lung
sound detection method that combines augmented convolu-
tion into ResNet blocks to improve lung sound classification
accuracy. Based on this, a feature extraction algorithm was
proposed using a two-tone Q-factor wavelet transform com-
bined with a triple short time-distance Fourier transform, and
multi-channel spectrograms were obtained as feature inputs.
This algorithm outperforms the traditional state-of-the-art
method for official segmentation of the ICBHI by 1.69%.
A two-channel convolutional structure was proposed to
extract the Log-Mel spectrogram for feature extraction and
fusion to address the problem of indeterminate speech
classification by NN models [20]. A bilinear Bi-ResNet
model [21] was used for simultaneous training and learn-
ing of key features required in the recognition process to
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differentiate between different types of indeterminate lung
sounds, with a score improvement of 4%. Shuvo et al. [22]
proposed a lightweight CNN architecture for respiratory dis-
orders using hybrid-based lung sound feature Classification.

Chen et al. [23] proposed a breath sound three-classification
method based on optimized S-transform and deep resid-
ual network, aiming to achieve accurate classification of
breath sounds. The main objective is to improve the clas-
sification accuracy and performance of breath sounds by
combining the methods of S-transform and deep residual
network. Phettom et al. [24] proposed an automatic abnormal
lung sound identification method based on time-frequency
analysis and CNN. They used traditional spectral analysis
techniques to extract time-frequency features of lung sound
signals. By combining the information of time-frequency
features and the powerful representation capability of deep
learning models, the method can accurately determine the
abnormal nature of lung sounds. Tsai et al. [25] introduced
a deep neural network-based model for separating heart and
lung sounds. This novel deep learning architecture combines
CNN and recurrent neural networks (RNN) to learn the com-
plex representation of heart and lung sounds. The proposed
model utilizes the spatial information captured by CNN and
the temporal dependencies captured by RNN, potentially
improving the accuracy of diagnostic systems in the field of
respiratory and cardiac medicine.

III. DATA PREPROCESSING AND FEATURE EXTRACTION
A. ICBHI 2017 DATASET
The ICBHI 2017 dataset is a large publicly available database
that provides official splitting and assessment methods [16].
The dataset was derived from 126 study participants, recorded
for 5.5 h, and contained 6898 respiratory cycles. The
expiratory cycles included, 364 ‘normal,’ 1864 ‘crackle,’
886 ‘wheeze,’ and 506 ‘crackle plus wheeze.’ However, these
breath sound recordings were collected from various hospi-
tals using four different devices, the duration of the recordings
ranged from 10s to 90 s, and the data were uneven. Mean-
while, the use of different devices leads to the presence of
varying levels of noise in the collected lung sounds. There-
fore, preprocessing and data enhancement were performed in
this study to address the above issues.

B. PREPROCESSING TECHNOLOGY
The ICBHI 2017 dataset contains two types of abnormal
breath sounds: crackle and wheeze. Crackle a low-pitched
sound with a duration shorter than 20 ms that frequently
occurs in multiple consecutive and brief occurrences. This
lung sound is frequently associated with bronchiectasis and
chronic bronchitis. Wheeze are additional sounds of respira-
tion that are high-pitched, musical in character, and have a
duration of more than 250 ms. This lung sound is frequently
associated with obstructive lung diseases, such as bronchial
asthma and cystic fibrosis.

The frequency of these two abnormal respiratory sounds
in the dataset is above 1,000 to 2,500Hz [26], while the

frequency range of normal respiratory sounds is mostly
between 60 to 600Hz. Therefore, it is necessary to resample
all respiratory signals to a uniform sampling frequency. Here,
it was chosen to resample the respiratory signals to 4,000Hz
to ensure the consistency of data processing. Additionally,
in order to mitigate the influence of different environmen-
tal noises, a third-order Butterworth high-pass filter with a
maximum attenuation of 2dB in the passband was used to
preserve the frequency band of 50 to 2,000Hz [19], [27].
This approach removes low-frequency and high-frequency
noise while retaining the main frequency components of the
respiratory signals. Finally, the authors normalized the input
signals to a unified standard. This involved applying the same
scaling process to all respiratory signals, resulting in their
numerical range falling within a standard range of 0 to 1,
to facilitate better handling and comparison of the data in
subsequent data analysis and model training.

C. FEATURE EXTRACTION
STFT and wavelet transform (wavelet) are commonly used
for feature extraction [28], [29]. This method can convert raw
time-domain audio into time-frequency or multi-scale repre-
sentations for subsequent classification or signal-processing
tasks. Combining SFTF and wavelet can obtain a richer
feature representation of audio signals and improve its char-
acterization and discriminative performance to play a critical
role in different audio signal processing.

By combining the use of STFT and wavelet, we can
fully leverage their respective advantages and obtain a more
comprehensive feature representation. STFT provides high
frequency resolution and good capability for capturing local
features, but the window length of STFT affects the trade-off
between frequency and time resolution. A shorter window
length can provide higher time resolution but lower frequency
resolution, while a longer window length is the opposite. This
means that when using STFT, we need to balance between
time and frequency resolution. On the other hand, wavelet
analysis can provide multi-resolution analysis of signals at
different frequencies by using wavelet functions of differ-
ent scales. Therefore, for signals with varying frequency
characteristics, wavelet analysis can provide good time and
frequency multi-resolution properties. Therefore, the combi-
nation of STFT and wavelet can better capture the time and
frequency features of signals and improve the model’s detec-
tion ability for events. Accurate and reliable feature extraction
is crucial in the field of medical applications for diagno-
sis, monitoring, and treatment. Applying STFT and wavelet
transform to medical data, respiratory and lung sounds can
provide more accurate and comprehensive feature represen-
tation. Through this approach, a deep analysis of respiratory
and lung sounds in medical data can be conducted, bringing
more accurate and effective solutions to medical research and
clinical practice.

Specifically, the method of combining STFT and wavelet
transform can be achieved through the following steps:
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(1) Perform STFT analysis on the signal: STFT divides the
signal into windows of different frequencies and calculates
the spectrum of each window to extract the frequency infor-
mation of the signal.

(2) Apply wavelet transform to the signal: Applying
wavelet transform to the signal to take advantage of the time
and frequency multi-resolution properties of wavelet trans-
form. This can extract the time and frequency characteristics
of the signal, thereby obtaining amore comprehensive feature
representation.

(3) Feature fusion and model training: Fuse the features
obtained from STFT and wavelet transform and use them for
model training. The fused features canmore comprehensively
describe the time and frequency characteristics of the signal,
thereby achieving more accurate and effective signal analysis
and event detection in the field of medical applications.

1) SHORT TIME FOURIER TRANSFORM (STFT)
STFT is a commonly used time-frequency analysis technique
applicable in speech recognition and audio processing. It can
decompose the signal in both time and frequency domains
and extract the time-frequency features of the signal for
subsequent classification and recognition tasks. The primary
idea of the method is to divide the signal into several small
segments not exceeding the window length and perform the
Fourier Transform (FT) on each of the small segments sep-
arately to obtain information on each small segment in the
frequency domain. For the non-stationary characteristics of
lung sound signals, STFT can establish a local relationship
between the time domain and frequency domain, thereby
reducing the requirement for the stationarity of lung sound
signals. For the lung sounds in the dataset, a window length
of 20ms and a step size of 10ms are used on each segment,
and a Hanning window is applied to capture the frequency
domain information within a short time. Figure 1 shows
the waveform of the right channel for different lung sound
types, as well as the spectrogram obtained after the short-time
Fourier transform. Figure 1 provides a good observation of
the time-domain waveform of the original lung sound signal
and the corresponding frequency domain information at each
moment. The extracted spectrogram also effectively reflects
the spatial distribution of energy in the lung sound signal,
indicating that different energy distributions represent vari-
ations in signal characteristics, thus providing strong support
for the analysis of signal characteristics.

The STFT formula is as follows:

X (m, k) =

N−1∑
n=0

x(n)ω(n− m)e−j2πnk/K (1)

where, x(n) is the time-frequency sample of the original
signal and X (m, k) is the frequency domain result after STFT.
ω(n − m) is the window function, using Hann window. N is
the window length, m is the window position, and K is the
resolution of the frequency domain, which is usually the same

as the one in the frequency domain or a few times more to
improve the resolution of the frequency domain.

2) WAVELET TRANSFORMS
Wavelet transform is a transform method that decomposes
the signal by scale, effectively extracting signal charac-
teristics from multiple scales while reducing the influence
of non-identical frequency band noise in lung tone. STFT
calculates the signal based on a fixed window size. Thus,
combining the information characteristics of different fre-
quency components is possible, causing some interference.
However, the wavelet transform uses wavelet basis functions,
such as db8, to select appropriate scales according to different
features of the signal, thereby improving the time-frequency
resolution. In this case, the choice of wavelet base also
indirectly affects the analysis results of lung sound signals;
thus, choosing a suitable wavelet base for feature extraction
is necessary. However, wavelet analysis is poorly adaptive
to lung sound signals, primarily because it is unsuitable for
local analysis. Combining the two can more fully utilize the
advantages of both types of methods and improve the model
recognition accuracy.

The wavelet transform is an inner product of the orig-
inal image and the scale function. However, the wavelet
basis function in the wavelet transform was generated by
scaling and translating the same fundamental wavelet func-
tion. The author employed discrete wavelet transform (DWT)
and selected appropriate wavelet basis functions based on
different signal characteristics. The main steps of this trans-
formation include:

(1) defining wavelet basis functions: selecting suitable
wavelet basis functions, which are crucial for signal decom-
position and reconstruction;

(2) multi-level decomposition: performing multi-level
decomposition of the signal into multiple components for a
more detailed analysis;

(3) calculating detail coefficients and approximation
coefficients: computing detail coefficients and approxima-
tion coefficients for each component to obtain a set of
wavelet components and detail components, reflecting the
high-frequency and low-frequency components of the signal,
respectively;

(4) reconstructing the original signal: combining the
wavelet components and detail components through inverse
wavelet transform for signal analysis and processing. Figure 2
shows the waveform of the original lung sound right channel
and the spectrogram obtained after wavelet transform. These
spectrograms reflect the frequency domain characteristics of
lung sound signals, facilitating a deeper analysis and under-
standing of the lung sound signals.

Given an input signal x(n) of length N , DWT decom-
poses it into a set of low-frequency coefficients ca(n) and
a set of high frequency coefficients cd (n) of length N/2, as
follows:

x(n) = ca(n) + cd (n) (2)
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FIGURE 1. Visualization of STFT raw lung sound left and right channel waveforms and spectrograms.

The low-frequency coefficients ca of layers 2 to 4 were
saved, and the high-frequency coefficients cd of layers 1 to 5
were horizontally spliced. Finally, all the coefficients were
horizontally spliced together as the output of the wavelet
transform to facilitate the analysis and processing of the
signal.

D. MIXED DATA ENHANCEMENT AND DISTRIBUTION
STRATEGY
1) MIXED DATA ENHANCEMENT
These data are considered unbalanced in the ICBHI
2017 dataset. This creates a common problem in medi-
cal classification tasks [30], namely that the probability
of obtaining anomalous samples is too small, and such a
problem causes the classification model to ignore a few

samples or produce overfitting, leading to classifica-
tion errors. A data-independent mixed data augmentation
approach was utilized to achieve a linear transformation of
decision boundaries from class to class [31]. Mixed enhance-
ment is a data enhancement method based on domain risk
minimization, using linear interpolation to obtain new sample
data, attempting to make discrete sample points continu-
ous [32]. This mixed approach increases the diversity of
samples, smoother the transition between decision bound-
aries of different categories, reduces the misidentification of
some samples, increases the model’s robustness and stability
during training, and improves the model’s robustness. There-
fore, its data generation method is as follows:

(xn, yn) = λ (xi.yi) + (1 − λ )(xj.yj) (3)
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FIGURE 2. Visualization of Wavelet raw lung sound left and right channel waveforms and spectrograms.

where xi and xj are the two training samples, xn are the gen-
erated training samples, yi, yj, yn and are the corresponding
sample labels. The mixing ratio λ is sampled from the beta
distribution, ranging between 0 and 1.

In this study, a mixed data enhancement-based approach
[31] was used to process the data for the lung sound charac-
teristics on the ICBHI217 dataset (Figure 3). The mixed data
augmentation method proposed in this paper can be achieved
through the following steps:

(1) Data selection and grouping: Firstly, samples of crackle
cycles, wheeze cycles, and normal cycles are selected from
the ICBHI217 dataset and grouped into different categories.

(2) Data mixing process: Crackle cycles are combined
with normal cycles to increase the number of crackle cycles.
Similarly, wheeze cycles are combined with normal cycles to

increase the number of wheeze cycles. Additionally, by com-
bining crackle cycles and wheeze cycles, samples containing
both types of abnormal breath sounds can be obtained.

(3) Data labeling and integration: The mixed data pro-
cessed is labeled to differentiate between different types of
cycles, ensuring the integrity and accuracy of the label infor-
mation. These mixed processed data are then integrated into
the original dataset to form the enhanced dataset.

Through this method, the quantity of crackle and wheeze
cycles can be increased, thereby improving the representation
of these two types of abnormal breath sounds and assist-
ing in enhancing the performance and generalization ability
of the model. Furthermore, it provides a more diverse and
enriched data sample, aiding in a more in-depth analysis and
understanding of lung sound characteristics. Table 2 clearly
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FIGURE 3. Mixed data enhancement.

TABLE 2. Number of lung sound samples before and after data enhancement.

demonstrates the number of subjects and the number of res-
piratory cycles analyzed for each type of lung sound sample
before and after data enhancement.

2) DISTRIBUTION STRATEGY
In order to avoid data leakage and ensure the validity ofmodel
evaluation, we adopted a data allocation strategy. In this
study, we are particularly concerned with ensuring that the
same subject data does not appear in both the training and test
sets when using data enhancement techniques. The following
are the specific steps we took:

(1) Subject-level segmentation: we ensure that when divid-
ing the dataset into training and test sets, each subject’s
data is completely contained in one set. This means that all
respiratory cycle data for each subject is either fully assigned
to the training set or fully assigned to the test set. This strategy
ensures that the model is not exposed to overlapping data
from the same subjects during training and test.

(2) Independence of data augmentation: when augmenting
the data, the training set and test set are augmented separately.
This means that even though the augmented data may appear
in both sets, the original and augmented data do not span the
two sets.

IV. IMPROVEMENT OF Bi-ResNet
A. IMPROVED Bi-ResNet NN MODEL
The three-channel spectrograms after STFT and wavelet
transforms were fed into the convolutional layer separately
(Figure 4). Afterward, they were fed into the linear ResNet I

and ResNet II modules with down-sampling by maximum
pooling and then into the ResNet II layer by matmul, and
into the respiratory sounds via the ResNet [33], Group-
Norm [34], ReLU [35], global average pooling [35], and the
two fully-connected layers. Finally, the respiratory sounds
were classified into four categories.

The bilinear ResNet model architecture adds a bilinear
pooling layer to the ResNet model. Bilinear pooling can
achieve better image extraction of high-level features of the
model, improve the model’s generalization ability, and to
some extent, increase its robustness compared to the tradi-
tional CNN model without increasing its complexity.

Based on dual ResNet, the researchers enrich the feature
information by adding directly connected edges to the model
and trained by residual network after feature fusion, which
allows the model to better capture audio features and make
better use of the existing features (Figure 4). Simultaneously,
this ResNet module can effectively improve the accuracy and
robustness of feature extraction as well as avoid the gradient
vanishing problem [33], thereby improving the accuracy of
speech recognition and audio classification. At the end of
the NN architecture, dropout [36] was applied to the two
fully connected layers, thus effectively avoiding the fitting
problem.

B. MODEL OPTIMISER AND LOSS FUNCTION
The researchers used a stochastic gradient descent (SGD)
optimization algorithm to improve the accuracy and avoid
the problem of model overfitting. Although not every
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FIGURE 4. Improvement of the Bi-ResNet model.

iteration of SGD for the optimization problem produces a
loss function in the direction of the global optimum, the
direction of the result is in the vicinity of the global optimal
solution.

This study used a loss function to solve the multi-label
multi-classification problem. This function compares the pre-
dicted values of the inputs with the true values and calculates
the difference between the two, allowing the network to
gradually improve its ability to predict the target variable
more accurately. This loss function can calculate the loss
function and gradient values in a forward pass together, which
can greatly improve the efficiency in training the network
structure.

C. EVALUATION METHODOLOGY
This study used the 60/40 division dataset splitting method
and the following evaluation method to validate the effective-
ness of the data processing [37].

Se =
Pc + Pw + Pb
Nc + Nw + Nb

(4)

Sp =
Pn
Nn

(5)

Score =
Se + Sp

2
(6)

where, Pc, Pw, Pb and Pn are the number of respiratory
cycles correctly predicted by the four types of lung sounds,
and Nc, Nw, Nb and Nn are the total number of instances
in each type of sub-lung sound cycle, respectively. Sensi-
tivity (Se) measures the proportion of lung disease samples
detected by the lung sound classification system, while
specificity (Sp) measures the proportion of healthy samples
correctly identified as healthy by the lung sound classification
system. These metrics are important measures of the accu-
racy and reliability of automated lung sound classification
systems.

V. EXPERIMENTAL SETUP AND RESULT
A. EXPERIMENTAL SETUP
In this study, the training and test sets were divided according
to the official division of the ICBHI2017 dataset, and the NN
classification model was implemented in Python 3.10 using
pytorch and evaluated on a CPU based on a MacOS system
with 16GB of RAM and an Apple M2 chip. For the network
structure in this study, the learning rate was set to 10e-6,
the batch size was 64, the epoch was 100, and the learning
rate decays exponentially every 20 epochs. These parameters
are reasonable settings chosen after a combination of several
experiments to obtain better convergence and performance
during training. Dropout rates of 0.2, 0.3, and 0.4 were
applied to the network structure in this paper. A higher
dropout rate can enhance the model’s robustness, reduce the
likelihood of overfitting, but may also lead to underfitting.
Thus, the best dropout rate was selected to train the model
in the experiments. Additionally, a weight decay coefficient
of 0.06 was set to prevent overfitting and keep the weights at
a small value to prevent gradient explosion. This parameter
constrained the complexity of the network by constraining
the weights, avoiding the model being overly complex and
having poor generalization ability. In this paper, a series of
experiments were conducted to evaluate the effectiveness
of the proposed network structure and data augmentation
techniques. By comparing with state-of-the-art methods, the
authors gained a better understanding of the model’s perfor-
mance on this task, enabling the assessment of the method’s
strengths and weaknesses. Additionally, the authors analyzed
the impact of parameter selection on experimental results to
better understand the behavior and performance of the model.

B. EXPERIMENTAL RESULT
1) EFFECTIVENESS OF WAVELET BASE SELECTION
In this study, the data from the lung sound dataset is a non-
stationary signal, and the researchers are trying to better
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TABLE 3. Comparison of wavelet base selection results.

TABLE 4. Comparison of results before and after MIXED data enhancement.

identify the abnormal lung sound data. As this study uses
DWT for feature extraction of lung sound data, the wavelet
transform is an inner product operation of the original image
with wavelet basis and scale functions. Different wavelet
basis functions have different frequency and time character-
istics and can be applied to different signals. Thus, the choice
of wavelet basis greatly impacts the subsequent lung sound
classification results.

According to the characteristics and requirements of the
signal, it is necessary to choose a suitable wavelet basis
function for wavelet transform, and the common wavelet
basis functions include Daubechies, Symlets, and Coiflets.
Daubechies wavelet basis function is the most used, suitable
for smooth and non-smooth signals at lower frequencies.
Daubechies is more compact and is suitable for high fre-
quency signals. Finally, Coiflets wavelet basis functions are
used for non-smooth signals and have better time localization
properties.

For the choice of wavelet basis functions, we conducted
experiments to compare the effectiveness of Coiflets and
Daubechies wavelet bases in abnormal lung sound classi-
fication, considering their performance and computational
capabilities in discrete wavelet transform. First, we noticed
that Daubechies wavelet bases have orthogonality, which
means they can decompose the signal into mutually orthogo-
nal subspaces. This orthogonality gives Daubechies wavelet
bases an advantage in signal analysis and feature extrac-
tion. Orthogonality provides better frequency resolution and
temporal information, allowing for more accurate capture of
details and features in abnormal lung sound signals. In con-
trast, Coiflets wavelet bases are slightly inferior in terms of
orthogonality. Secondly, Daubechies wavelet bases exhibit
excellent computational capabilities in discrete wavelet trans-
form. They have high computational efficiency and stability,
better preserving the energy and shape characteristics of the
signal. This is important for the classification and feature
extraction of abnormal lung sound signals as they often con-
tain useful information and subtle vibration patterns. Based
on our experimental results as shown in Table 3, it can be seen
that for the task of lung sound classification, the use of the

Daubechies wavelet basis (db8) achieved the highest accu-
racy, 77.81%. Additionally, db8 also demonstrated relatively
high sensitivity (61.99%) and specificity (90.10%). On the
one hand, it can be seen from the table that the sensitivity
of Coif12 is as high as 98.43%, while the sensitivity of db8
is significantly lower than that of Coif12. The sensitivity
indicates the ability of the classification model to correctly
identify the normal lung sound samples, and therefore there
is still a certain shortcoming in the case of db8 in relation to
Coif12 in terms of not being able to capture the normal lung
sound samples well enough to lead to omissions. However,
all things considered, it can be concluded that for the lung
sound classification task, the use of the db8 wavelet basis is
most appropriate as it achieves better performance in terms of
accuracy, sensitivity and specificity. This will help to improve
the accuracy and reliability of medical data analysis and
can improve the accuracy and performance of classification
models.

2) EFFECTIVENESS OF MIXED DATA ENHANCEMENT
To address the issue of class imbalance in the ICBHI2017
dataset, we employed data augmentation techniques. Data
augmentation is a method of increasing the quantity of
minority class samples by transforming, expanding, and syn-
thesizing them. By increasing the number of samples in
the minority classes, we are able to improve the accuracy
and sensitivity of the classification model on these classes.
We generated new samples that are similar to the original
data but slightly different. This way, during the training of
the classification model, we can use both the original data
and the augmented data, allowing the classifier to better learn
the characteristics and patterns of the minority classes.

Based on our experimental results shown in Table 4,
the accuracy and F1 scores of the model are significantly
improved after applying the data enhancement technique.
Data enhancement also significantly improved the sensitivity
and specificity of the model, which is very appropriate and
effective in lung sound classification tasks. This indicates
a significant impact in improving the model performance,
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TABLE 5. Results of experiments comparing methods related to lung sounds.

TABLE 6. Results of ablation experiments.

as well as being effective in improving the model’s classi-
fication performance in a category imbalanced dataset.

Although we increased the number of samples for normal
lung sounds, crackle sounds, wheeze sounds, and the combi-
nation of crackle and wheeze sounds by 3623, 4300, 3139,
and 2799, respectively, through the mixed data enhancement
technique, the amount of data is still small for classification
model training, which may lead to the model not being able
to learn the features of the data adequately, which may result
in a certain degree of recognition bias, and problems such
as failure of the training process to converge, which affects
model training effectiveness and performance. The problem
affects the training effect and performance of the model.

3) EFFECTIVENESS OF THE PROPOSED CLASSIFICATION
MODEL
The research findings in this paper contribute significantly to
the early diagnosis and treatment of lung diseases. Through
improved models and deep learning techniques, this study
efficiently identifies abnormal lung sounds and achieves sig-
nificant performance improvement in classification tasks.
This provides accurate auxiliary information for doctors dur-
ing the early diagnosis stage, helping them promptly adopt
treatment measures and enhance the therapeutic effects and
survival rates of patients.

To demonstrate the effectiveness of the proposed model,
a comparison was made with recent convolutional neural
network models for lung sound classification, such as Lung-
BRN, ResNet50, and Bi-ResNet. The results are shown in
Table 5. It is clear from the table that the proposed model in
this paper has achieved significant improvements compared
to other lung sound classification models. Firstly, the accu-
racy of the model in this paper reaches 77.81%, which is
a 25.02% improvement over previous models. Additionally,

as an important metric for evaluating the performance of
classification models in machine learning, the F1 score is
as high as 71.05%, demonstrating excellent performance of
the proposed classification model in handling the imbalanced
ICBHI2017 dataset. It is worth noting that the proposed
method has achieved significant improvements in accuracy,
sensitivity, and F1 score, further proving the superior perfor-
mance of the model in the task of lung sound classification.
The significant enhancement in sensitivity, as clearly seen in
the table, demonstrates the good performance of the improved
model in identifying abnormal lung sounds, indirectly prov-
ing the important clinical significance of the model in the
early diagnosis and analysis of pulmonary diseases. This
indicates that the improved model in this paper exhibits good
performance in recognizing abnormal lung sounds and pro-
vides more accurate classification results for doctors. This
is essential information for doctors in the decision-making
process, helping them make more accurate diagnoses and
treatments for lung diseases.

4) ABLATION EXPERIMENT
To evaluate the effectiveness of the proposed improved
ResNetmodel in this paper, we conducted a comparison of the
quantities of the original ResNet model and ResNet II model,
considering multiple evaluation metrics including F1 score,
accuracy, sensitivity, and specificity.

Specifically, we experimentally compared the performance
of the improved model with the original model and the
ResNet II model in different tasks. According to the results
in Table 6, the performance of the improved model under
different settings can be observed.

We note that shortcut connections are also important for
raw feature extraction. These shortcuts act as information
shortcuts and help the model to better utilize the original
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FIGURE 5. The receiver operating characteristic (ROC) curve.

features and avoid information loss and ambiguity. With the
introduction of shortcut connections, the model can more
accurately extract and utilize the key information in the
original data, thus improving the accuracy and sensitivity of
classification. Observing the change from the first row to the
second row through Table 6, we can see that when the model
uses the directly connected edge (directly connected edge),
the accuracy increases from 41.96% to 57.86%, which is a
significant improvement. However, this improvement is also
accompanied by a significant decrease in specificity from
53.66% to 4.82%, and the model has a high misdiagnosis rate
in identifying negative samples, which may lead to the model
generating more false positives in practical applications. This
indicates that although the model has improved in some
aspects, there is a significant decrease in the performance in
terms of specificity. However, there was a greater improve-
ment in sensitivity, allowing better identification of normal
lung sound samples and helping physicians to rule out cases
of non-chronic respiratory disease. This method of feature
fusion using directly connected edges allowed the model to
capture features from different layers more comprehensively

and achieved significant improvements in all metrics. The
improved model was able to make better use of the valid
information in the data by using features processed in the
first step in conjunction with those processed in the subse-
quent step. This feature fusion approach allowed the model
to capture features at different levels more comprehensively
and achieved significant improvements in various metrics.

Additionally, we also observed that the residual modules
play a crucial role in accurate classification. The residual
modules introduce skip connections, allowing information to
be directly propagated in the network, avoiding the issues of
gradient disappearance and model degradation. This archi-
tectural design enables the model to learn the features and
patterns in the data at a deeper level, thereby enhancing
its ability to extract and represent key information from
lung sounds. As a result, it improves the classification per-
formance. As observed in Table 6, although the overall
improvement in classification is somewhat, the sensitivity
decreases to 61.99%, indicating that there is a certain bias
situation in our model in identifying the correct lung sound
samples.
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FIGURE 6. Confusion matrix based on the official ICBHI 2017.

Overall, when the model used both shortcut connected
edges and ResNet II-6, the accuracy was further improved
to 77.81%, sensitivity to 61.99%, specificity to 90.10%, and
F1 Score to 71.05%.

In summary, the improved ResNet model proposed in
this paper, through techniques such as feature fusion, resid-
ual modules, and shortcut connections, can better utilize
the effective information in the data, improving the perfor-
mance and results of classification tasks. Experimental results
demonstrate that fully utilizing the extracted feature infor-
mation can enhance the accuracy of the classification model.
The proposed improved model can better utilize information
and achieve good classification results, which is of significant
for the further development of fields such as lung sound
classification.

5) SEGMENTATION PERFORMANCE
According to the results in Table 7, we can clearly see
the comparison between the division method based on the
official ICBHI2017 dataset and the results of the author’s

randomly divided 80/20 dataset. From the table, it can be
observed that without the official strict division, the 80/20
division for the identification of abnormal lung sounds is
significantly inferior to the official division. Specifically,
when using the official division (60/40 division), the accu-
racy reached 77.81%, while without data augmentation, the
accuracy was 43.68%. This indicates a clear advantage of
the official division for the identification of abnormal lung
sounds.

On the other hand, when using the 80/20 division, even
with data augmentation, the accuracy was only 42.69%, and
without data augmentation, the accuracy was 38.12%. This
further confirms the author’s point that the 80/20 division is
clearly inferior to the official division in the identification of
abnormal lung sounds.

Therefore, based on the results in Table 7, it can be con-
cluded that the requirements of the official division have
a certain advantage in the identification of abnormal lung
sounds in the ICBHI2017 dataset. This viewpoint has been
validated through experimental results.
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TABLE 7. Official division and 80/20 division experimental results.

Figure 5 shows the Receiver Operating Characteristic
(ROC) curve, fromwhich it can be clearly seen that the model
has good classification performance. However, it is still chal-
lenging to accurately distinguish between ‘‘normal’’ sounds,
‘‘crackle’’, ‘‘wheeze’’, and the combination of crackle and
wheeze. Figure 6 presents the confusionmatrix of the training
and testing results obtained from official partition. It can be
observed from the figure that the proposed model can better
classify lung sounds to some extent. By accurately classifying
different types of lung sounds, doctors can have a better
understanding of the patient’s lung condition, thereby pro-
viding more accurate and effective diagnosis and treatment
plans. Additionally, the classification results of the model can
help doctors quickly identify abnormal cases from a large
amount of lung sound data, improving the sensitivity and
early detection ability of diseases. Furthermore, the auto-
mated classification of the model can reduce the workload on
doctors, improve the efficiency of medical institutions, and
enhance the consistency of diagnoses.

VI. CONCLUSION
A conclusion section is not required. Although a conclusion
may review the main points of the paper, do not replicate the
abstract as the conclusion. A conclusion might elaborate on
the importance of the work or suggest applications and exten-
sions. This paper proposes an improved method for abnormal
lung sound classification, aiming to enhance the accuracy of
classification. The main contributions of this paper can be
summarized as follows: (1) Feature extraction and fusion:
In this paper, the short-time Fourier transform and wavelet
transform are mainly used for feature extraction, and the
original feature information is fully utilized by the direct
connecting edges introduced by the model, and feature fusion
is applied to correlate the data after the extracted features
are processed in parallel. These feature representations can
more accurately characterize the abnormal lung sounds and
provide useful inputs for subsequent classification models.
(2) Data augmentation: To increase the number and diversity
of samples, the paper adopts a mixed data augmentation
method to generate new samples of crackles and wheezes
in the respiratory cycle. By increasing the diversity of sam-
ples, the accuracy of the deep model classification can be
improved, enabling the model to better adapt to differ-
ent sample conditions. (3) Classification with deep models:
In the ResNet-based classification model, the paper intro-
duces shortcut connections and residual networks. Shortcut

connections allow the model to fully utilize the initial feature
information, avoiding information loss and blurring. Residual
networks can better extract and fuse features, enhancing the
model’s understanding of sample information. Meanwhile,
the paper processes two independent multidimensional fea-
tures in parallel and fully integrates them, improving the
performance and effectiveness of the classification model.
Through experiments on the ICBHI2017 lung sound dataset,
the effectiveness of the proposed method is verified, and
compared with other lung sound classification models, the
proposed method in this paper exhibits better performance.
However, there is still room for improvement in the model
proposed in this paper. In future research, we will further
explore the effectiveness of other classification modules,
simplify model parameters to reduce model complexity, and
improve the classification efficiency of the model. Specif-
ically, we will investigate which classification module can
better adapt to the task of abnormal lung sound classifica-
tion and optimize model parameters to balance accuracy and
model complexity. The method proposed in this paper not
only has practical value in the field of lung sound signal pro-
cessing, but also can bring new technical ideas and solutions
to the field of image processing.

In summary, the proposedmethod for abnormal lung sound
classification in this paper effectively improves the accu-
racy of classification through techniques such as feature
extraction, data augmentation, and classification with deep
models. However, although these techniques help to improve
classification performance, there are still some challenges
and limitations. Feature extraction may be limited by fea-
ture selection, resulting in the model not being able to fully
mine potential information in the data. In addition, data aug-
mentation may introduce noise or fake data, affecting the
generalization ability of the model. For classification depth
models, their training and tuning require a lot of computa-
tional resources and time, and small data samples also affect
model training to some extent. Future research will con-
tinue to refine the model and explore additional optimization
methods to further enhance the performance and effective-
ness of classification. In addition, further improvements can
be made to the time-frequency analysis methods, such as
optimizing the selection of window functions and window
length. Moreover, exploring methods to integrate multimodal
information, such as combining chest imaging data and clini-
cal features, can provide more comprehensive information to
assist in the classification of abnormal lung sounds. Finally,
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although our preliminary study yielded promising results on
the ICBHI2017 dataset, we recognize that in order to fully
assess the clinical value of the classifier, it is essential to
conduct external validation, which will provide important
information about the performance of the model in different
patient populations and healthcare settings. Due to resource
and data access constraints, we have not yet performed exter-
nal validation on new subject data from different medical
centres. However, we see this as an important direction for
future work and hope to implement this validation process in
future work.

We plan to open source our algorithms and model code
on the GitHub platform. You can also contact us through the
email 731443570@qq.com.
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