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ABSTRACT Realistic anomalous data noise is usually locally distributed in nature. To address the challenge
posed by clustered anomalous noise in time series data, which not only reduces the accuracy of forecasting
models but also presents a unique challenge due to its clustered nature and existing methods’ limitations
in handling such noise, this study introduces a novel denoising algorithm leveraging an optimized Long
Short-TermMemory (LSTM) network, named ‘Denoising TimeWindow Optimized LSTM’ (DTW-LSTM),
which innovatively identifies and rectifies clustered anomalous noise in time series data, significantly
enhancing prediction accuracy by adeptly balancing the denoising process and data integrity preservation,
as evidenced by comprehensive experimental validations. The algorithm employs a sliding time window
mechanism to analyze the original series and its Fourier approximation, identifying clustered anomalies
through a clustering model. It then uses a symmetrical data mixing and crossover technique to enhance the
data quality in noisy segments. This process preserves the integrity of time series data by maintaining a
balance between the original and fitted series, leading to a significant improvement in prediction accuracy.
Experimental results indicate that the algorithm can adeptly discern the presence of clustered anomalous
noise within the current time window and effectively rectify sections of data containing such noise.
By surpassing the performance benchmarks set by contemporary forecasting models, this algorithm has
established itself as the new SOTAmethod in the field of time series forecasting. Each sub-model contributes
to the superior accuracy and reliability of the algorithm.

INDEX TERMS Time series forecasting, data preprocessing, sampling, sliding time window mechanism,
neural network.

I. INTRODUCTION
Meteorological forecasting holds paramount importance.
Beyond typical weather predictions, it extends to studying
climate system alterations which subsequently impact soci-
etal sectors like transportation and finance. Atmospheric
science necessitates understanding factors such as tempera-
ture, precipitation, atmospheric pressure, and wind strength.
Of these, temperature is a pivotal parameter with profound
implications. Variations in temperature directly affect daily
life and, in extreme cases, may even pose hazards like fires.
Considering the essence of meteorological predictions lies in
forecasting certain quantities over time, it closely aligns with
time series prediction problems [1].
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approving it for publication was Frederico Guimarães .

Time series forecasting is a method that deciphers
the inherent patterns of sequences evolving over time to
predict future values. This approach finds wide applications
in meteorology, transportation, chemical engineering, and
financial analysis, among others. Conventional mathemat-
ical techniques often employ the Grey Model (GM) to
discern the dynamic behavior within sample data, aiding
predictive accuracy [2]. However, with recent advances in
computational capabilities, intelligent algorithms rooted in
machine learning and deep learning are challenging these
traditional forecasting methods. Recurrent Neural Networks
(RNNs) embed temporal concepts into network designs,
enhancing adaptability [3]. Further advancements led to the
Long Short-TermMemory (LSTM) model by Hochreiter and
Schmidhuber, which addresses gradient explosion, gradient
vanishing, and long-term memory limitations inherent in
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traditional RNNs, making it more adept at handling pro-
longed time series data [4]. Presently, LSTM models are
prevalent in domains like natural language processing and
time series forecasting.

However, time series often exhibit noise that manifests as
anomalies, possibly resulting from factors like environmental
shifts, ecosystem disturbances, or abnormal human activities.
Such anomalies might cluster temporally. For instance, data
noise during periods around cold waves may substantially
exceed that in regular intervals. Cheng et al. in explored
anomaly detection in multivariate time series, introducing a
graph-based algorithm that discerns dependencies between
variables using kernel matrix alignment. Their findings
suggest this alignment mitigates noise, retaining only those
anomalies in the target series that can be explained by
others, such as ecological disturbances in geoscientific data
[5]. Another study delved into cross-modal transfers in
abnormal gait pattern recognition, highlighting the challenges
of handling complex health informatics datasets, especially
4-D human motion data (xyz-t) encoding spatial-temporal
information. By analyzing these data, one can derive
indicators of abnormal gaits in medical applications [6].
Given that time series typically comprise noise, conven-

tional least squares regression might not offer high predictive
accuracy. Modern techniques leverage machine learning or
deep learning to better extract features and predict from
noisy time series. This work aims to meticulously identify
and rectify clustered noise anomalies in time series using a
fusion of least squares regression and a sliding noise-filtering
temporal window for enhanced feature extraction and pre-
diction for deep learning models. The algorithm detects
noise via clustering, refines local sequences through a data
stacking model, and precisely amends the original series.
This study is based on Daily Average Temperature (DAT) as
a dataset, which is fitted using Fourier series to obtain the
fitting function. This is because fitting the DAT data using
a function shaped like a Fourier series gives better access to
its periodic characteristics through the symmetry of the time
series. Notably, while the time series is fitted using Fourier
series in this study, if the feature space before and after the
series is the same, the proposed method can adapt to other
data forms, endorsing its broad applicability [7].

This study’s novel contributions include:

1) Emphasizing the clustered distribution of anomaly
noise, the approach employs sliding temporal windows
to meticulously analyze local sequences within the
time frame. This method eradicates the necessity for
holistic sequence amendments, and when the window
unmodified, a window progresses by merely a singular
time step, thereby keenly capturing anomalies and bol-
stering the stability of clustering centroid coordinates
based on repeated part. When the window modified,
algorithm will ignore the repeated part by processing
the length of the window in order to increase the
computational speed.

2) The model introduces a data stacking strategy that not
only contemplates the intrinsic attributes of the original
series but also integrates the smoothness and peri-
odicity facets of the Fourier-transformed sequences.
This symmetrical synergistic combination propels the
generation of a sequence that closely mirrors the
substantive characteristics of the original.

3) Leveraging a multi-objective optimization technique
within the repair model, the methodology ensures
meticulous value rectification. By harnessing an adap-
tive repair strategy, each time window is indepen-
dently addressed, safeguarding its unique features and
preventing undue influence from overarching data,
thereby augmenting the sequence’s receptivity by
LSTM models.

The remainder of this paper is structured as follows:
Section II reviews relevant literature; Section III details our
proposed algorithm; Section IV shows the analyses under
the process of our algorithm; Section V presents simulation
experiments among various groups; and SectionVI concludes
and outlines future research directions.

II. RELATED WORK
While traditional time series analysis methods such as
the Autoregressive Moving Average model (ARIMA) and
the Error, Trend, and Seasonality model (ETS) have their
advantages, they often struggle with complex nonlinear
patterns. In contrast, time series forecasting based on deep
learning has garnered widespread attention in recent years
across various application domains. Particularly, Recurrent
Neural Networks (RNN) and Long Short-Term Memory
networks (LSTM) have become popular tools for time
series forecasting due to their ability to capture long-term
dependencies in time series data. These models can identify
dynamic changes in data over extended periods, and they
have been widely applied in areas such as natural language
processing and financial forecasting.

A. RELATED WORK IN TIME SERIES FORECASTING
Time series forecasting aims to leverage temporal dependen-
cies in historical data, using statistical or machine learning
models to predict numerical variations at future time points.
This encompasses a broad range of applications, including
financial market fluctuations, meteorological changes, and
stock price trends, offering data-driven predictability for
decision-making. Researchers strive to optimize model
accuracy and robustness while accounting for trends, cyclical
patterns, and seasonality in time series to achieve more pre-
cise future predictions. In previous studies, traditional time
series forecasting methods, such as ARIMA, were employed
to capture autoregressive, differencing, and moving average
characteristics of data, modeling trends and seasonality. For
instance, Interrupted Time Series (ITS) is considered one
of the best designs to establish causal relationships when
randomized controlled trials are infeasible. This approach
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mainly tracks outcomes before and after interventions. One
study focused on using the ARIMA model for interrupted
time series analysis to assess large-scale health intervention
measures [8]. The ARIMA model has performed well in
many practical applications [9], [10], [11].

However, its sensitivity to data stationarity and param-
eter selection might limit its performance on complex
datasets [12]. Recently, there’s a trend in the academic
community towards adopting machine learning and deep
learning approaches for time series forecasting. Efforts in
the academic community are geared towards integrating deep
learning approaches with classic or traditional algorithms
and models to achieve superior results [13], [14], [15].
It achieved the best Average Ranking (AR) among the
methods employed. Additionally, the results showed that
models based on multi-head attention were the second-best,
highlighting the predictive power of the attention mechanism
in time series forecasting. Another research introduced a deep
learning hybrid model based on LSTM and the Artificial
Bee Colony algorithm (ABC). It explored various facets
of market sentiment, utilizing the robust big data platform
Hadoop ecosystem and its services to compute sentiment
polarity indices. The ABC algorithm was apt for selecting
hyperparameters for the deep LSTM model, balancing the
exploration and exploitation issue. Processing a vast amount
of multi-dimensional reviews from social media posed a
significant challenge. The performance of the ABC-LSTM
hybrid model was compared with other primary models
and hybrids using evolutionary algorithms like Differential
Evolution (DE) and Genetic Algorithm (GA). Performance
analysis affirmed that, combined with sentiment polarity, the
ABC-optimized LSTM surpassed other models in prediction
accuracy [16]. Another study proposed a deep learning model
based on PSO to evolve the initial weights of LSTM and fully
connected layers. Further, the research introduced an adaptive
approach using the velocity of particles to enhance the inertia
coefficient of PSO. The method combined adaptive PSO and
the Adam optimizer to train LSTM. The adaptive PSO sought
to evolve the initial weights in the LSTM network and fully
connected layers. The research also compared the predictive
efficacy of the proposed method with a hybrid LSTM
model based on the genetic algorithm, the Elman neural
network, and the standard LSTM. Experimental outcomes
showcased that the model successfully achieved optimal
initial weights and biases for LSTM and the fully connected
layer, boasting superior predictive accuracy than othermodels
[17]. One study employed random search and a metaheuristic
method based on SARS-Cov-2 virus propagation to obtain
the best values for hyperparameters, using the optimal
LSTM to predict power demand for a 4-hour forecasting
period. Results and discussions were based on nine and
a half years of Spanish electricity data measured at ten-
minute intervals [18]. The academic community also hopes
to obtain more precise results by improving the structure
of deep learning models and achieve models with faster

computational times. One paper focused on several severe
challenges with the Transformer model when forecasting
long sequence time series (LSTF), such as quadratic time
complexity, high memory usage, and inherent limitations
of the encoder-decoder architecture. They designed an
efficient transformer-basedmodel for LSTF, named Informer,
and conducted extensive experiments on four large-scale
datasets. The outcomes suggested that Informer significantly
outperformed existing methods, presenting a novel solution
to the LSTF issue [19]. Similar studies have been conducted
in the following articles [20], [21], [22], [23], [24].

B. RELATED WORK IN DENOISING AND SLIDING TIME
WINDOW ALGORITHM
Denoising techniques are pivotal in digital signal processing,
image processing, and communication fields. The primary
goal is to recover original information from signals or images
contaminated by noise. Noise can be attributed to various rea-
sons like device imperfections, channel interference, or errors
during data acquisition. Earlier denoising techniques often
employed filters like the Wiener and Gaussian filters. With
the advancement in computational capabilities and theoretical
progress, a plethora of sophisticated denoising methods
emerged, encompassing wavelet transforms, Total Variation
(TV) regularization, sparse representation, and dictionary
learning, to name a few. One research introduced an autore-
gressive model for multivariate probabilistic time series
forecasting, named TimeGrad. This model samples from the
data distribution at each time step by estimating its gradient.
It combines the advantages of autoregressive models and
possesses the flexibility of EBMs, serving as a universal
high-dimensional distribution model while achieving autore-
gressive denoising [25]. Another Research [26] optimises
the prediction effect of RNN,LSTM,GRU and Transformer
using look-back window technique and compares it, the
result proves the effectiveness of Transformer.There are
also areas where better time series prediction has been
achieved based on denoising algorithms [27]. In recent
studies, deep learning techniques, especially Convolutional
Neural Networks (CNN), have been extensively employed
for denoising tasks [28]. Owing to their potent representation
learning capabilities and adaptability, these methods have
achieved unprecedented performance on multiple standard
datasets. Furthermore, unsupervised and semi-supervised
learning methods have also garnered attention in the denois-
ing domain, as they can be trained without clean labels [29],
[30].

The Sliding Time Window algorithm is a technique
commonly used for processing streaming data. Its primary
objective is to compute or statistically analyze a specific
metric in continuously updating data streams, maintaining
focus on data over the most recent period. This algorithm is
applicable in many real-time data analysis and monitoring
scenarios, such as network traffic monitoring, real-time
log analysis, and sensor data processing. Its fundamental
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principle involves maintaining a fixed-length time window
that continually slides forward with time, discarding old
data and incorporating new data. The goal is to maintain
real-time computation and focus solely on recent data,
better adapting to the evolution of data streams. Several
studies in reality are based on the Sliding Time Win-
dow algorithm. For example, One paper introduced two
novel sliding window-based CSP techniques, SW-LCR, and
SW-Mode. Both methods were independent of selecting
specific time points, offering additional advantages to generic
feature extraction techniques like CSP, enhancing their
performance [31]. A similar approach was used in the
following study to investigate the effect of time windows and
denoising on time series [32], [33], [34].

In summary, from past research in time series algorithm
studies, it’s evident that the selection or optimization
of algorithms or models, the scale of algorithmic time
complexity, hyperparameter setting or optimization, and
the correlation and interpretability of steps in algorithm
processing will profoundly impact the algorithm’s perfor-
mance. These factors can be further categorized into two
aspects: effectively capturing and extracting time series data
features and balancing the algorithm’s time complexity with
prediction accuracy. As evident, employing various time
series neural network algorithms for time series forecasting
has been validated as an effective method by numerous
scholars. Many have attempted innovations in modifying
time window length, the number of hidden neurons, batch
size, learning rate, biases, etc., applying them in their
respective study domains. Some scholars also triedmodifying
network topologies, yielding excellent results in the time
series forecasting domain. However, to our knowledge,
hardly any scholars have attempted parallel computation by
introducing its fitted series and time window or optimized
original time series data features. Similarly, few scholars have
tried to determine time window status based on the time
series’s aftereffect. Based on these observations, the study
has proposed a denoising time window-optimized LSTM
forecasting algorithm. It categorizes similar time windows
into one class using a clustering model, uses a repair model
to perform multi-objective optimization between the original
time series and fitted series, and employs a data stack model
for cross-mixing both series. This strengthens beneficial data
features for time series forecasting and reduces cluster-based
anomalous noise.

III. PROPOSED METHODOLOGY
In order to improve the accuracy of the time series
forecasting, this paper employs the least squares regression
method to generate a fitted time series corresponding to
the original time series. Furthermore, the study introduces
a sliding denoising time window to eliminate cluster-based
anomaly noises. This preprocessing facilitates subsequent
deep learning models in feature extraction and prediction.
The introduction of this time window is structured into three
sections:

The decision-making model that determines whether the
windowed data contains cluster-based anomalous noise
through clustering algorithms. The data stacking model
designed for optimized local sequence processing. The
repair model that corrects the original time series once the
windowed data is identified to contain clustered anomalous
noises. For clarity, relationships between these models are
detailed as follows:

1) Clustering Model: This model creates state points for
the local data of each time window. The relationship
between the state points and the clusters is then
determined through clustering algorithms, assessing
whether the current window contains clustered anoma-
lous noises.

2) Repair Model: Using the target series and the fitted
series as multiple objectives (or the target series and the
original series, depending on the context), this study
employs a machine learning approach to iteratively
optimize the local original series by denoising and
return the denoised results to the local data.

3) Data Stacking Model: By intermixing the original
series with the fitted series, the study aims to extract
features from both and merge them into a target series,
which is then fed into the repair model. The intermixing
strategy is context-dependent.

The framework of the sub-model algorithms is illustrated in
Figure 1.

This framework outlines the algorithm’s execution flow
and the relationships between the sub-models. The algorithm
starts with an initialization phase which involves data
preprocessing, algorithm parameter setting, and Fourier
series fitting of the original sequence to generate a fitted
sequence of the same length. The original sequence and the
fitted sequence are then passed into the denoising sliding time
window model for noise removal. The denoising process is
iterative. The position of each iteration in a high-dimensional
state space is calculated and classified using a clustering
classifier. If the position is outside the range defined by
the centroid, the data is first synthesized through the data
stacking model, then the repair model is applied to correct
the local original sequence within this time window, reducing
the noise in the sequence. If the position is within the
range of the centroid, no correction is made and the time
window continues to slide until the end of the sequence. The
final sequence is input into an LSTM network for training,
prediction, and testing.

A. DESIGN OF THE CLUSTERING MODEL
Uniformly identifying the anomalous time series noise and
processing it is one of the important goals of this study
to improve the accuracy of time series prediction. During
the sliding of the denoising time window designed by the
algorithm, it continuously identifies whether the local data
inside contains clustered abnormal noise. If such noise is
detected, denoising is performed on the local data. The
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FIGURE 1. The framework of the sub-model algorithms.

clustering model aims to map local data from each time
window to a high-dimensional space using its data features.
By evaluating the Euclidean distance between the state point
and the centroid, the position of the state point in the
state space can be determined, achieving identification of
the clustered abnormal noise. Thus, the clustering model
elaborated in this paper is utilized to determine whether
there’s a need to correct the original sequence within the time
window. Here, it is assumed that τ represents the number of
dimensions in this high-dimensional space.

During the sliding process of the time window, the
i-th round of the time window conducts calculations on the
original and fitted sequences within the window. Based on
these calculations, a position Pi in the τ -dimensional space
corresponding to this time window is generated. As the time
window slides, the number of points in the τ -dimensional
space keeps increasing. It’s worth noting that, considering the
clustering model’s requirement to identify and judge whether
the time window is abnormal, the clustering calculation
for each time window follows the procedure of ‘‘calculate
Pi - judge abnormality - merge Pi’’. The calculation of Pi
will be based on the statistical relationship between the local
original sequence and the fitted sequence in the time window,
and the absolute value of each indicator will serve as the size
of the current dimension of Pi. The abnormality judgment
operation requires a geometric analysis of the point Pi
corresponding to the current time window with the previous
point set Si−1 (excluding Pi) under the τ -dimensional space.

Specifically, the model first calculates the unique clustering
centroid PC of Si−1, and then constructs a τ -dimensional
space H τ

i with PC as the center and dτ
i as the Euclidean

distance. The geometric relationship between Pi and H τ
i is

used to determine whether the current Pi is abnormal. Finally,
regardless of whether the time window is abnormal, the
current Pi will be merged into the point set to form Si, and
participate in the calculation of the next round of the time
window.

In the clustering process, the coordinates of the centroid
are computed to minimize the Euclidean distance from all
data points. Consequently, the objective function represents
the sum of squared Euclidean distances of all points within
the set Si−1 to the cluster centroid. This is given by Eq.(1):

J (PC ) =
i−1∑
j=1

∥Pj − PC∥2 (1)

where Pj represents a point in the τ -dimensional space
ranging from index 1 to i, and J (PC ) is the objective function
acting on PC . Given that the coordinates of the points
are represented by a vector of length τ , assuming Pj =
(Pj1,Pj2, . . . ,Pjτ ) and PC = (c1, c2, . . . , cτ ), the Euclidean
distance between the two points is Eq.(2):

∥Pj − PC∥2 =
τ∑

k=1

(Pjk − ck )2 (2)
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The objective function is expanded further as Eq.(3):

J (PC ) =
i−1∑
j=1

τ∑
k=1

(Pjk − ck )2 (3)

To obtain the clustering center of the entire point set
Si, this objective function J (PC ) needs to be minimized.
Differentiating this objective function with respect to each
dimension ck of the center point PC yields as Eq.(4):

∂J (PC )
∂ck

=
∂

∂ck

i−1∑
j=1

τ∑
k=1

(Pjk − ck )2 = −2
i−1∑
j=1

(Pjk − ck )

(4)

To minimize the above objective function J (PC ), set
Eq.(5):

∂J (PC )
∂ck

= 0 (5)

The expression for the coordinate of the center point in the
k-th dimension is Eq.(6):

ck =
1

i− 1

i−1∑
j=1

Pjk (6)

Thus, the coordinates of the center point can be derived as
Eq.(7):

PC =

 1
i− 1

i−1∑
j=1

Pj1,
1

i− 1

i−1∑
j=1

Pj2, . . . ,
1

i− 1

i−1∑
j=1

Pjτ


(7)

This mathematically proves that a valid set Si−1 (for
i > 1) has a unique clustering center PC . Considering that
the set should be generalized to Si−1 (where i belongs to
the set of positive integers), the model will make a special
judgment for i = 1, at which point the cluster center is
the point itself. According to the above calculation method,
a stable solution PC can be obtained as the clustering center
coordinate for the i-th round. This stable clustering center
will well represent the previous entire sequence. Assuming
the boundary of the τ -dimensional space and the Euclidean
distance from the clustering center are represented by δτ

i , the
Euclidean distance between the newly added point Pi and the
clustering center PC can be expressed as Eq.(8):

dτ
i =

√√√√ τ∑
k=1

∥Pik − ck∥2 (8)

If the newly added high-dimensional space point satisfies
dτ
i > δτ

i , it is determined that the newly added point Pi
is outside the current high-dimensional space H τ

i , and the
algorithm will correct the data within that time window.
Otherwise, the inequality dτ

i ≤ δτ
i holds, thus ignoring

the correction requirement for this time window. Given that
the corrective time window’s effect range corresponds to the

entire time interval of the time window, if the time window
length is denoted by L, the sliding step length 1L of the
current time window should satisfy as Eq.(9):

1L =

{
1, if dτ

i ≤ δτ
i

L, else
(9)

This step length means that when the data in the time
window does not require correction, the window slides by
only one time step. However, after the original sequence
data in the time window is corrected, the window slides by
the entire window length. The advantages of this algorithm
design are:

1) Once the entire original sequence in the time window is
corrected, the corrected data is not corrected again. This
accelerates the sliding speed of the time window and
reduces the overall time complexity of the algorithm.

2) If the time window is not corrected, to capture cluster
anomalies as sensitively as possible, the time window
is set to move only one time step. This ensures that
potential cluster anomalies are not missed during the
window’s movement.

3) If the position corresponding to the time window in the
high-dimensional state space falls within the range of
the centroid, only one time step corresponding to the
time series will have len − 1 points repeating with the
previous state. This implies that the new state space
point is a neighbor of the previous state point and will
likely be calculated inside the high-dimensional space
H τ
i+1 similarly to the previous point. This recursive

relationship enhances the stability of the centroid
coordinate xc. This stability ensures that the centroid
PC more precisely represents the state of the sequence,
thereby optimizing the clustering algorithm’s classifier
classification results.

B. MODEL DESIGN FOR ANOMALY RECTIFICATION
To enhance the accuracy of identifying clustered anomalous
noise within a time window sequence, a rectification model
has been proposed. The primary objective of this model is
to adjust the assignment sequence res, making its values
progressively converge towards a given target sequence,
denoted as target . This approach introduces the notion of
‘‘selectivity’’, intending to adopt a multi-objective strategy
in sequence rectification. Directly assigning the anomalous
segment values to the target sequence would strip it of
the characteristic smoothness and periodicity derived from
its fitted sequence, ultimately impeding the predictive
capabilities of the LSTM model. Conversely, assigning the
anomalous segment to its Fourier-fitted sequence would lose
the intrinsic data features of the dataset under consideration,
which is equally detrimental to time series forecasting.

Throughout the rectification process, the assignment
sequence res gradually approaches the target sequence via
machine learning techniques. However, with each iteration,
a Fourier series noise is introduced to reduce the fitting degree
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between res and target , while simultaneously enhancing
the curve’s smoothness and periodicity. These attributes are
more readily captured by subsequent LSTM networks for
prediction.

During the iterative process of res converging to target , the
cost function is denoted as the Mean Squared Error (MSE),
which captures the discrepancy between the current sequence
and the target sequence. With every iteration, the goal is to
minimize this discrepancy. Here, assumed that the sequence
res corresponds to the value R at each time point, and the
sequence target corresponds to the value T at each time
point,the sequence fourier corresponds to the value F at each
time point. For the jth time step within the window of the
eth iteration, The cost function can be represented as K (e) in
Eq.(10):

K (e)
=

1
L

L∑
j=1

∥R(e−1)j − T (e−1)
j ∥

2 (10)

The gradient of this function with respect to R(e−1)j is
Eq.(11):

∂K (e)

∂R(e−1)j

=
2
L

L∑
j=1

(R(e−1)j − T (e−1)
j ) (11)

To enhance the noise introduced by the Fourier series,
the algorithm optimizes the repair values of the assignment
sequences. The algorithm defines an incremental sequence,
A, indicating the proportion of the repair at each time
step in the time sequence repair process. The purpose of
designing this sequence is that it possesses memory. In each
machine learning iterative process, it is essential to repair the
time sequence based on the repair situation of the previous
iteration. The increment sequence allows for the preservation
of the changes from the last time step. The increment value
for a time step in the current round is determined by the
increment value of the same time step in the previous round
and the gradient of this time step in the current round. This
approach ensures that the repair of each time step converges.
For the jth time step within the window of the eth iteration, its
value is assigned as Eq.(12), where α refers to the learning
rate:

A(e)j = A(e−1)j − α
∂K (e)

∂R(e−1)j

, ∀j = 1, 2, . . . ,L (12)

Considering the noise addition process of the Fourier
series, the repair value γ (j, e) should not exceed the
difference between the current ‘res‘ sequence and the Fourier
sequence. Otherwise, the repair value will cause the ‘seq‘
to cross the Fourier series, thereby reducing the noise
impact added by the Fourier series. γ (j, e) can only take
the maximum value among them as the actual repair size as
Eq.(13):

γ
(e)
j = ∥R

(e−1)
j − Fj∥ ·max(A(e)j , 1) (13)

Finally, the actual repair value is assigned to the sequence
res to be processed. After the repair, the output res is the
result, expressed as Eq.(14):

R(e)j = R(e−1)j + (2δ(R(e−1)j ≤F (e−1)
j ) − 1)γ (e)

j (14)

Here, δ is a Kronecker delta function. It is 1 when the
subscript is true, and 0 otherwise. The algorithm will iterate
several times and determine whether a stable solution for the
cluster center coordinates has been obtained based on two
factors as Eq.(15) and Eq.(16):

1. The number of iterations reaches the maximum allow-
able limit:

e > e0 (15)

2. The objective function converges:

K (e) < ϵ (16)

where ϵ is a small number. When the objective function is
less than this value, it is determined that the cost function
has converged.The aforementioned equations indicate that
the repair process for each time step is independent. This
approach attenuates the internal linkage between time steps,
enhancing the repair independence of each time step. As a
result, the internal linkage among time steps during the
time window repair process is solely determined by the cost
function. The unified objective for all time steps during the
iteration process is to move the sequence as close as possible
to the target sequence. However, during this movement, each
iteration is influenced by the noise introduced by the Fourier
series. This approach accomplishes the multi-objective opti-
mization task for the assignment sequence, seq, by absorbing
as much of the data characteristics of the target sequence as
possible, as well as the smoothness and periodicity of the
Fourier series. Consequently, this is beneficial for time series
prediction.

C. DATA STACKING MODEL DESIGN
To improve the denoising effect of time series data, relying
solely on features derived from the original time series and
its fitted sequence might be insufficient. Therefore, the study
introduces a data stacking model, aiming to enhance the
efficacy of the rectification model, thereby optimizing the
LSTM model’s predictive performance. The fundamental
philosophy behind this design is to derive a sequence enriched
with more distinctive features, which can then act as a
target sequence guiding the alignment of the sequence under
rectification.

The operational procedure of the data stacking model is
iterative. It comprises two primary steps:

1) Initially, the sequence awaiting rectification is rectified
using both the original and Fourier series sequences,
generating three rectified sequences.

2) These rectified sequences are then integrated to pro-
duce a composite sequence, which emerges as the time
series result of a single stacking cycle. This newly
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FIGURE 2. Logic diagram of the data stacking algorithm.

formed time series can again be stacked with the
original or fitted sequence to intensify the stacking
depth.

The sequence on top of the data stack is input into
the rectification model as the target sequence, wherein it,
along with the fitted sequence, acts as dual objectives for
denoising.Such a way of designing the data stack adopts the
idea of symmetry. Considering that neural networks are able
to capture the data characteristics of the time series during
training, a smooth fitted series can reduce the interference
of clustered anomalous noise on the model training in the
local region of the time series. However, excessive use of
the fitted sequence approximation instead of the original time
series loses the data characteristics of the original time series.
Based on this, from the perspective of data mixing, the study
designed the target sequence to be symmetric with respect to
the original and fitted sequences.

Empirical evidence suggests that adopting a data stacking
approach enhances the algorithm’s ability to unearth salient
features of the time series data. The advantage of this hybrid
rectification model lies in its simultaneous consideration
of the raw sequence’s data features and the smoothness
and periodicity of the Fourier transformed sequence. This
symmetry perspective facilitates more effective rectification
of the sequence in question. Throughout the operation of
the data stacking model, the study continues to employ
an adaptive rectification strategy. This strategy ensures that
each timestamp is treated individually during rectification,
fostering independence in the rectification of each timestamp,
and circumventing the potential loss of their inherent
characteristics due to the influence of overarching data
patterns. Figure 2 shows the design of the data stacking
model, which combined the idea of symmetry.

In actual stacking operations, the stacked sequzences
can be further stacked, increasing data processing depth.
Sequence weighting choices are flexible. In addition to
the current composite sequence and the sequence from the
previous iteration, one can opt to use either the original or
the fitted sequence as the third sequence for blending. The

Algorithm 1 DTW-LSTM for Denoising and Forecasting
Require: Original time sequence yOrigin, length of sequence

len, Test sequence yReal
Ensure: Future data yPred , evaluation indicators: EVAL
1: ySeq← init(0), idx, num← 0 {Initialization}
2: Preprocessing the time sequence, setting parameters:

window length L and weight array w, fitting time
sequence yFourier , creating status space H τ

0 , and points
set S ← ∅

3: while idx < L do
4: idx← idx + 1
5: end while
6: while idx < len do
7: num← num + 1, area← [idx, idx + L − 1]
8: Pτ

i ← CreatePoint(yOrigin(area), yFourier (area))
9: if num < µ or Pτ

i /∈ H τ
i−1 then

10: ySeq(area)← yOrigin(area), idx← idx + 1
11: else
12: yCombined ← Restoring(yOrigin, yFourier )
13: for i in range(1, size(w)) do
14: yMixed ← w(i)× [yOrigin, yCombined , yFourier ](i)
15: end for
16: yCombined ← Restoring(yMixed , yFourier )
17: for i in range(1, size(w)) do
18: yMixed ← w(i)× [yMixed , yCombined , yFourier ](i)
19: end for
20: ySeq(area)← Restoring(yMixed , yFourier )
21: idx← idx + L
22: end if
23: S ← Pτ

i , H
τ
i ← CreateStatusSpace(S)

24: end while
25: yPred ← LSTM_Forecast(ySeq)
26: EVAL← Evaluation(yReal, yPred )

blending processmight require some finetuning; however, the
essential consideration is the desired feature shift direction.
If more fitted sequence results are sought, the third sequence
can be chosen as the fitted one, increasing the stacking
depth. Conversely, if preserving the characteristics of the
original data is prioritized, the third sequence can be the
original. It’s also feasible for the original and fitted sequences
to alternate. It’s worth noting that a deeper stack doesn’t
necessarily equate to superior predictive results. For instance,
if the feature offset direction is set towards the fitted sequence
in each iteration, the impact of stacking on the original
sequence diminishes over iterations. The time complexity,
however, grows exponentially, which isn’t conducive to
practical predictions. Therefore, the selection of symmetry
objects, the size of mixing weight vectors and the number of
mixing times in the symmetry process will affect the actual
prediction.

In our experiments, the optimal configuration was a
double-layered Fourier structure with a stack depth of
two, consistently biasing the resultant sequence towards the
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fitted one. Other configurations tested include double-layered
original sequence structures and combined original-Fourier
sequences, with the latter two yielding similar prediction
outcomes. Nevertheless, none of them outperformed the
double-layered Fourier structure. Our comparative exper-
iments are primarily based on this configuration. The
following section provides a pseudocode representation of the
primary algorithm.

The pseudocode mentioned employs a two-layer Fourier
structure. In this context, idx signifies the pointer location
within the algorithm, num denotes the current time window’s
index, L is the length of the time window, len indicates
the length of the time series training set, and µ represents
the minimum time window index necessary for a legitimate
clustering model execution.

The algorithm operates as follows:
1) Initial preprocessing takes place, leading to the forma-

tion of the first time window.
2) Between lines 6 to 8, the algorithm increments the

time window index, retrieves the corresponding time
interval ‘area’, and extracts the state point Pτ

i based on
this interval from both the original and the fitted series.

3) Line 9 of the algorithm evaluates the clustering
condition. This assessment requires both num < µ and
Pτ
i not belonging to H τ

i−1.
Given that the initial high-dimensional state space lacks

point set S, the algorithm introduces a minimal time window
index µ to integrate the state point Pτ

i directly into the
high-dimensional state space. Generally,µ is set to 3, and this
paper validates with µ = 3. The sphere H τ

i−1 is composed of
the first i− 1 points from point set Si−1, centered at PC with
a Euclidean radius defined by ‘Threshold’. If Pτ

i belongs to
H τ
i−1, it is perceived as consistent with the state of the time

series, implying no cluster anomalies, and thus, the local data
remains unchanged as per line 10. Otherwise, the local data
undergoes modification, and lines 12-21 are executed.

Line 10 assigns the original time series corresponding to
the time interval area directly to the result series, advancing
the time window by one step. Lines 12-19 first repair the
original and fitted series to produce a combined sequence.
Subsequently, these three sequences are linearly combined
using a weight vector to produce a mixed series. This mixed
series is once again repaired and linearly combined with
the fitted series, resulting in a second combined and mixed
series. Lastly, the post-mixed series is mended with the fitted
series, assigned to the result series, and the timewindow shifts
by its length to prevent redundant modifications, optimizing
algorithmic efficiency.

At the end of each time window iteration, line 23 incorpo-
rates the state point Pτ

i into the point set. This updated point
set Si then undergoes clustering to generate a new centroid
and high-dimensional sphereH τ

i , which will be pivotal in the
clustering analysis of the subsequent time window. Once the
sliding of the time window concludes, the resulting series is
fed into an LSTM for predictions, yielding several statistical
metrics as the forecast outcome.

While this paper predominantly employs a two-layer
Fourier structure for experiments, the algorithm’s processing
logic follows suit. Nevertheless, this structure is adaptable.
For instance, if one desires to process the algorithm with a
two-layer original series structure, lines 12 and 16 should
replace the fitted series with the original series. Furthermore,
the operations between lines 16 and 19 are essentially a sec-
ond stack operation based on lines 12 and 15. The algorithm
offers flexibility in controlling stack depth, allowing it to be
adjusted for different data feature offsets and stack depths.
The clustering algorithm’s specifics (forming state points and
state spaces) align with the K-Means approach, and thus, are
not elaborated further in this paper.

D. ARCHITECTURE OF LONG SHORT-TERM MEMORY
LSTM (Long Short-Term Memory) is a specialized form of
Recurrent Neural Network (RNN), characterized by its ability
to store information over extended time periods through its
multiple homogeneous units. Distinct from traditional RNNs,
an LSTM model encompasses three control gates, namely
the input gate, output gate, and forget gate. Together, these
compound control gate units facilitate the reading, writing,
and resetting of all neurons within the network.

A significant enhancement of LSTM over previous
RNNs is the introduction of a softmax layer, utilizing
the log-likelihood function as the loss function for error
backpropagation. This attribute grants LSTM the capacity to
selectively transmit information.

The forget gate, denoted by f , governs the degree to which
xt is forgotten, retaining a part that subsequently feeds into the
input gate. Within the input gate i, xi is processed through the
combined influence of tanh and sigmoid activation functions
to preserve the vector, eventually outputting the current
value through the output gate h. The expressions for these
operations are among Eq.(17) to (22):

ft = σ (Wf · [ht−1, xt ]+ bf ) (17)

it = σ (Wi · [ht−1, xt ]+ bi) (18)

C̃t = tanh(WC · [ht−1, xt ]+ bC ) (19)

Ct = ft · Ct−1 + it · C̃t (20)

ot = σ (Wo · [ht−1, xt ]+ bo) (21)

ht = ot · tanh(Ct ) (22)

Here, x represents the input vector of the LSTM unit; f ,
i, and o denote the forget gate, input gate, and output gate
respectively; h symbolizes the output vector of the cell; C
signifies the cell state. Subscripts t indicate the time instant; σ
and tanh represent the sigmoid and tanh activation functions;
W stands for the random weight matrix, and b is the bias
vector. The architecture of the LSTM algorithm is showed
in Figure 3.
In the architecture of LSTM, the crux resides in retaining

the memory of the cell state C at time t , modulated by the
forget gate and input gate. The input gate determines whether
to allow or inhibit the updating of the cell state; the output gate
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FIGURE 3. Depicts the topological structure of the LSTM.

controls the output and transfer of the cell state to the next
unit; the forget gate enables the cell to remember or discard
its prior state. Backpropagation remains the prevalent method
for training this structure.

IV. ALGORITHMIC EFFECT ANALYSIS
A. DATASETS, METRICS, AND CONFIGURATIONS
This study utilizes atmospheric temperature data from
Beijing, recorded at 2 meters above the ground, spanning
from 2006 to 2022.This symmetric form of the periodic
time series favours Fourier series for fitting. However,
as mentioned earlier, our method will work for any func-
tion that can be regressed excellently. According to the
dataset:

1) From January 1st, 2006 to January 19th, 2010,
temperature measurements were taken four times daily
at intervals of 6 hours: specifically at 2:00, 8:00, 14:00,
and 20:00.

2) From June 20th, 2010 to December 31st, 2022, the
frequency of data collection increased to eight times
daily at intervals of 3 hours: specifically at 2:00, 5:00,
8:00, 11:00, 14:00, 17:00, 20:00, and 23:00.

In the preprocessing stage, daily temperature readingswere
averaged. For the period before January 19th, 2010, the four
daily readings were summed and then averaged, while for the
subsequent period, the eight daily readings were summed and
averaged. This process yielded the average daily temperature.
After preprocessing, there were five instances of missing
values (NaN). For these instances, the temperature values
from the preceding and following days were averaged to
impute the missing data.

For the purpose of this study, the dataset was divided
into training and testing subsets. The period from 2006 to
2018 was designated as the training set, while the years
2019 to 2022 formed the testing set. Experimental results
were derived exclusively from the testing set.

The accuracy metrics employed in this study adhere to
internationally accepted evaluation standards. These met-
rics include: Mean Absolute Error (MAE), Sum Squared
Error (SSE), Mean Squared Error (MSE), Root Mean
Squared Error (RMSE), andMean Absolute Percentage Error
(MAPE). Their respective formulas are presented in the
following table.

In the aforementioned formulas, consider a sequence
variable with a data length of n, where the corresponding
natural number i traverses from 1 to n. Here, yi represents
the actual value, and ŷi denotes the predicted value. A smaller
error value indicates higher model accuracy. Additionally, for
the definition in high-dimensional space, this study adopts
eight metrics to calculate their respective positions in the
eight-dimensional state space for each time window. In the
subsequent dimensional calculations, y1 refers to the original
time series yorigin, and y2 denotes its approximated time series
yfourier . The symbol σ represents the standard deviation of
data within a local interval. In the autocorrelation function,
the lag time is one time step. Table 1 presents the detail of the
equations.

All experiments in this study were conducted on a
Windows 10 64-bit operating system, powered by an Intel
i7-10750H 2.60GHz processor and an NVIDIA GeForce
GTX 1650 Ti graphics card. The experimental environment
was based on Tensorflow-2.10.0.

B. FITTING EFFECT ANALYSIS
This study forecasts the temperature data of Beijing,
recorded 2 meters above the ground, from 2006 to 2022.
To further evaluate the algorithm’s effectiveness in time
series processing, this study addresses and analyzes the
phenomenon of cluster-based anomalous noise. Initially,
for both the pre- and post-denoised time series and their
corresponding Fourier series, visualizations are generated
usingMATLAB. Subsequently, by calculating the differences
between the values of the pre- and post-denoised time series
and their corresponding Fourier series over the time interval,
the study examines the cluster-based anomalous noise
in the post-denoised time series. In the visual representations,
the blue curve signifies the actual temperature time series of
Beijing from 2006 to 2022, 2 meters above the ground. The
red curve represents the Fourier series approximation of the
blue curvewithin that time frame. The yellow curve illustrates
the improved temperature time series after denoising the data
corresponding to the blue curve.

Regarding parameter configuration, the expression for
the Fourier series is given by the Eq.(23), with the fitting
parameters are detailed in the Table 2.In this equation, c
represents the constant term, and ai and bi are the Fourier
coefficients for the cosine and sine terms, respectively, and w
is the angular frequency.

F(t) = c+
8∑
i=1

(ai cos(iwt)+ bi sin(iwt)) (23)

Figure 4 reveals that the experimental Fourier series fitting
yields satisfactory results due to the incorporation of eight
terms each in the sine and cosine functions.

Following the algorithmic refinement of the original
sequence, the newly derived sequence and the original time
series were compared against the Fourier series to compute
their respective errors. Specifically, by subtracting the Fourier

VOLUME 12, 2024 74277



S. Wan: Denoising Time Window Algorithm for Optimizing LSTM Prediction

TABLE 1. Combined and transposed evaluation index formula.

TABLE 2. Parameters after processing the original dataset.

FIGURE 4. Fitting effect diagram.

series from either the algorithmically derived sequence or
the original series, the following experimental results were
obtained as follows.

In the Figure 5, the blue curve represents the absolute
error between the Fourier series sequence and the original
sequence, while the red curve represents the absolute error
between the Fourier series sequence and the reconstructed
sequence. As observed from Figure 5, the new time series
derived from the original data through algorithmic processing

FIGURE 5. After processing, the numerical difference between the time
series and the fitted series.

TABLE 3. Error metrics for original and processed time series with fitted
fourier series.

closely aligns with the fitted Fourier series in terms of
numerical values. However, examining the absolute value
of the numerical differences and their volatility reveals that
the post-processed time series does not entirely conform
to the Fourier series fitting. The experimental results lead
to the conclusion that the denoising time window algorithm
processes the original time series using a multi-objective
optimization approach. The algorithm continuously seeks
optimization between the original and fitted time series, max-
imizing the extraction of data features from both, enhancing
the smoothness and periodicity of the time series, reducing
the cluster-based anomalous noise inherent in the original
sequence, and minimizing prediction errors. The following
Table 3 presents the relative errors between the respective
time series in the training set and the Fourier series.
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This error demonstrates that the denoised and corrected
algorithmic sequence is closer to the Fourier series fitting
of the original sequence than the original sequence itself.
This indicates that the denoising process overall reduces the
occurrence of significant errors, leading to a more stable data
set and a smoother graphical representation of the original
time series. As will be discussed later, such stable time
series fluctuations are advantageous for global time series
forecasting.

C. DENOISING EXPERIMENTAL ANALYSIS
The algorithm employs a sliding time window to denoise
the initially inputted time series. During the sliding process,
state points in a high-dimensional space are continuously
generated based on the current local data. This facilitates
the determination of the presence of cluster-based anomalous
noise within the local data of the time window using a
clustering model. Given that the algorithm will repair the
local sequences identified as having cluster-based anomalous
noise, this paper presents both the results post-clustering and
post-repair. The clustering section delineates the distribution
of values for each dimension in the high-dimensional state
space and the positions of their centroids. Additionally,
a two-dimensional clustering diagram is showcased follow-
ing principal component analysis of the high-dimensional
state space. The repair section illustrates the time series
post-algorithmic repair and juxtaposes it against the original
and fitted sequences, emphasizing the effects of the repair.

1) CLUSTERING RESULTS ANALYSIS
An eight-dimensional state space was designed in the
algorithm. After each iteration update of the time window,
state points are generated based on the current data from
the original and fitted sequences, which are then utilized in
calculating the state space that includes the centroid. The
Euclidean distance between the centroid and the current
state point is computed and compared against a threshold to
determine if the point lies inside or outside the state space.
For points inside, the time window simply shifts by one time
step, ensuring spatial proximity between consecutive state
points. For points outside, the data within the current time
window undergoes repair. In an experimental group with a
clustering threshold of 5 and a time window length of 5, the
following diagrams Figure 6 were generated. These diagrams
contain eight axes, where each axis uses blue vertical lines to
represent specific values for that dimension across different
rounds. A red cross on each axis marks the centroid for that
dimension.

Using principal component analysis (PCA), the original
eight-dimensional state space is reduced to a two-dimensional
space. This two-dimensional space is visualized using a scat-
ter plot that maps all the points (including the centroid) from
the eight-dimensional state space. Furthermore, a distance
curve portrays the Euclidean distance between state points
and the centroid across iterations. By using a clustering
threshold as the division criterion, groups of diagrams are

FIGURE 6. Dimensional data and central points.

FIGURE 7. Cluster quality and euclidean distance presentation.

consolidated under the same threshold, as demonstrated
below.

In the Figure 7 The eight-dimensional state space
points are projected onto a plane following a reduction
to two-dimensional coordinates using principal component
analysis. From the diagrams, it is evident that the algorithm
enhances the clustering effect of the point set through its
clustering model and time step movement strategy, rendering
the centroid more stable. Additionally, points around the
centroid are categorized into two types based on a threshold
delineation: those within the state space, where local data
in the time window remains unchanged, and those outside,
where modifications to the local data are necessary. It should
be noted that the choice of such thresholds should ideally
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ensure that the entire cluster range contains most of the points
in the sample space, while a few points are exposed outside
the range. This approach allows for the adjustment of a small
number of local anomalous noise data while retaining most
of the original data characteristics.

2) REPAIR RESULTS ANALYSIS
In the process of time series rectification, the study places a
premium on understanding the ramifications of varying time
window lengths on the outcomes of time series. Utilizing
a clustering threshold of 10, and employing an incremental
step of 5, the study systematically investigates the impact
of differing time window lengths. Specifically, the study
records both the count of these windows and the count of
consecutive windows. Here, the term ‘‘consecutive window’’
denotes a scenario wherein, following an initial classification
of a window as standard, the window merely shifts by a
single time step. Based on these enumerated relationships,
our experiment further calculates the ratio of consecutive
window count to the total window count. A higher ratio
suggests that the algorithm introduces minimal modifications
to the initial series, indicating that the inherent features of the
original series are substantially potent. Such an observation
implies that this parameter set could potentially be more
effective on the given dataset.

Considering that the length of the time series in our
dataset remains constant, Figure 8 elucidates that, with the
augmentation of the time window length, both the count
of time windows and consecutive time windows manifest
a declining trend. Moreover, the trend in the count of
consecutive windows is almost parallel to that of the overall
window count. The right-side graph delineates the ratio
between the two metrics, showcasing that as the time window
length burgeons from 5 to 25, the ratio experiences a
gradual upswing. However, during the interval where the time
window length lies between 25 and 50, this ratio remains
relatively stable, subsequently beginning to taper off post 50.
Such observations prompt us to infer that, with a clustering
threshold of 10, time window lengths ranging between 25 and
50 appear to be the most efficacious.

D. EXPERIMENTAL RESULTS ANALYSIS
As illustrated in Figure 9, the time series, after undergoing
the denoising process, more closely resembles the Fourier
series compared to the original time series. The original series
exhibited more pronounced discrepancies in its features.
In contrast, the processed series has attenuated these exagger-
ated characteristics while retaining certain features essential
for time series forecasting. Therefore, during forecasting,
the processed time series is less influenced by high-variance
features, ensuring enhanced temporal continuity for long-
term predictions.

The results depicted in Figure 10 follow the algorithm’s
execution flow. The first graph depicts the training and
prediction processes of LSTM, where the blue segment
represents the training set inputted into LSTM, and the red

segment showcases LSTM’s forecasted results. It is evident
from the first graph that the predicted series, compared to the
original, has significantly reduced cluster-based noise. This
is manifested in the smoother forecasted series with reduced
volatility and more prominent periodic features. The second
graph presents the discrepancies between the forecasted
results derived from this training set and the test set. The
forecasted curve appears to circumvent some of the impacts
brought about by cluster-based noise, particularly evident in
the series’ extreme peaks and troughswhere the forecast tends
to converge towards the median. While this approach may
not be optimal for predicting certain extreme scenarios (for
instance, predictions can be less accurate for some cluster-
based anomalies), the overall forecast converging towards the
center enhances the accuracy of the entire prediction curve.

V. COMPARATIVE EXPERIMENTS AND ANALYSIS
During the comparative experiments, this study employed
five sets of experiments to validate the efficacy of the
proposed algorithm in time series forecasting.

Firstly, the algorithm was juxtaposed with various con-
ventional forecasting models in terms of prediction accu-
racy. These models encompassed the Fourier series fitting
prediction model, Holt-Winters prediction model, SARIMA
prediction model, ETS prediction model, LSTM prediction
model, and the post-fitted LSTM prediction model. The
parameters for these traditional forecasting algorithms were
fine-tuned based on the optimal configurations determined
through experimental evaluations on the same dataset used
in this study. This study will present both the best and worst
prediction results of the proposed algorithm, comparing them
with the control groups.

Secondly, by adjusting each of the three variables within
the algorithm, different prediction accuracy outcomes were
observed, showcasing the influence of these internal variables
on the forecasting performance. These variables included the
length of the sliding time window, the Euclidean distance
threshold between the clustering model’s centroid and the
state space boundary, and the combinations of weights and
stacking structure in the data stacking model. Furthermore,
the study has tested its performance with the state-of-the-
art(SOTA) methods.

Lastly, an ablation study was conducted. By sequentially
omitting the clustering model, the repair model, and the
data stacking model, and retaining the other two models
for prediction, the study demonstrated that each segment of
the algorithm positively contributes to the final prediction
outcome.

A. PREDICTION ACCURACY COMPARISON AMONG
VARIOUS MODELS
This study utilized Fourier series regression, Holt-Winters,
SARIMA, and LSTM to make predictions based on a daily
regression dataset. The outcomes from these techniques were
subsequently contrasted with the results from the model
introduced in this paper. For the Holt-Winters model, the
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FIGURE 8. Restoring figure about the time series.

FIGURE 9. Comparison between the original time series before and after
denoising and its fourier series.

FIGURE 10. Comparison between forecast results and the test set.

study established the parameters as α = 0.05, β = 0.05,
and γ = 0.05. In the SARIMA model, it was postulated
that the seasonal cycle adheres to an annual cycle, with a
seasonal differentiation value of 1 and P = 3, Q = 3. The
SVR employed the RBF function. Within the LSTM network

architecture, the number of neurons was set at 288, iterating
300 times, with an initial α = 0.005. The learning decline
period was 125, and the learning rate reduction factor was
0.2. The loss function was based on MAE. By adjusting these
parameters, the following graph illustrates the comparative
results of different time series prediction algorithms.

From the Figure 11, it can be discerned that all four
traditional forecasting methods can aptly predict future
cyclical time series. In the first diagram, the Fourier series
demonstrates reduced sensitivity to peak and trough values
of the cyclical time series. This limitation could potentially
stem from the functional expression of the Fourier series.
Employing a higher-order Fourier series might mitigate this
phenomenon, but there’s a risk of overfitting. The Holt-
Winters model, depicted in the second diagram, slightly
underperforms in capturing the characteristics of the cyclical
time series, resulting in a more substantial amplitude
compared to the test data. The third and fourth diagrams,
particularly the one employing LSTM, offer commendable
predictive results, with the LSTM rendering almost perfect
fitment of the cyclical time series. Among these methods,
LSTM boasts the highest accuracy.

In the Figure 12 above, the red curve (or set of points)
represents the actual DAT test set time series data. The blue
curve (or set of points) signifies the time series predicted by
the model proposed in this paper, having processed 13 years
of training set data (from 2006 to 2018) and then forecasted
using the LSTM model. The green curve (or set of points)
represents the time series directly predicted by the LSTM
model after processing the DAT training set data. The right
side of the graph showcases magnified portions of the graph
based on test set years from 2019 to 2022. It’s evident from
the visualization that, generally, the blue curve is closer to
the red curve compared to the green curve. This suggests

VOLUME 12, 2024 74281



S. Wan: Denoising Time Window Algorithm for Optimizing LSTM Prediction

FIGURE 11. Comparison of prediction outcomes among different time series prediction algorithms.

FIGURE 12. In the test set, a comparison between the algorithm presented, the original LSTM model, and the test data.

that the sequence predicted post-processing by our algorithm
has a higher precision than the traditional LSTM. However,

there are sporadic regions, particularly those prone to
cluster noise, where the predictive performance is marginally
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TABLE 4. Comparison of evaluation indicators for different time series
forecasting algorithms.

inferior to LSTM. Overall, the accuracy of our proposed
algorithm significantly surpasses that of the conventional
LSTM network, validating its superior predictive capability
in comparison to the traditional LSTM model. Table 4
presents a comparison of the precision of various predictive
algorithms.

From the aforementioned results, it is evident that the
Fourier series regression, being the initial regression model,
requires improvements in its accuracy. One plausible reason
might be the Fourier series function’s limited capability in
fitting time series with significant fluctuations. The SARIMA
algorithm demonstrates superior capability in extracting
seasonal features, thus outperforming the Holt-Winters
algorithm in accuracy. LSTM, representing a deep learning
forecasting method, surpasses the precision of the previously
mentioned conventional techniques. The algorithm proposed
in this study, when juxtaposed with other models mentioned
in the experiments, showcases the least error and optimal
fitment. This corroborates the model’s enhanced efficacy in
forecasting cyclical time series datasets, especially those with
pronounced fluctuations reminiscent of Fourier series.

B. COMPARISON OF PREDICTION ACCURACY BASED ON
TIME WINDOW LENGTH
Observations from the previous experiments suggest that
different time window hyperparameters inevitably influence
the final prediction outcomes. This can be attributed to the
varying data volume acquired from local data during the
same iteration, owing to different time window lengths.
Considering daily temperature data, which is structured on
a daily basis, this study evaluated several parameters for the
time window length L. This was done to derive experimental
results based on different time window hyperparameters,
facilitating an analysis of the influence of the algorithm’s time
window on prediction outcomes. The stack model parameters
for this comparative experiment were set as w1 = 0, w2 =

0.225, and w3 = 0.775. A dual-layer Fourier series sequence
stack structure was employed, with clustering thresholds set
at both 2 and 10. The experimental results derived from
adjusting these hyperparameters are illustrated in the Table 5
below.

As observed from Table 5, under a clustering threshold
of 2, setting the time window length between 10 and 30 is
advantageous for the final prediction outcome. Subsequently,

TABLE 5. Comparison of evaluation indicators for different time window
hyperparameters (δτ

i = 2).

TABLE 6. Comparison of evaluation indicators for different time window
hyperparameters (δτ

i = 10).

the prediction error for various categories initially increases
before decreasing.

Table 6 indicates that when the clustering threshold is set
at 10, a time window length of 30 yields the most favorable
prediction results. The subsequent prediction errors exhibit
a pattern of initial increase followed by a decrease, similar
to the trend observed in Table 6. Furthermore, prediction
results corresponding to a clustering threshold of 10 generally
underperform when compared to those with a clustering
threshold of 2. The aforementioned data is graphically
represented in the subsequent figures.

The initial segments of the graphical representation reveal
significant oscillations in the error curve. The error typically
peaks when the time window parameter ranges between
50 and 100. However, as the length of the time window
progressively increases, there’s a discernible decline in error.
This prompts a hypothesis: shorter time windows might
struggle in extracting valuable features. While certain lengths
of time windows might effectively capture data character-
istics, others may falter. As the time window expands, its
capability to seize data features wanes, culminating in the
error peaking when the time window size approximates 100.
Considering the gradual extension of the scope captured by
the time window as its length increases, the error tends to
diminish as the time window continues to expand. Moreover,
for this particular dataset, setting the time window length
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FIGURE 13. Impact of different time window lengths on time series prediction errors.

at 30 appears optimal, leveraging it as a hyperparameter
results in commendable prediction outcomes and heightened
accuracy. Additionally, as inferred from Figure 13, the overall
shift to the right of the graphical representation with an
increase in the clustering threshold suggests a potential need
to concurrently enlarge the clustering threshold and time
window length to enhance prediction outcomes. Furthermore,
generally speaking, prediction outcomes corresponding to
a clustering threshold of 2 surpass those associated with a
threshold of 10.

C. COMPARISON OF PREDICTION ACCURACY BY
CLUSTERING THRESHOLD
The threshold of the clustering model, as a hyperparameter,
plays a pivotal role in influencing the prediction results.
Given that the threshold represents the Euclidean distance
between cluster centroids and the boundaries of the state
space, the study adjusted this value to analyze its impact on
prediction outcomes. As the clustering threshold decreases,
the state space centered around the cluster centroid contin-
uously contracts. Newly added state points are increasingly
likely to be deemed as exhibiting cluster-based anomalous
noise, leading to the rectification of the local sequence of
the added time window, thus amplifying the efficacy of our
algorithm. For this comparative experiment, the stack model
parameters were set as w1 = 0, w2 = 0.225, and w3 = 0.775,
employing a two-layer Fourier series sequence stack structure

TABLE 7. Different clustering thresholds with a time window length of 10.

with time window lengths of 10 and 30. The results derived
from adjusting the clustering threshold hyperparameter are
displayed in the subsequent Tables 7 and 8.

Table 7 reveals that for a time window length of 10,
setting the clustering threshold between 1 and 2 yields
optimal prediction outcomes. Thereafter, the prediction error
consistently escalates with an increasing clustering threshold,
implying that a larger threshold results in diminished
prediction accuracy.

Table 8 indicates that for a time window length of
30, a clustering threshold ranging between 1.5 and 5 is
more suitable. Specifically, when the clustering threshold
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TABLE 8. Different clustering thresholds with a time window length of 30.

is relatively low, the impact of the clustering threshold
on prediction accuracy under longer time window lengths
exhibits more pronounced oscillations compared to shorter
lengths. Furthermore, the optimal clustering threshold range
expands in tandem with the increase in time window length,
corroborating observations from the previous comparative
experiments. The relationships between these hyperparame-
ters and errors are graphically represented in the following
figures.

As illustrated in the above Figure 14, overall, an augmented
threshold elevates the prediction error and curtails accuracy.
Initially, the escalation in threshold leads to considerable
fluctuations in the error curve. Given that a smaller threshold
strengthens the constraints of the clustering model, thereby
enhancing prediction accuracy, it’s rational to assert that
the clustering model positively impacts the overall time
series prediction outcomes. Furthermore, based on data
observations, the most favorable prediction outcomes emerge
when the clustering model’s threshold is set between 1 and 3,
optimizing the precision of local data modifications. It should
be noted that the size of the window or the choice of threshold
is not fixed but should be appropriately adjusted based on the
length, amplitude, frequency, and other data characteristics of
the time series. In addition, if the initial clustering threshold
hyperparameter is set too large, the tolerance for data during
the denoising window sliding process will be higher, and
the likelihood of modifying the data will be lower. A larger
time window means that more local data information can
be encompassed at the same time, and the high-dimensional
features mapped by the time window between two adjacent
time steps should be more similar, which will promote the
clustering effect of the data to the center to a certain extent.
Therefore, these hyperparameters can be effectively adjusted
according to appropriate needs.

D. COMPARISON OF PREDICTION ACCURACY BASED ON
DATA STACK WEIGHTS AND STRUCTURES
The data augmentation aspect of the algorithm is controlled
by modifying the proportion of mixed weights, which
influences the state of the data in the combined target

TABLE 9. Comparison of evaluation indicators under different weights in
the dual-layer fourier structure.

sequence. This method of modification does not alter the
overall data stacking mode of the algorithm but is a tuning
approach realized by adjusting hyperparameters. This study
presents two sets of weight hyperparameter experiments for
comparison: one based on a two-layer Fourier structure and
the other on a two-layer original sequence structure. On one
hand, these experiments can reflect the impact of different
data stacking offset directions on prediction results. On the
other hand, they demonstrate the effects of various weight
array settings on prediction outcomes. The weight array
must satisfy the condition of the equation

∑3
i=1 wi = 1.

Where n represents the number of sequences to be mixed.
Our approach distinguishes the sequence into three types
for weighting. Further innovations, such as the adoption
of diversified sequence weighting formulas, can also be
explored.

Table 9 suggests that under the two-layer Fourier struc-
ture data stacking model, setting the weight vectors as
(0.1,0.1,0.8), (0,0.8,0.2), (0.2,0.5,0.3), and (0.2,0.8,0) yields
favorable prediction results.

Table 10 indicates that setting the weight vector as
(0.1,0.1,0.8) provides optimal prediction results, and the
prediction outcomes of the two-layer Fourier structure are
notably superior to those of the two-layer original data
structure. The data from the tables are sorted according to
the error reflected in the second table, from high to low, for
each triplet. Subsequently, curves from both tables are plotted
under the same triplet to highlight the predictive differences
resulting from different stacking structures.

The graph reveals that for each triplet weight, the pre-
diction error generated using a two-layer original sequence
structure consistently exceeds that of the two-layer Fourier
structure, albeit with a few exceptions. This suggests that the
dataset is more amenable to data stacking using the two-layer
Fourier structure.
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FIGURE 14. Impact of different clustering thresholds on time series prediction errors.

TABLE 10. Comparison of evaluation indicators under different weights
in the dual-layer original sequence structure.

E. EXPERIMENT WITH SOTA
In addition to making predictions on the Beijing temperature
dataset, this study also compares predictive accuracy with
the current state-of-the-art (SOTA) in the field of time
series forecasting across multiple datasets. A total of four
SOTA methods were selected for comparison, along with

datasets related to tourism, sales, and food production to
validate the accuracy of our algorithm.These datasets have
different statistical properties due to inconsistent sources.The
baselines for these four SOTA methods are all open source.
The links to the datasets and baselines are shown in the table
below. Initially, this study employs data science techniques to
derive statistical characteristics of these datasets, followed by
solving for their respective most fitting curves. Subsequently,
both the original and fitted series are input into our program,
with the original series also input into the SOTA programs.
Finally, error analysis is conducted based on the five
algorithms (four SOTA and our proposed algorithm) on the
test set to obtain the final algorithm performance results.

The three datasets include predictions for real-world island
tourist numbers, sales data for a company, and information
on lemon harvests produced in Delhi from 2002 to 2021. The
univariate time series images for these three types are shown
below16 and are all available on the Kaggle public dataset.
It is noteworthy that this study only preprocesses non-zero
values of the data. The reason for not conducting extensive
preprocessing work is that the selected datasets are univariate
time series, which can be directly imported and solved.
To evaluate the differences in algorithm prediction effects,
this study validates in three stages. Firstly, error analysis
is conducted numerically based on common error metrics
such as MAE. Subsequently, further validation is conducted
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FIGURE 15. Influence of different data stacking methods and weight combinations on time series prediction
error.

TABLE 11. Datasets and baseline names and links.

using the Mann-Whitney U Test and the Permutation Test
to verify that our algorithm indeed has certain performance
improvements over traditional SOTA methods in terms of
predictive performance. Below are the error comparisons
between our algorithm and SOTA algorithms, as obtained
through program processing. This study have selected ‘‘Auto-
Period’’, ‘‘FindFrequency’’, ‘‘MSTL’’ and ‘‘TBATS’’ as
the compard SOTA methods, which are representative of
clustering, denoising or prediction methods. Each experiment
in this study used 1000 epochs and 1440 neurons. In order
to enrich the parameter selection for this study, the specific
parameters used in the experiments are given in the following
table12.

The comparison of prediction effects on the test set shows
that, except for a significant gap in MAPE on the lemon
production dataset compared to the best-performing MSTL

TABLE 12. Parameters of datasets.

TABLE 13. Error comparison for tourism data.

method, our method achieved SOTA performance on almost
all metrics across all datasets. In the tourism dataset, our
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FIGURE 16. Public dataset with SOTA test.

TABLE 14. Error comparison for sales data.

TABLE 15. Error comparison for production data.

method also did not deviate significantly from Auto-Period
in terms of the SSE metric. Given that these three datasets
were fitted using Fourier series, the experiments demonstrate
that these datasets do not follow a normal distribution, thus
allowing the use of Mann-Whitney U Test and Permutation
Test methods for verification. The purpose of these tests
is to validate whether the prediction sequences generated
by the study can produce significant differences compared
to the prediction sequences from traditional SOTA methods.
The following tables show the comparison between the
prediction sequences from traditional SOTA methods and
those generated by our proposed algorithm, with each table
corresponding to a different dataset. On the left side of each
table are the Mann-Whitney U Test results, and on the right
are the Permutation Test results.

This study employs a hypothesis testing threshold of
P < 0.1, meaning that when P < 0.1, the null hypothesis is
considered true, indicating a significant difference between
the two data sets. This, in turn, proves that the prediction
sequences generated by the study’s method are significantly
different from those produced by traditional SOTA methods.
According to the calculations, the prediction sequences
obtained through our algorithm on various datasets almost
all show significant statistical differences compared to tradi-
tional SOTAmethods, further validating the innovativeness of
our algorithm in the field of univariate time series forecasting.

F. ABLATION EXPERIMENT
Ablation experiments are conducted by reducing the opti-
mization steps related to the proposed algorithm based on the

original experiments. This approach aims to demonstrate the
accuracy and necessity of each step designed in the algorithm.
Three ablation experiments are selected: excluding the stack-
ing model, excluding the clustering model, and excluding the
repair model. In specific ablation tests:

The control group that excludes the stacking model only
uses the original sequence, denoted as yOrigin and yTarget for
correction after a local sequence in the time window is judged
by the clustering model as needing repairs, without further
data augmentation. The control group that excludes the
repair model simply performs a simple weighted stack of the
original data and Fourier series data and returns the weighted
result when repairs are needed. The control group that
excludes the clustering model sequentially inputs the entire
sequence into the data stacking model and the repair model.
Ultimately, the entire time sequence will be reorganized
and repaired. For the ablation study, the procedures are as
follows:

The control group excluding the stacking model, upon
identifying local sequence anomalies via the clustering
model, simply repairs the original sequence once. In this
process, the new sequence continuously seeks optimization
between the original and fitted sequences, returning the
final new sequence to the local data. This procedure does
not involve data stack levels and depths or cross-sequence
mixing. The control group excluding the repair model,
upon identifying local sequence anomalies via the clustering
model, merely conducts a single cross-mixing process on the
original and fitted sequences. In this cross-mixing process,
only the average values of the two sequences at each time
step are taken and returned to the local sequence without
involving multi-objective optimization. The control group
excluding the clustering model undergoes stacking and repair
processing regardless of the state of the time window data.
Ultimately, all sequence positions are sequences processed
after stacking and repair. The parameters are set as w1 =

0,w2 = 0.225,w3 = 0.775 adopting a two-layer Fourier
series sequence stack structure, with a time window length of
30 and a clustering threshold of 2. Based on these standards,
the following experimental results were obtained in the Tables
among 19 to 21.

Numerous other ablation experiments were also con-
ducted. Results show that the removal of each method in
the ablation experiments consistently results in a decrease in
accuracy.Without the stackingmodel, the data combination is
relatively singular, causing the multi-objective optimization
in the repair model to perform poorly. Without the repair
model, the weighting method of the data stacking model is
not suitable for changes at every time step, and the weighting
weights cannot be adjusted in time, leading to a relatively
singular stacking effect. Without the clustering model, the
algorithm blindly repairs the original sequence, potentially
destroying the data features of the original time sequence,
which is not conducive to the LSTM model’s capture and
training process. Among the three sub-models, the removal
of the repair model has the most significant impact on
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TABLE 16. Mann-whitney u test and permutation test comparison in tourism dataset.

TABLE 17. Mann-whitney u test and permutation test comparison in sales dataset.

TABLE 18. Mann-whitney u test and permutation test comparison in production dataset.

TABLE 19. Comparison of evaluation indicators in ablation experiments
(L = 30, δτ

i = 2).

TABLE 20. Comparison of evaluation indicators in ablation experiments
(L = 10, δτ

i = 1).

TABLE 21. Comparison of evaluation indicators in ablation experiments
(L = 45, δτ

i = 15).

the predictive accuracy of the algorithm, followed by the
clustering model and then the data stacking model.

VI. CONCLUSION AND FUTURE WORK
To enhance the predictive accuracy of time series forecasting
methods, this paper introduces an optimized LSTM-based
time series prediction algorithm, which addresses the capture
and handling of cluster-shaped anomalous noise in the time
series. The algorithm is designed to effectively capture and

rectify cluster-shaped anomalous noise, thereby continuously
improving the overall characteristics of the time series.
This enhances the LSTM model’s ability to learn from
data features and consequently elevates the accuracy of
time series predictions.Experimental investigations were
conducted on surface temperature data fromBeijing spanning
from 2006 to 2022. The results demonstrate that the predictive
algorithm, which integrates denoising and optimized time
windows into the LSTM model, outperforms traditional
mathematical and machine learning forecasting methods.
this algorithm is simultaneously compared with four SOTA
algorithms on three publicly available datasets for prediction
error comparison and statistical testing, which signifies its
substantial potential in the realm of time series forecasting.

Considering the comparative experiments in this study,
which utilize a controlled variable method to explore
the impact of hyperparameters on time series forecasting,
the underlying mechanisms of various hyperparameters
in the algorithm’s performance require further exploration.
Moreover, for the design of hyperparameters, nonlinear
programming could be incorporated to facilitate a global
search for optimal solutions. Concerning the design of the
clustering model, the introduction of weight vectors and
alternative geometric distance calculation methods could
enhance the computation of centroid distances within the
state space boundaries. Additionally, the time window length
and clustering threshold can be dynamically adjusted to adapt
to changing time series patterns. These areas of study are
slated as the focus for future investigations.
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