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ABSTRACT Study is being conducted on training Generative Adversarial Networks (GANs) from 2D
datasets to generate 3D human body avatars. Numerous applications, such as virtual reality, sports analysis,
cinematography, surveillance, and more, have advanced significantly as a result of the promising research
in this subject. Aerial photography sensors together with drone active tracking can remove occlusions and
enable 3D avatar body reconstruction by avoiding obstacles and generating high-resolution, rich-information
multi-view (RGB) photos. Training failures of 3D avatar reconstruction techniques lead to distortions and
loss of features in 3D reconstructed models due to several reasons, including limited viewpoint coverage,
visible occlusions, and texture disappearance. The recently developed end-to-end trainable deep neural
network technique This work presents PIXGAN-Drone, a photo-realistic 3D avatar reconstruction system for
the human body from multi-view photos. To create high-resolution 2D models, is predicated on integrating
aerial photography sensors (a steady autonomous circular motion system) coupled with active tracking
drones into the Pix2Pix GANs training framework. Accurate and realistic 3D models can be created with
conditional image-to-image translation and dynamic aerial views. This study used tests on several datasets to
show that our approach outperforms state-of-the-art approaches for a variety of metrics (Chamfer, P2S, and
CED). Our 3D reconstructed human avatars in RenderPeople were 0.0293, 0.0271, and 0.0232; on People
Snapshot (inside), 0.0133, 0.0136, 0.0050; on People Snapshot (outdoor), 0.0154, 0.0101, 0.0063; and on
Custom data-drone (collected dataset), 0.0316, 0.0275, 0.0216.

INDEX TERMS 3D human avatar, 3D reconstruction, PIX2PIXGAN, body model rendering, drone active
tracking.

I. INTRODUCTION
3D human avatar reconstruction methods from 2D images
have achieved a significant role in computer vision and
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interactive virtual graphic environments, as well as being the
focus of attention in the animation industry community [1].
Recently, deep adversarial approaches have often been
used for 3D models of human body reconstruction from
2D images. These methods present a challenge in the
depth estimation of a captured photographic scene. Several
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details are disappearing in addition to the experiencing
fusion of some angles in the 3D body rendering from
2D images.

For this reason, full immersion in 3D scenes has become
a pressing need that accompanies rapid digital progress.
It provides a more realistic and comprehensive vision to
understand the intricate details that are difficult to visualize.
This requires comprehensive photographic scenes with high-
quality, non-dim angles. Thus, 2D multi-view images of
high-resolution and sharpened surfaces can be captured,
resulting in advanced results during 3D reconstruction [2],
[3], [4], [5].

Furthermore, image-to-image translation techniques
demonstrated an inspiring revolution [6]. They provided
remarkable performance in generating images with realistic
and high-resolution scenes by training them according to
paired datasets, which proved their efficiency in creating
2D models with clear patterns and rough features, free from
distortions and occlusions [7].

Camera-equipped drones have the active ability to capture
a large number of high-resolution 2D images in a short
period. Circular motion tracking paths enable high-resolution
scenes without noise or blurry effects. This is a key factor
in restoring 3D models saturated with realistic details from
scenes collected by this powerful acquisition device [8]. The
technical development of drone camera sensors has provided
new capabilities for capturing aerial information in the form
of high-resolution images from different destinations, angles,
and heights [9]. allowing the collection of multiple images
of the human scene, from which data sets can be generated
that are considered as training inputs for many algorithms and
applications.

In this approach, we propose a PIXGAN-Drone model to
reconstruct 3D avatars of the human body from 2D multi-
view images by employing the technical capabilities of DJI
Mavic Mini2 drones. In particular, their ability to capture
high-resolution aerial scenes automatically by the (Active
Tracking System) [10]. An image-to-image GAN for salient
features improvement is used to generate realistic 2D human
subjects with a detailed and integrated visual representation
of their surface texture [11], [12].
The presented work highlights the limitations of traditional

human body reconstruction methods, such as occlusions,
fusion of angles, body details, and complexity in composition
due to limited viewpoints. Also, a custom-drone dataset
is created using drones with some processing steps using
computer vision applications to achieve images with ideal
details from different points of view.

Our approach also seeks to enhance deep 3D avatars
of full-body human reconstruction methods like PIFu [30],
and PIFuHD [32] by creating main data collection of high-
resolution multi-view 2D images without blur, noise, and
distortion effects or damages. We establish a hybridization of
automatic circular motion (DJI Active Tracking) to capture
quality video [13] with all directions and predicate 2D model
by PIX2PIX GAN algorithm.

The remainder of this paper is structured as follows: A
related work in Section II on the existing approaches of 3D
reconstruction from 2D images, including a brief description
of the objectives of our proposed method. In Section III, the
proposed approach is presented and we provide an overview
of our pipeline with the justification of each step during
this research. In Section IV, we exposed the experimental
qualitative, quantitative, and graphical results. A comparison
with a detailed analysis followed by a deep discussion to
improve the efficiency and robustness of our proposed work
is carried out. In Section V, we present the main conclusion
of the paper.

Overall, the purpose of this study is to provide insights into
the PIXGAN-Drone technique and its potential applications
in a variety of sectors. The conclusions and discoveries
reported in this research provide the basis for future
developments in 3D avatars of human body reconstruc-
tion and add to the increasing body of knowledge in
computer vision, graphics, and drone-based data collection
approaches.

II. RELATED WORKS
A. ELEVATING DEEP-LEARNING ANALYSIS: THE IMPACT
OF DRONE-GENERATED 2D IMAGERY ON FEATURE
EXTRACTION
Unmanned Aerial Vehicles (UAVs) provide technology
that can identify and capture targets from more than
one side during a particular scene. Recently, drones have
been widely used by specialists in the field of object
imaging and surveillance, as well as in various fields
such as research, military, and medical applications [14],
[15], [16], [17]. Automating these intelligent acquisition
devices is one of the challenges for programmers using
deep learning and computer vision algorithms, as they can
execute commands more efficiently and target details that
are difficult for traditional imaging devices. Due to the
presence of hard obstructions that affect the horizontal field
of view when using cameras or traditional photography
methods, it is necessary to invest in these technologies
to allow UAVs to provide integrated aerial or horizontal
images [18].
Le and Aryafar [19], presented a mechanism between

object tracking and object detection in which the purpose
is running object tracking and detection algorithms simulta-
neously. Continuous advances in machine learning and the
growth of smart algorithm-driven applications have led to
an increasing demand for smaller drones that are easier to
transport and use, especially those powered by pioneering
DJI innovations. Drone design has changed a lot in recent
years, especially in terms of the way it flies, the angles of
capture lenses in the wild, and the high quality provided for
the scenes. A wonderful panoramic aerial photos of scenes
are very realistic [20].
Georgiou et al. [21] used drones to film objects at crime

scenes and discovered realistic evidence in real-time, which
represents a great effort and advanced results. Feeding
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computer vision algorithms by videos provided by these
drones to analyze these targeted scenes provided instant
results. This work shows that there is a great correspondence
between the application of machine learning and computer
vision combined with UAVs in finding quantitative and
real-time solutions that can provide efforts and advances
to this field. In [22], we provided a comparative study on
feature extraction from 2D images captured by different
devices such as smartphones and drones with application to
3D reconstruction.We show how far this can affect the quality
of the reconstruction.

B. 3D RECONSTRUCTION FROM 2D IMAGES WITH
APPLICATION TO HUMAN BODY AVATARS GENERATION
In the application of 3D reconstruction of human faces
or bodies using 2D images, standard conditions must be
met to create 2D images of high quality without blurring
or other negative effects that can cause distortions in the
3D reconstructed model. There are several approaches with
numerous applications with regard to this research scope in
the state of the art which implies that this subject is a novelty
devoured by several researchers.

Garg et al. [23], performed human motion reconstruc-
tion in a real-time environment using two drones with
a multi-camera control system. To evaluate the simulated
performance of jogging and playing football in the real world,
in [24] authors proposed an applied technical contribution
to previous deep-fused surface reconstruction frameworks
by combining deep-fused surface reconstruction with The
system includes an inertial odometry estimator with powerful
camera tracking and high-precision 3D scanning capabilities.
Mishra et al. [25], utilized OpenCV technologies [26] to
reduce noise through background removal, extract features,
and process the image results to create a painting robot
platform. Xu and Lu [27], developed a simple GUI
open-source for object imaging, intending to bridge the gap
between machine vision technology and users. The GUI was
developed in Python with the use of OpenCV libraries for
image collection, transformation, and visualization. In [28],
a method is presented using a mobile-captured multi-view
RGBD dataset containing high-precision 3D ground-truth
annotations of 153 models. The reference camera position
for evaluation is then calculated using the camera calibration
algorithm from the OpenCV library. In the literature there
are two categories: 3D reconstruction from a single 2D
image for specific scenarios such as capturing a single
image of a criminal which is very challenging and 3D
reconstruction from multiple 2D images provided from
video frames such as filming a scene. Given that the first
category only has one input 2D image, it is clear that
the findings could be affected by the lack of details and
information loss. Nonetheless, the use of numerous 2D
images enhances 3D reconstructed renders. In Tables 1 and 2,
we provided a summary of the most widespread methods on
two categories of 3D human body avatar reconstruction in the
wild.

TABLE 1. 3D human reconstruction from single 2D image.

C. GENERATIVE MODELS FOR 3D RECONSTRUCTION
Generative models attracted researchers following high
feature space generation performance and good predictions.
Losses structure of 2D images in pix2pix GAN problems
are re-dominantly formulated as per 2D image pixel clas-
sification rate or regression formulated as per 2D image
pixel classification rate or regression [41], [42], [43], [44].
These formulations present the unstructured output area in
the orientation of output pixels, which means each of them is
independent of all others in input 2D images. In our context,
GAN can find realistic human faces and bodies from unreal
art graphics this algorithm is also named conditional image
translation.

The image-to-image translation strategy is used comfort-
ably traits with the Conditional GAN (CGAN) that has been
image framed to understand the correspondence between
a source input and a target image by a training dataset
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TABLE 2. 3D human body reconstruction from multiple 2D images.

matched set of images [45], [46]. In [47], Choi and Kim
introduced a new architectural method for the generator
model and discriminator. U-net is used as a generator and
the convolutional ‘‘PatchGAN’’ classifier as a discriminator.
In [48], authors aimed to build a regression framework
between image depth and 3D faces encoded by expres-
sion, identity, and pose parameters using an unsupervised
network based on (CycleGAN). Regression models learned
from synthetic data authentic acquired noisy depth images.
Researchers in [49], introduced the MOST-GAN approach
that combines the expressiveness and realism of Style-Based
GANs with physical disentanglement and flexibility in
nonlinear 3D deformable models. However, MOST-GAN
enables the photo-realistic processing of portrait images with
full-resolution 3D control over their physical characteristics,
allowing extreme manipulation of lighting, facial expression,
and pose changes, all the way to multi-views.

D. 3D RECONSTRUCTION OF HUMAN AVATARS FROM 2D
IMAGES
In PIFuHD [32], authors presented a high-quality 3D
reconstruction of the 3D human body using a deep network
trained on BUFF dataset [50] to estimate the human pose
and body features in 3D representation. 3D reconstruction
stage incorporates high-resolution image features (512×512)
from higher-resolution input images (1024 × 1024). while
the second module predicts an occupancy probability field
using high-resolution embedding. To improve reconstruction
quality and accuracy, standard patterns for both the front as

well as the rear sides are projected and given as supplemen-
tary input using a neural network architecture and multi-layer
perception (MLP). More precisely F(X) is considered as the
predicted value in a virtual environment(VE) for any 3D point
position X = (X1,X2,X3) ∈ R3, and I is a high-resolution 2D
gray image.

F(X,I)= 1 if X is inside the mesh surface.
F(X,I)= 0 otherwise.
The function F is then trained using a neural network

architecture, and an image feature embedding is extracted
from the projected 2D position at 8(X ) = x ∈ R2 which
we denote by 8(x, I ).
Perpendicular projection is used for π , and thus x =

π (X ) = (X1,X2). Then, it estimates 3D point X, and thus:

f(X, I) = g(8(x, I),Z ) (1)

where Z = Xz is the depth specified by the 2D projection x
along the ray.

fH (X) = gH
(
8H (xH , IH ,FH ,BH , ) , �(X)

)
(2)

where I(H ),F(H ),B(H ) are the input image map in the
frontal and backside. (X) denotes a 3D human model
reconstructed and rendered in a blender virtual environment
to display the 3D human reconstruction [51].

One of the primary technical deficiencies found in the
referenced works is the 3D reconstruction’s resilience and
performance. That is, due to the uncertainty that arises
from converting RGB pixels from 2D areas into a 3D
environment, the majority of the work uses monocular
photos. The kinetic structures of the body vanish as a
result, and certain intricate junctions in the vicinity fuse
together. More specifically, the development process of GAN
algorithms is adversely affected by the capture of images of
ambiguous datasets, in terms of their primary characteristics
and the predominance of blur and distortions on their surface
texture [52], [53], [54]. This results in the generation of a 3D
model that has missing corners of its 3D physical mesh and
obstructions in its tiny details. This led us to utilize the drone’s
active tracking technology, which records visual scenes
automatically and produces stable, vibration-free photos,
as we described in one of our works [22]. In fact, substantial
detail and high resolution can be found in the source photos’
excellent quality and effective acquisition [55], which leads
to a reliable and thorough 3D reconstruction of the human
body [56], [57].

III. PROPOSED METHOD
Our approach aims to improve the results of 3D avatar
of human body reconstruction from multi-view 2D images
through three main stages as shown in Figure 1. Also,
algorithm 1 shows the main steps.

A. DATA COLLECTION
This phase not only concerns the acquisition of 2D images
but also the different pre-processing steps. We enable DJI
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Algorithm 1 Overall
Begin
[2D_images]← Data_Acquisition (Device, Data_Folder)
for each image in [2D_images] Do do
[2D_imagesProcessed ] ← 2D_Images_Processing
(2D_images)
[2D_realistic_images] ← 2D_Images_Generation
(2D_imagesProcessed )
[3D_Human_avatar]← PifuHD (2D_realistic_images)

end for
End

Active Track which is an automatic tracking technology that
captures objects or people from all angles, locating dark
places and invisible curves that standard cameras cannot
reach. Then we used the OpenCV toolboxes to remove blurry
images while maintaining sharp images as they have greater
detail, clarity, and quality without blurring. Unblurred images
were segmented using the Computer Vision Annotation Tools
to create datasets (image sources, segmentations, or depth
maps). The main steps of Data collection and 2D images
processing are presented in the following algorithm.

Algorithm 2 Data_Collection
Begin
[2D_images]← VideoCapture (Data_Folder)
for each image in [2D_images] Do do
[2D_imagesgray]← Convert_GrayScale (2D_images)
[2D_imagessmooth] ← Variance_of_Laplacian
(2D_imagesgray)
[2D_imagesProcessed ]← Save (2D_imagesSmooth)

end for
End

B. 2D MODEL GENERATION
We trained PIX2PIX GAN to predicate new 2D human
features from multi-view 2D images using two inputs our
main datasets (image source, segmentation, or depth map)
and public benchmarks. PIX2PIX GANs approach allows for
finding 2Dmodels withmore details and high-quality texture.
The generator and discriminator are trained simultaneously.
In fact, the generator attempts to make pictures realistic
enough to mislead the discriminator. Discriminator attempts
to accurately determine whether an image is genuine or fake.
Algorithm 3 shows the main steps of 2D images generation
using Pix2Pix GAN.

C. 3D AVATAR RECONSTRUCTION
We perform this stage by reconstructing a high-resolution
3D avatar from 2D predicted images coming from PIX2PIX
GAN. However, the goal of our approach is to reinforce
deep 3D avatar reconstruction methods like PIFu [30], and
PIFuHD [38] by increasing the occupancy value of X =
(Xx ,Xy,Xz) ϵ R3 dense 3D volume F(X) for any 3D features

Algorithm 3 2D_Image_Generation
Begin
for each image in [2D_imagesProcessed ] Do do
img← Resize (2D_imagesProcessed , 256× 256)
[image_shape]← img.shape [1:]

end for
Discriminator_model← Discriminator (image_shape)
Generator_model← Generator (image_shape)
GAN_model ← GAN (Generator_model, Discrimina-
tor_model, image_shape)
data← Balance_data_merge (2D_imageProcessed , target)
[Dataset]← Preprocess_Data (data)
Train (Discriminator_model, Generator_model, Dataset,
epochs, n_batch)
[2D_realisticimages] ← GAN_model.predict
(2D_imagesProcessed )
End

position in continuous camera space. The overall framework
of the PIXGAN-Drone pipeline will be more detailed later.

D. DATA COLLECTION
Since unmanned aircraft equipped with high-resolution
lenses became available for public and daily uses, it has
achieved widespread fame due to the high technical capa-
bilities it provides through accuracy in imaging and stability
during flight. Because it has a DJI Active Tracking system,
it provides integrated scenes that are free from blur and
noise, which may have proven to be an important option for
capturing films with a higher level of quality [58].
Using a DJI Mavic Mini2 drone equipped with a

12-megapixel camera and a resolution of 1920 × 1080 HD
pixels moving approximately 5 meters away from the human
target model, we capture 2D images (create a custom dataset).
Here, details offered by drones during scene capture are very
sophisticated compared with those of other portable imaging
devices as explained in [22].

The DJI Active Track system is a technology that may
allow automatic tracking of persons or targets that are to be
monitored using drones like the DJIMavicMini2model. This
technology can be found in applications that operate drones.
The robot will make use of its vision as well as its frameworks
for identifying frames in order to maintain safe flight while
also having the potential to achieve the best results possible
for photography.

The real-time object detection through the circular tracking
technique aims to locate an object in a manner similar to
human perception, utilizing bounding boxes as shown in
Figure 2. The rectangular surrounding box is used to identify
the central region of the image as well as the direction of
motion characterized by a significant speed [59].
The stabilization of the drone’s circular tracking system as

shown in Figure 3, is used to capture the human model from
all angles to enable it to locate dark areas and invisible curves
that a conventional camera cannot reach. Above all, compared
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FIGURE 1. Overview of our proposed method.

FIGURE 2. Parameters detection in a human body.

to conventional cameras, the circular tracking of drones is
stable, with no sudden movements or trembling, whereas the
hand holding the camera is prone to sudden movements and
shaking.

Equation (3) explains the control gimbal tracking, con-
sidering the center of the image scene is an input. The
difference between the filter box and image center in both
vertical and horizontal directions is a control produced for
gimbal tracking. KP is a proportional coefficient, and Kd is a
derivative coefficient [60].

u(t) = Kpe(t)+ kd (de(t)/dt) (3)

The controller of the DJIMavicmini drone option provides
the possibility of surrounding the target with a rectangle as
shown in Figure 4, specifying the target center point (x) for
the video scene, and through a stable and balanced circular
movement, the target is captured from all angles.

FIGURE 3. DJI drone active circular Tracking capture system.

To capture 2D images of the human body by drone flight,
the on-orbit trajectory is designed to capture full-frame
images with sufficient photo overlap to reconstruct the 3D
model using a photogrammetry solution. In summary, in-orbit
video images (1920 × 1080 pixel size) were selected for 3D
model reconstruction using UAV photogrammetry. Total of
1200 high-resolution still images (dimensions 1080×1920
pixels).

The video captured by circular tracking of the drone’s
camera must be of high quality and non-blurry in order to
achieve these features, OpenCv is applied and that means
RGB images will be converted to grayscale images, which
are real characteristics of a 2D image that is used during
the applications of reconstructing 3D shapes details [61].
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FIGURE 4. Bounding Box adjustment to the full body.

The two-dimensional Laplacian sharpening equation is a
second-order partial derivative (Laplacian operator) in the
orthogonal directions of continuous space to be more suitable
for digital image sharpening and less noisy [62]. Laplacian
digital filter pixels as shown in Figure 5.

FIGURE 5. Laplacian operator template.

2D image transformation using the Laplacian operator is
expressed:

u(t) = ∇f (x, y) = ∂2f /∂x2 + ∂2f /∂y2 (4)

1) Drone-captured scene Segmentation into frames: Sup-
ports 3D human reconstruction from multi-view 2D
images by extracting sharpened features from the target
(human) and removing noisy, blurry images using
OpenCV python coding threshold=100 to discover
useful information.

2) Data organization and preparation: Used in machine
learning and other data-driven applications is known as
dataset creation. A dataset is a data collection used to
train, verify, and test machine learning models.

3) Datasets creation based on the project’s specific needs
and aims among the most frequent approaches is: Data

collection, one technique for collecting a dataset for 3D
reconstruction of 2D images would be to acquire the
data directly using 3D scanning technologies, such as
structured light scanners or laser scanners, by capturing
high-resolution 3D images of objects or scenes and
storing the resulting point cloud data, or to collect the
data using the appropriate tools to capture 2D images.

4) Data extraction from internet sources: such as online
repositories of 3D models or online datasets of 2D
images and corresponding 3D models, is another
method for constructing a dataset for 3D reconstruction
of 2D images [63].

5) Data augmentation: to produce new data from existing
2D images and 3D models is a third way of producing
a dataset for the 3D reconstruction of 2D images.
Rotating, resizing, and cropping images, as well as
applying different sorts of noise to the images, are
instances of data augmentation techniques [64].

6) Data synthesis: Using data synthesis techniques to
produce synthetic 2D images and related 3D models
is a fourth way of building a dataset for the 3D
reconstruction of 2D images. Using computer graphics
software to produce realistic 3D models and rendering
them from multiple views to create 2D images might
be instances of data synthesis approaches [65].

Before selecting the best method or combination of
methods for the specific research topic at hand, it is crucial to
comprehensively evaluate the advantages and disadvantages
of various approaches to dataset development.

To collect data using the appropriate tools of 2D images
capturing in the wild in order to perform 3D reconstruction,
machine learning, and deep learning algorithms are used to
produce 3D models from 2D images using adversarial tech-
niques for the 3D reconstruction of 2D images. To train and
assess the performance of the algorithms, these techniques
frequently rely on enormous datasets of 2D images and their
matching 3D models [66].

Basically, steps of preprocessing are as follow:

1) Collect images using the drone’s camera.
2) Removing blurry images using Open CV documen-

tation while retaining sharpened images that are not
blurry due to their higher detail, clarity, and quality.

3) The non-blurry images were segmented using com-
puter vision annotation tools (CAVTs) [67].

Preprocessing steps carried out on 2D images are shown in
Figure 6.

In Figure 7, we show the impact of CAVTswhen producing
data collection (image source, segmentation, or depth map).

E. 2D MODEL GENERATION
This study is going to deal with GANs, and as stated in
the introduction, Porkodi et al. [68]. Created generative
adversarial networks (GANs), a kind of deep learning model,
in 2014. They are made up of a generator and a discriminator,
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FIGURE 6. Data collection steps.

FIGURE 7. The main data collection (image source, segmentation).

two deep networks that compete with one another in a
two-player minimax game.

The discriminator is taught to discriminate between actual
and produced instances, while the generator is trained
to generate samples that are comparable to a collection
of real cases. The two networks are trained alternately,
with the generator attempting to make samples that the
discriminator cannot tell apart from genuine instances, and
the discriminator attempting to reliably determine whether
each sample is real or produced [69].

Typically, the generator is trained to maximize the
probability that the discriminator will categorize its produced
samples as genuine, whereas the discriminator is designed to
maximize the probability of properly categorizing both actual
and generated data. This may be formalized as a minimax
game with the following objective function:

V (D,G) = Ex ≈ Pdata(x)[logD(x)]

+ Ez ≈p z(z)[log(1− D(Gz))] (5)

where:
G: is the generator.
D: is the discriminator.
X: is the real sample from the data distribution. (Pdata(x))
Z: is a noise sample from a noise distribution (Pz(z)).

The generator attempts to generate samples that are similar
to real samples by transforming noise samples Z with
the function G(z), whereas the discriminator attempts to
distinguish between real and generated samples by using the
function D(x), which returns a probability that X is a real
sample. The GAN training procedure is outlined below:

1) Obtain a set of noise samples Z1,. . . , Zm from the noise
distribution.(Pz(z)).

2) Obtain a set of real samples 1,. . . , m from the data
distribution (Pdata(x)).

3) Using the generator, create a batch of fake samples
G(Z1),. . . , G(Zm).

4) Using the genuine and fake samples, update the
discriminator by maximizing the objective function
V(D,G) with respect to D.

5) Using the noise samples 1,. . . , m, update the generator
by minimizing the objective function V(D,G) with
respect to G.

This procedure is continued until the generator and
discriminator find an equivalence, at which time the generator
ought to be able to generate samples that are identical to
genuine samples.

PIX2PIX GANs, It is a form of generative adversarial
network (GAN) developed by UC Berkeley researchers in
2016. It is intended for image-to-image translation problems,
with the objective of learning a function that can convert an
input image into a corresponding output image in order to
reinforce the PIFuHD and get higher accuracy and quality
than has been achieved in it when the results are compared
between the current study and the PIFuHD according to the
criteria that the PIFuHD dealt with, as will be seen in the
qualitative, quantitative, and visual evaluation.

A PIX2PIX GAN’s, architecture is made up of two basic
components: a generator and a discriminator, as mentioned
in the elaboration of GANs since it’s a type of GAN
algorithm. The generator is in charge of creating the output
image, while the discriminator is in charge of assessing the
realism of the created image and delivering input to the
generator [70].

In a two-player minimax game, the generator and discrim-
inator are trained concurrently, with the generator attempting
to make pictures realistic enough to mislead the discriminator
and the discriminator attempting to accurately determine
whether an image is genuine or fake [71]. The discriminator
is trained to maximize the loss function, which quantifies the
difference between the generated image and the ground truth
output image, while the generator is trained to decrease it.
The PIX2PIX GAN’s, overall loss function is expressed as:

L = L(D)+ L(G) (6)

where: L: is the overall loss. L(D): is the loss for the
discriminator where:

L(D) = −E[logD(x, y)]− E[log(1− D(x,G(x)))] (7)
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L(G): is the loss for the generator where:

L(D) = −E[log(D(x,G(x)] (8)

The PIX2PIX GANs have been utilized for a number of
image-to-image translation applications, including grayscale
image-to-color conversion, map-to-satellite image conver-
sion, and drawing-to-photograph conversion. The following
Figure 8, and flowchart presented in Figure 9, show how
PIX2PIX works.

FIGURE 8. Model training to predict 2D image using PIX2PIX GANs.

FIGURE 9. Image-to-image translation steps.

F. 3D AVATAR OF HUMAN RECONSTRUCTION
3D avatar reconstruction from a 2D image is a challenging
problem that involves generating a 3D representation of a
person’s face or body from a single 2D image or multiple 2D
images. The approach that has been used is PIX2PIX GAN.

The generated dataset by the drone is going to train a
PIX2PIX GAN for 3D avatar reconstruction [72]. The GAN
would then be trained to learn the relationship between the
2D images and the 3D avatars so that it can generate a 3D
avatar that is a reconstruction of the person in a given 2D
image. The following figure shows the result that has been
achieved for the main dataset and the ‘‘People Snapshot’’
dataset [73]:

IV. EVALUATION
Our method (PIXGAN-Drone) is largely compared with
various state-of-the-art most widespread methods, namely
Vibe [74], Pymaf [75], SMPLbody [76], ICON [77],
Pifu [30], and PifuHD [32], using the RenderPeople [78],
People snapshot(indoor) People snapshot(outdoor) [79], and
Custom data-drone collecting datasets. The approaches
described in our study exhibit variations in several aspects,
including the data input training, the employed loss functions,
the primary architecture, and the utilization of the SMPL
body prior, among others. Three evaluation metrics will be
applied, as outlined below:

• Chamfer distance: measures between the ground-truth
scans and reconstructed meshes are reported. Shape
comparison is a methodology employed to assess the
degree of resemblance or dissimilarity between two
given shapes. The algorithm computes the shortest
Euclidean distance between points on one geometric
shape and the nearest points on the other geometric
shape. A decrease in the Chamfer distance indicates a
higher degree of similarity between the shapes [80].

• Point-to-surface ‘‘P2S’’ distance: is the shortest dis-
tance between a point in 3D space and a mesh or
model’s surface. Computer graphics, vision, and 3D
form analysis use it. The P2S distance between the
point and the mesh surface will be in the P2S distance
variable [81].

• Cumulative Error Distribution (CED): is a statistical
metric that can be used to evaluate the precision
of 3D form segmentation algorithms. It measures
the difference between the algorithm’s segmentation
bounds and the ground truth segmentation in three-
dimensional space. The best CED metric is when the
algorithm’s segmentation boundaries match the ground
truth boundaries, lowering the total error at all distance
thresholds to zero and showing a very small error rate at
all thresholds [82].

Our method is grounded in the examination of elements
that contribute to the attainment of high levels of accuracy in
the process of reconstructing three-dimensional (3D) repre-
sentations from two-dimensional (2D) data. It is imperative to
conduct a quantitative assessment of the MLP (Multi-Level-
Pixel-aligned-implicit function) for the 3D avatar, which
has been reconstructed from high-resolution 2D images.
These images were generated through model training using
the PIX2PIXGAN technique, which is recognised as a
high-resolution input for the PifuHD method employed in
the reconstruction of 3D human bodies. In this process,
a deep grid is utilised, and random cropping of 512×512
pixels is performed on the 1024×1024 pixels image. This
consideration is made to ensure the accuracy of features,
thereby enhancing the fundamental basis of our adopted
approach.

The quantitative comparison shown in Table 3, was
conducted using the RenderPeople dataset as the primary
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TABLE 3. Qualitative comparison state-of-the-art on RenderPeople.

input for producing 3D human avatars. This was achieved
by training our method’s model alongside state-of-art
approaches. The results indicate that our method exhibited
a clear superiority over other approaches. Additionally,
competition with the PifuHD method, which was used as
a key factor in our approach by improving its performance
and results using PIX2PIXGAN to obtain higher accuracy
results during the 3D reconstruction process, Quantitative
results method, where the Chamfer metric showed a slight
superiority of the pifuHD method, a result of 0.0293 with
a lower error value compared with our method, a result
of 0.0280, which is a better result compared to other
methods used in quantitative comparison. As for the P2S
and CED metrics, our method achieved a clear superiority
over the previous methods, with values of 0.0271 and 0.0232,
respectively.

The error slopes of the quantitative measures (Chamfer,
P2S, and CED) exhibit a reduced amplitude in our method
(PIXGAN-Drone) when compared to other methods using
the Renderpeople dataset, as visually depicted in Figure 10.
While the PifuHD technique demonstrates a reduced level
of error in the Chamfer measure, our approach consistently
achieves superior accuracy in the remainingmetrics, resulting
in a lower percentage of error.

FIGURE 10. Error regression curves of Chamfer, P2S, and CED on
Renderpeople.

The visual evaluation of the 3D human avatar reconstructed
by our method, as depicted in Figure 11, exhibits a higher
degree of realism and clarity in terms of physical details

when compared to other methods. Particularly, the avatar’s
physical curves are more prominent and distinct, devoid of
blurring or fusion, thereby enhancing its resemblance to the
actual human form. We notice a decline in other approaches
for reconstructing legs and feet is evident, but our method
demonstrates a noteworthy ability to accurately replicate the
surface texture of the reconstructed body parts.

FIGURE 11. Graphical results comparison with state-of-the-art methods
on RenderPeople.

In order to improve the quantitative comparison results
of our proposed approach (PIXGAN-Drone) in comparison
to existing state-of-the-art methods, The People snapshot
dataset, encompassing both indoor and outdoor scenes, has
been used for training our model as well as other methods.
The method employed in our study exhibited better results
when compared to all other approaches. The quantitative met-
rics, namely Chamfer, P2S, and CED findings, were shown
in Table 4, with corresponding values of 0.0133, 0.0136,
and 0.0050, respectively. Our method shows a reduced level
of error in comparison to other methods, particularly the
PifuHD method, which is considered competitive with the
most widespread approaches in this field.

TABLE 4. Comparison with state-of-the-art on People Snapshot (indoor).

The results were as follows: 0.0152, 0.0424, and 0.0071.
The quantitative measurements obtained from our method
are presented in Table 5, with values of 0.0154, 0.0101,
and 0.0063. Therefore, it displays improvements in terms
of better quality and reduced errors when compared to the
results of state-of-the-art methods, particularly the PifuHD
method, which yielded respective results of 0.0492, 0.0470,
and 0.0359.

Figures 12 and 13 depicts the error proportion with respect
to surface distance, which quantifies the disparity between the
produced avatars and the ground truth avatars. The method
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TABLE 5. Comparison with state-of-the-art on People Snapshot (outdoor).

proposed in this study demonstrates a notable reduction in
error percentage when compared to other methods, indicating
its capacity to produce avatars with higher precision andmore
realistic features.

FIGURE 12. Error rates regression on People Snapshot (indoor).

FIGURE 13. Error rates regression on People Snapshot (outdoor).

The visual evaluation is presented in Figures 14 and 15.
The avatar produced by the proposed method shows a

higher degree of realism and intricacy compared to the
avatars generated by other methods. Our method demon-
strates the capability to produce avatars that exhibit precise
body proportions, seamless skin textures, and authentic
muscular detailing. In contrast, the alternative approaches
provide avatars characterised by body proportions that are
comparatively less realistic. The avatar produced using
state of art methods indicates slight variations in body
proportions, a somewhat larger cranium and compara-
tively shorter extremities as compared to our approach
(PIXGAN-Drone).

FIGURE 14. Graphical results on People Snapshot (indoor).

FIGURE 15. Graphical results on People Snapshot (outdoor).

Based on a quantitative comparison using custom data-
drone collection, the results presented in Table 6, prove
that the PifuHD method surpasses our method in terms
of the Chamfer Metric, achieving a value of 0.0192 com-
pared to our method’s value of 0.0316. However, it is
worth noting that the PifuHD method shows a decline in
performance when considering the P2S and CED metrics,
with values of 0.0425 and 0.0217, respectively. However,
our method (PIXGAN-Drone) demonstrates improvement
in these metrics, achieving values of 0.0275 and 0.0216,
respectively. These values represent higher percentages of
precision when compared to other state-of-the-art methods.
Figure 16 illustrates the error rates apparent in the curves of
quantitative metrics when comparing our method with other
methods employed in the reconstruction of 3D avatars of
humans from 2D images. The Chamfer metric curve exhibits
a decline in the efficacy of our approach compared to PifuHD.
However, we observe improvements in the P2S and CED

74772 VOLUME 12, 2024



A. Salim Rasheed et al.: PIXGAN-Drone: 3D Avatar of Human Body Reconstruction

metrics across all methods. This outcome is justifiable and
admissible in quantitative comparisons, given the minor dis-
parities and competition among the 3D human reconstruction
approaches.

TABLE 6. Comparison with state-of-the-art methods on Custom
data-drone (collected dataset).

FIGURE 16. Graphical results on Custom data-drone collected.

FIGURE 17. Graphical results on Custom data-drone collected.

A visual comparison in Figure 17. of the avatars rendered
by the methods used in this approach shows a noticeable
competition between our method (PIXGAN-Drone) and the
PifuHD method in terms of the closeness of the descriptions
and features to the ground truth avatars, as we notice a
difference in some features of the face, with real and realistic

prominence of body details, and better coordination of the
appearance of the feet compared to the other 3D avatars.
As for the 3D human avatar that was reconstructed using
PifuHD, we notice the appearance of realistic facial details,
with the disappearance of body features and confusion in
the reconstructed feet. Other methods suffer from obvious
failures in the process of 3D reconstruction of human
avatars. We also investigated GPU consumption and the time
consuming given at the reconstruction step in the convoluted
tests. Table 7 presents a comparison with state-of-the-art
methods.

TABLE 7. Technical evaluation: Time and GPU consuming during 3D
reconstruction step.

V. CONCLUSION
A systematic approach to reconstructing realistic and detailed
3D avatars of the human body from multi-view 2D images is
provided by this systemmodel, which primarily combines the
capabilities of the Pix2Pix GAN and active tracking system
DJIMavicMini2 drone technology to capture high-resolution
images from a variety of angles and positions. While the
training of Pix2Pix GAN depends primarily on the quality
and accuracy of the input images obtained by the drones,
this study was able to highlight a number of limitations
that should be taken into account. These limitations have an
impact on the model’s ability to generate a high-resolution
2D representation that may contain occlusions and fused
angles. Its performance may be adversely affected by the
blurring of its surface roughness and other circumstances,
which could lead to a decrease in the effectiveness of
the model used to rebuild the 3D human body as well
as a limitation in its capacity to merge 2D images. The
study’s research area suggests a number of future plans
wherein depth data from computer vision applications
and sophisticated drone photogrammetry techniques can be
merged to improve the reconstruction of the 3D avatar of
the human body with all of its intricacies. Increasing the
number of high-resolution dataset photos also offers potential
for high-performance training. This model’s simplicity of
use for algorithms in real execution time makes it accessible
to the general public in the graphics and three-dimensional
image-building fields; it doesn’t require sophisticated knowl-
edge, and it can be invested in for use in virtual reality
applications, cinema animation, applications, and video films
that deal with the restoration of celebrities and deceased
personalities in applications involving human-computer
interaction.
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