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ABSTRACT Brain-Computer Interface (BCI) is a revolutionary technique that employs wearable elec-
troencephalography (EEG) sensors and artificial intelligence (AI) to monitor and decode brain activity.
EEG-based motor imagery (MI) brain signal is widely utilized in various BCI fields including intelligent
healthcare, robot control, and smart homes. Yet, the limited capability of decoding brain signals remains a
significant obstacle to BCI techniques expansion. In this study, we describe an architecture known as the
dual-branch attention temporal convolutional network (DB-ATCNet) for EEG-based MI classification. DB-
ATCNet improves MI classification performance with relatively fewer parameters by utilizing a dual-branch
convolutional network and channel attention. The DB-ATCNet model consists of two primary modules:
attention dual-branch convolution (ADBC) and attention temporal fusion convolution (ATFC). The ADBC
module utilizes a dual-branch convolutional network to extract low-level MI-EEG features and incorporates
channel attention to improve spatial feature extraction. ATFC employs sliding windows with self-attention to
obtain the high-level temporal features, and utilizes feature fusion strategies to minimize information loss.
The DB-ATCNet achieved subject-independent accuracies of 87.33% and 69.58% in two-class and four-
class classification tasks, respectively, on the PhysioNet dataset. On the BCI Competition IV-2a dataset,
it achieved an accuracy of 71.34% and 87.54% for subject-independent and subject-dependent evaluations,
respectively, surpassing existing methods. The code is available at https://github.com/zk-xju/DB-ATCNet.

INDEX TERMS Intelligent healthcare, MI-EEG classification, channel attention, dual-branch convolutional
network, multi-head self-attention.

I. INTRODUCTION
Edge computing, communication technologies, cloud com-
puting, and artificial intelligence (AI) are propelling us into
an era of unprecedented technological convergence. These
advances are bringing about significant changes in various
fields, including the domain of Brain-Computer Interface
(BCI). BCI is an interdisciplinary field involving AI, neu-
roscience, and other disciplines. BCI utilizes AI algorithms
and wearable sensors for monitoring and decoding brain
activity, translating it into control commands for interacting
with external devices. As a revolutionary and cutting-edge
technology, BCI has a variety of applications, such as
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prosthetic control, rehabilitation training, virtual reality expe-
riences, and gaming entertainment.

Electroencephalography (EEG) is a key technique used in
obtaining brain signals in the BCI system. In this method,
the brain’s electrical activity is recorded by measuring subtle
changes in electrical potential on the surface of the scalp.
EEG is low-cost, non-invasive, low risk, and excellent tem-
poral resolution, hence it is widely implemented in the BCI
field.

Motor imagery (MI) is the mental simulation of motion
without any physical execution. When a person imagines
doing a specific action, their brain produces neural activ-
ity comparable to that during the actual execution of the
action. Medical and non-medical applications of EEG-based
MI (MI-EEG) activities are extensive. Medical facets include
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thought-to-text translation, stroke recovery, and the control of
a variety of assistive devices including electrical stimulation
devices, prosthetics, screen pointers, and wheelchairs [1].
Non-medical examples involve controlling environments
in smart homes, games, enhancing human abilities with
exoskeletons or robotic arms, and even authentication and
security identification [1].

Although BCI is advancing through innovation, its prac-
tical application is currently constrained by the decoding
capability of brain signals. MI-EEG signals are particularly
difficult to decode for several reasons. Firstly, MI-EEG sig-
nals are sensitive to various interferences involving muscle
movement, eye blinking, and environmental noise, leading to
a decline in signal quality and increased decoding difficulty.
Secondly, individual differences in brain signals impose high
demands on the generalization capability of decodingmodels.
Additionally, EEG signals exhibit channel correlation, high
dimensionality, and nonstationary, which further complicates
the detection and decoding of MI-EEG signals.

To meet MI-EEG signals decoding difficulties, researchers
have proposed some traditional machine learning (ML) and
deep learning (DL) techniques. The traditional ML pro-
cess for analyzing EEG signals typically has three steps:
preprocessing, feature extraction, and classification. Pre-
processing technology can effectively remove artifacts and
interference in EEG signals while retaining the original
and true EEG information. Preprocessing methods for EEG
signals typically include channel selection, signal filtering,
signal normalization, and artifact removal [1]. The most
commonly used artifact removal method is independent com-
ponent analysis (ICA) [2], [3]. Feature extraction methods
for MI-EEG signals include signal processing algorithms
such as power spectral density (PSD), short-time Fourier
transform (STFT), common spatial pattern (CSP) and filter
bank CSP (FBCSP), which can extract frequency, spatial
frequency, or time-frequency features from MI-EEG signals.
Commonly used feature classification methods include ran-
dom forest (RF), support vector machine (SVM), extreme
learning machine (ELM) and k-nearest neighbor (KNN),
which are used to classify extracted features. However, tradi-
tional ML is labor-intensive and requires extensive expertise,
which limits classification performance. By contrast, DL can
obtain richer features from raw EEG data without requiring
preprocessing or manual feature extraction, and also has
excellent feature classification performance, which usually
improves recognition accuracy. Furthermore, DL integrates
feature extraction and classification into a unified framework
that enables end-to-end decoding of MI-EEG signals. DL has
been applied in many fields, including video recognition and
speech processing, and has produced excellent results [4], [5].
In recent years, research utilizing DL to identify MI

tasks has developed rapidly, drawing from the successful
applications of DL in other domains [1]. Statistical anal-
ysis indicates that among these DL models, convolutional
neural network (CNN) has emerged as the predominant

method for decoding MI-EEG signals [6], [7], [8], [9], [10],
[11], [12], [13], [14], [15], [16]. For example, Schirrmeis-
ter et al. [6] proposedDeepConvNet architecture and Shallow
ConvNet architecture for MI task classification, and found
that their performance is highly susceptible to interference
from CNN depth. Lawhenn et al. [7] integrated separable
convolution operations into CNN and proposed the EEG-
Net framework, which has been successfully applied to
various task classifications. In addition, some studies have
exploited the unique characteristics of EEG signals in devel-
oping CNN architectures for MI task classification. Such as,
Mane et al. [8] proposed the FBCNet architecture by using
filter-bank CSP to divide the EEG signal into multiple fre-
quency bands and using CNN to extract features and classify
MI tasks. Wang et al. [9] proposed the IFNet architecture to
improve the representation of MI features by further explor-
ing cross-frequency interactions. Additionally, several other
CNN varieties have been proposed, such as attention-based
CNN [10], [11], [12], [13], [14], residual-based CNN [15],
inception-based CNN [10], [11], multi-branch CNN [14],
[15], multi-scale CNN [13], and multi-layer CNN [16].
Among these CNN varieties, the multi-branch CNN struc-

ture has attracted attention due to its unique advantages.
Multi-branch structures not only facilitate feature extraction
across multiple dimensions but also effectively alleviate over-
fitting issues in MI classification, enhancing model trainabil-
ity [17]. Some researchers have found that multi-branch CNN
outperforms single-branch CNN for multi-class MI tasks.
For instance, Liu et al. [15] designed a three-branch densely
connected CNN, where its combination of multi-branches
exhibited superior classification accuracy compared to a sin-
gle branch, and an increase in dense block branches improved
performance. Amin et al. [16] used four branch CNN
with varying numbers of convolutional blocks to acquire
multi-level information from MI-EEG signal and fused these
features utilizing multi-layer perceptron (MLP) and auto-
encoder (AE) for classification. Zhao et al. [18] designed
a three-dimensional CNN with multiple branches based on
three different receptive fields to extract features. Inspired
by these studies, we propose a dual-branch CNN module as
the feature extraction module of the MI-EEG classification
algorithm.

Besides CNN, the methods used for MI classification
include deep belief network (DBN) [19], auto-encoder (AE)
[20], recurrent neural network (RNN) [21], [22], and hybrid
DL models [12], [16]. Hassanpour et al. [20] employed
stacked AE (SAE) to decode MI tasks utilizing spectral fea-
tures. Xu et al. [19] designed a DBN that utilized restricted
Boltzmann machines to decode four types of MI tasks.
In some studies, RNN was utilized to obtain temporal fea-
tures of MI-EEG signals and demonstrated excellent results.
For instance, Kumar et al. [21] utilized FBCSP and long
short-term memory (LSTM) network for feature extraction,
with SVM as classifiers. Luo and Chao [22] utilized the
FBCSP algorithm to obtain spatial-frequency features before
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input the extracted features to a gated recurrent unit (GRU)
model. This research found that GRU surpassed LSTM in
EEG signal decoding. Overall, CNN models perform better
in MI task identification than other DL methods [1]. Further-
more, many researchers have explored the integration of other
DL models with CNN, for instance, LSTM in [12] and SAE
in [16], and hybrid DL networks show excellent results.

In recent times, a temporal convolutional network (TCN)
has achieved outstanding results in modeling and classify-
ing temporal data [23]. Unlike traditional CNN, TCN can
increase parameter numbers linearly while expanding recep-
tive fields exponentially. This allows them to have a broader
receptive field with fewer parameters. Furthermore, TCN
does not encounter issues such as gradient explosion or van-
ishing gradients when handling long input sequences, as may
occur in other time-series classification networks, such as
RNN [24], [25]. Compared with other RNN models includ-
ing GRU and LSTM, TCN has achieved superior results
in various sequence-related tasks [23]. Consequently, recent
research has applied TCN architectures to decode MI-EEG
signals with satisfactory performance. Ingolfsson et al. [24]
designed the EEG-TCNET architecture, which integrates the
TCN with the EEGNet architecture. Musallam et al. [25]
improved upon this with the TCNet-Fusion model, enhancing
the EEG-TCN model using TCN structure and feature fusion
techniques. Altaheri et al. [26] utilized attention integrated
TCN and CNN for decoding MI-EEG signals, achieving
superior performance.

Over the past few years, researchers have discovered the
unexpected benefits of integrating attention mechanisms into
DL models. Attention mechanisms simulate the selective
focus process in human information processing, allowing
the model to selectively attend to important elements while
disregarding irrelevant content. Integrating attention mech-
anisms with DL models automatically highlights the key
information in the input data. Luong et al. [27] and Bah-
danau et al. [28] proposed the initial algorithms based
on attention, called multiplicative and additive attentions.
Vaswani et al. [29] proposed the Transformer model with
multilayer perceptron (MLP) and multi-head self-attention
(MSA). Initially designed for natural language processing,
these models based on attention have also been applied
to other domains like speech recognition and computer
vision. Recently, some attentionmethods have been designed,
particularly in the domain of computer vision, including
squeeze-and-excitation (SE) [30], efficient channel atten-
tion (ECA) [31], and convolutional block attention module
(CBAM) [32].

Recent research explores the potential of DL methods
based on attention for classification of MI [14], [26],
[33]. For example, Altuwaijri et al. [14] proposed decod-
ing raw EEG signals with a triple-branch CNN model
based on SE attention blocks. Jia et al. [33] introduced a
multi-branch CNN model combining ECA and LightGBM,
where the ECAmodule assigns weights to features, obtaining

more discriminative features and improving feature recog-
nition. Altaheri et al. [26] introduced an MI-EEG signal
decoding architecture based on MSA, achieving excellent
performance.

Feature fusion is a process of combining features from
various branches or layers to improve model performance by
leveraging their complementary nature. In computer vision,
feature fusion has been shown to be essential technique for
boosting performance [34], [35]. In addition, feature fusion
methods have been widely used in the medical field, such
as cardiovascular disease assessment [36], [37]. Recently,
researchers have integrated feature fusion techniqueswithDL
models to decode MI-EEG. For example, the TCNet-Fusion
model [25] enhances the EEG-TCN model’s performance by
introducing fusion layers that combine features from differ-
ent layers to construct rich feature mappings. Li et al. [13]
proposed a multi-scale fusion CNN combining an attention
mechanism to decode MI-EEG signals. The network extracts
multiscale spatio-temporal features from the signal and uses
a multiple feature fusion method to maintain maximum infor-
mation flow.

In this paper, we design a dual-branch attentional tem-
poral convolutional network (DB-ATCNet) for decoding
MI-EEG brain signals. MI-EEG signal is processed by the
proposed model in three steps. Firstly, a dual-branch CNN
combined with channel attention mechanisms is used to
encode MI-EEG signals into high-level temporal representa-
tions. Secondly, attention layers are utilized to emphasize the
most valuable content in the time series. Finally, a temporal
convolutional layer with multi-scale information fusion is
employed to obtain advanced temporal features from the
highlighted content. The model utilizes sliding window to
enhance MI classification performance. Contributions of this
study include:

1) We designed an excellent DB-ATCNet frame-
work, which incorporates dual-branch CNN, channel
attention mechanism, MSA mechanism, TCN with
multi-scale feature fusion, and sliding window.

2) Dual-branch CNN can acquire and integrate features
from EEG signals at multiple scales, enriching feature
information and effectively improving accuracy.

3) Channel attention mechanisms can improve a model’s
feature extraction across the spatial dimensions of EEG
signals.

4) Adding multi-level residual connections in the TCN
enhances feature reuse, thereby improving the model’s
representational capacity and generalization ability.

5) The DB-ATCNet architecture has achieved excellent
results with the BCI Competition IV-2a dataset [38] and
Physionet MI-EEG dataset [39].

The paper is structured as follows: the proposed DB-ATCNet
model is introduced in Section II, results are presented and
discussed in Section III, and the conclusion is presented in
Section IV.
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FIGURE 1. Components of the DB-ATCNet architecture.

II. METHOD
The paper proposes the DB-ATCNet model, which consists
of two main modules: attention dual-branch convolution
(ADBC) module and attention temporal fusion convolution
(ATFC) module. The ADBC module includes a dual-branch
convolutional network (DBCN) and two channel attention
modules. The DBCN extracts low-level spatio-temporal fea-
tures ofMI-EEG signals, while the channel attentionmodules
enhance EEG signals’ spatial information selection abil-
ity. Ultimately, the ADBC module outputs a temporally
sequenced series of high-level representations. Subsequently,
a sliding window (SW) is employed to segment the series into
multiple windows. These windows are then input in parallel
into independent ATFC modules, as shown in Fig. 1. The
ATFC module comprises a MSA and a subsequent temporal
convolution fusion network (TCFN). TheMSA automatically
concentrate on the most critical information in every window
and inputs the features into TCFN to further extract high-level
temporal features from time series. Finally, a fully connected
(FC) layer with a SoftMax activation function integrates all
features from all windows. Probability predictions are gen-
erated using SoftMax for the performed MI tasks. Following
are detailed descriptions of the DB-ATCNet architecture.

A. INPUT REPRESENTATION AND PREPROCESSING
This study employs the same input representation as ATC-
Net [26]. The DB-ATCNet model takes a MI trial Xi ∈ RC×T

as input, consisting of C channels (EEG electrodes) and T
time points. The objective of the DB-ATCNet model is to
map the input MI trial Xi to its corresponding class yi. The
set of m labeled MI trials S = {Xi, yi}mi=1 is given, where
yi ∈ {1, . . . ,n} is the corresponding class label for trial Xi and

n is the total number of classes defined in set S. For the BCI-
2a [38] dataset, T = 1125 time points, C = 22 EEG channels,
n = 4 MI classes, and m = 5184 MI trials. For the Physionet
dataset [39], T = 640 time points, C = 64 EEG channels, n =

4 MI classes, and m = 9241 MI trials.
Recent studies related to deep learning have shown that

utilizing raw EEG signals from public datasets without
preprocessing (except for the preprocessing of the dataset
itself (for example, before the release of the BCI-2a dataset,
the data was subjected to 0.5-100 HZ bandpass filtering
and 50 Hz notch filtering), no other preprocessing meth-
ods are used) as model input can lead to more competitive
results [1]. This approach has been adopted by numerous
studies, such as G-CRAM [12], MBEEGSE [14], ATC-
Net [26]. In this study, we followed this approach by using
raw, unprocessed EEG data that spans the entire frequency
range (0.5 - 100 Hz in the BCI-2a dataset and 0 - 80 Hz in the
Physionet dataset) and encompasses all channels (22 in the
BCI-2a dataset and 64 in the Physionet dataset), without any
artifact removal. Before input into the DB-ATCNet model,
MI-EEG signals are standardized, as follows:

x ′
i =

xi − mean (xi)
std (xi)

, i = 1, 2, 3, . . . ,C (1)

where C represents the number of EEG channels.

B. ATTENTION DOUBLE-BRANCH CONVOLUTION BLOCK
The ADBC module draws inspiration from ATCNet [26]
and MBEEGSE [14]. It consists of the dual-branch convolu-
tional network (DBCN) and two channel attention modules,
as depicted in Fig. 2. The DBCN comprises two components.
The first component is a temporal convolutional layer that
acquires spectral features of Xi across different frequency
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FIGURE 2. Attention double-branch convolution (ADBC) block.

bands. The second part is the dual-branch network, where
each branch includes a spatial (depth-wise) convolutional
layer which obtains spatial features from the feature maps and
a spatio-temporal convolutional layer that learns how to prop-
erly fuse the spatial-temporal features. Each branch outputs a
spatio-temporal sequence, which is then fused into a single
advanced spatio-temporal representation sequence through
summation. The first and second parts of DBCN are both
followed by channel attention modules used to improve the
learning ability of EEG signal spatial (channel) information.
Details of the DBCN and channel attention are discussed in
the subsequent sections.

1) DUAL-BRANCH CONVOLUTIONAL NETWORK
The DBCN module and the convolutional blocks explained
in ATCNet [26] share similar kernel parameters and both uti-
lize batch normalization (BN) [40], exponential linear units
(ELU), and average pooling after spatial (depth-wise) con-
volutional layers and spatio-temporal convolutional layers to
respectively enhance trainability, introduce non-linearity, and
reduce dimensionality. However, they differ significantly in
network structure. The DBCN utilizes a dual-branch network
structure to enhance feature information and reduce network
overfitting, resulting in improved model accuracy and gener-
alization performance.

The first part of the DBCN module consists of a temporal
convolutional layer that employs F1 filters of size (1,Kc),
where Kc represents the length of the filter along the time

axis. Enabling the filter to capture frequency information
of 4 Hz and above, Kc is configured to be one-fourth of
the sampling rate (64 in the BCI-2a dataset). As a result of
the temporal convolutional layer, we obtain the F1 temporal
feature map. The DBCN module’s second part comprises
a dual-branch network, with both convolutional branches
sharing the same structure. The initial layer in both branches
is a depth-wise convolutional layer that extracts spatial fea-
tures from each feature map (related to EEG channels).
Each depth kernel learns spatial features from specific fre-
quency bands. The output of the first part, processed through
spatial depth convolution, results in a time series Si,2 ∈

RT×D×F1 , where each feature map is connected to D spatial
kernels. In the experiments, the values of D for the two
branches were set as D1 = 2 and D2= 4, as explained
in Section III-D. After the depth-wise convolutional layer,
both branches were down-sampled using an average pooling
layer with a size of (1, 8) for decreasing dimensionality.
This decreased the time data and sampling frequency to
1/8 of the input, which means the signal’s sampling rate is
approximately 32 Hz. Both branches’ second convolutional
layers consist of spatio-temporal convolutional layers with
filters of size (1,Kc2) for F2. To ensure consistent output
formats, we set the value of Kc2 to be the same for both
branches. Moreover, for decoding MI activity in 500 ms
(sampled data at 32 Hz), we set Kc2 to 16 for both branches.
The layer of spatio-temporal convolution learns to optimally
integrate spatio-temporal features, resulting in a high-level
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spatio-temporal representation sequence Si,3 ∈ RT1×F2 .
Then, an average pooling layer of size (1,P2) decreases
the sampling rate to ∼ 32/P2Hz. Based on the experiences
of EEGNet [7] and ATCNet [26], we set P2 to 7. Finally,
the spatio-temporal sequences from both branches are fused
through addition. Both the channel depth convolutional layer
and the spatio-temporal convolutional layer use BN [40] to
accelerate network training. Then, the ELU is activated to
introduce nonlinearity.

The DBCN block produces a time series zi ∈ RTc×d ,
comprising Tc time vectors, each of length d . Based on
experience, we set d = DF1 = F2 = 32.

2) CHANNEL ATTENTION
Regarding neural network design, the feature extraction com-
ponents of ATCNet [26], EEGNet [7], and the proposed
DBCN module follow a similar pattern. They all start with
temporal convolution, followed by depth-wise convolution,
and finally spatio-temporal convolution. However, depth-
wise convolutions and temporal convolutions have limited
capacity to capture spatial information from EEG signals,
which may result in the loss of spatial features.

To overcome this limitation, LMDA [41] successfully
applied channel attention mechanisms to select channels in
MI-EEG, which yielded promising results. Motivated by
this success, we introduce channel attention mechanisms to
recalibrate spatial and spectral information within the pro-
posed DBCNmodule. We have integrated a channel attention
module after the temporal convolution layer of the DBCN
module to capture inter-channel interactions inMI-EEG data,
enhancing its ability to learn spatial (channel) information.
Furthermore, we have added another channel attention mod-
ule after the dual-branch convolutional network of the DBCN
module to further focus on key information in the high-level
spatio-temporal representations produced by the network.

Commonly used channel attention mechanisms in EEG
data processing include SE [30], CBAM [32], and ECA [31].
ECA module is preferred over SE and CBAM due to its
ability to capture cross-channel interactions in an extremely
lightweight manner while avoiding channel reduction. Addi-
tionally, ECA has fewer parameters than CBAM [31]. The
experiments in Section III-E. demonstrate that both channel
attention modules (ECA1 and ECA2) using the ECA module
outperform other methods. Therefore, this study introduces
channel attention modules (ECA1 and ECA2) that both adopt
the ECA module. Fig. 3 depicts their specific structures.
In the ECA module, acquired spectral-temporal features

are assigned attention weights using a neural network, and
the network parameters are adaptively optimized based on the
importance of each feature. The implementation process is
detailed as follows:

1) Fig. 3 illustrates that the ECA module input dimension
is (N ,H ,W ,C), where C is the number of feature
maps. The GAP layer performs global average pool-
ing, compressing the input data without reducing the

FIGURE 3. The architecture of ECA module. Dimensions of feature maps
are represented by parameters C, H, and W. The k represents the 1D
convolution size, and GAP refers to the global average pooling layer.

dimension of the feature maps and aggregating features
for each channel. Following the GAP layer, the input
dimension becomes (N , 1, 1,C).

2) Feature maps are automatically learned using a
one-dimensional convolutional layer. Feature channels
in the attention mechanism are influenced by the kernel
size of one-dimensional convolutional layers. To calcu-
late the value of k, which is proportional to the number
of feature channels, an adaptive algorithm is proposed.
The mathematical expression is as follows:

k = ψ (C) =

∣∣∣∣ log2 (C)γ
+

b
γ

∣∣∣∣
odd

(2)

where b represents the offset of the linear mapping, andψ(C)
represents the linear mapping between k and the number of
channels C.

1) Following the calculation of cross-channel interac-
tion ranges using 1D convolution in step (b), feature
redistribution across non-aggregated channels is per-
formed using σ . σ represents the relationship between
the effect obtained after channel interactions and the
assigned weights. In this study, σ employs the sigmoid
function to map weights, as follows:

ω = σ (C1Dk (y)) (3)

where C1Dk represents a one-dimensional convolution of
size k.

In summary, the ECA module utilizes GAP to aggregate
convolutional features, determines the kernel size k adap-
tively, performs one-dimensional convolution, and applies
the sigmoid function to learn attention for local neighboring
channels. This approach ensures the range of channel inter-
actions, addresses dimensionality reduction, and enhances
performance and speed by reducing computational and
parameter overhead.

C. ATTENTIONAL TEMPORAL FUSION
CONVOLUTION BLOCK
The Attention Temporal Fusion Convolution (ATFC) module
contains a MSA block and a temporal convolution fusion
network (TCFN). The MSA extracts key temporal features
from the time series Zi output by the AMDC block. Subse-
quently, the TCFN capture advanced temporal features from
the sequence output by theMSA. To enhance the performance
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FIGURE 4. Multi-head self-attention.

of DB-ATCNet, the input sequence Zi is segmented into local
windows by utilizing a sliding window (SW) approach. These
local windows are used as inputs to parallel ATFC blocks,
which will demonstrate improved performance as shown in
the subsequent Experimental section. The SW, MSA, and
TCFN will be explained in the subsequent paragraphs.

1) SLIDING WINDOW
The time series Zi is divided into multiple local sequences
Zwi ∈ RTw×d using a sliding window (SW). This facilitates
the extraction of individual local features. A SW of size Tw =

Tc − 5 with one element step was employed, segmenting Zi
into 5 local windows. For further settings and a detailed dis-
cussion about sliding windows, please reference the research
in [26].

2) MULTI-HEAD SELF-ATTENTION
The attention mechanism is an excellent method for cap-
turing interactions in sequential data or images. The MSA
employed in this study has demonstrated promising results
in ATCNet [26]. Multiple self-attention heads make up the
MSA layer. Each head executes scaled dot-product atten-
tion [29]. Each attention head contains three important parts:
query(Q), key(K), and value(V). The interaction of keys and
queries generates attention scores which emphasize the valu-
able aspects of the values, as shown in Fig. 4. The following
is a detailed description of this interaction.

Initially, compute the query/key/value vector for every
local window zwi through a linear projection, as follows:

qht = W h
QLN

(
zwi,t
)

∈ RdH ,W h
Q ∈ Rd×dH (4)

kht = W h
KLN

(
zwi,t
)

∈ RdH ,W h
K ∈ Rd×dH (5)

vht = W h
VLN

(
zwi,t
)

∈ RdH ,W h
V ∈ Rd×dH (6)

where the variable h = 1, . . . ,H denotes the head index,
where H represents how many attention heads there are. t =

1, . . . ,Tw represents the index of elements in the local win-
dow zwi , where Tw refers to the window’s length (the whole
number of vectors within the window). The head dimension
is experimentally set to dH = d/2H . LN represents layer
normalization [42].

Next, the vector of context for every head can be calculated
by multiplying the value Vwith the attention score. Assume a
mini-batch with m key-value pairs (K ∈ Rm×dH ,V ∈ Rm×v)

FIGURE 5. The temporal convolution fusion network.

and n queries Q ∈ Rm×dH , each head’s context vector Ch is
computed as follows:

Ch
= softmax

(
Qh
(
K h
)T

√
dH

)
V h

∈ Rn=Tw×v=dH (7)

whereQh ∈ Rn×dH , V h
∈ Rm×v, and K h

∈ Rm×dH

In this study, we configure v = dH = 8 and n = m = Tw.
Following this, by combining vector of context from all

heads then linearly projecting the resulting vector, they are
added to the input sequence zwi , thereby achieving multi-head
self-attention, as follows:

zwi = W0

[
C1, . . . ,CH

]
+ zwi ∈ RTw×d ,W0 ∈ RdH×d (8)

3) TEMPORAL CONVOLUTION FUSION NETWORK
The design of TCFN model resembles the TCN network pro-
posed in [26], as they share the same set of hyperparameters.
The key difference lies in the replacement of the second
TCN residual block in the TCN network described in ATC-
Net [26] with a TCN fusion block in the TCFN module. This
TCN fusion block modifies the residual connections in the
TCN residual block, replacing them with multi-level residual
connections, as depicted in Fig. 5. These multi-level resid-
ual connections in the TCN fusion block enable multi-level
feature fusion, enriching the feature information while miti-
gating model overfitting.

TCFN comprises a series of residual blocks, where every
block connects two causal dilated convolutional layers to an
exponential linear unit (ELU) and a BN [40], as shown in
Fig. 5. For further information on the TCFN structure, please
refer to [26].

Fig. 6 shows 16 temporal components (Tw = 16) that enter
the TCFN module. Every component is a vector of size F2
(equivalent to the kernel number in the final transformation
layer of the ADBC block). The last component in the TCFN
module output sequence is a vector of length FT . For our
research, we set FT = F2 = 32.

III. EXPERIMENTAL RESULTS AND DISCUSSION
A. DATASET
We evaluated the DB-ATCNet model using the BCI-IV2a
dataset [38] and Physionet EEG motor movement/imagery
dataset [39].
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FIGURE 6. Visualization of feature maps in the attention temporal fusion convolution network (ATFC) block using a window of 16 elements
(Tw = 16).

BCI-IV2a dataset: This dataset contains 5184 MI trials
across 4 classes of MI tasks. Every trial lasting 8 seconds
with the MI activity occurring within the middle 4 seconds.
The BCI-IV2a dataset consists of two sessions, both recorded
by 9 subjects with 22 EEG sensors. DB-ATCNet model was
trained on one session and evaluated for its performance on
another session.

Physionet EEG motor movement/imagery dataset: The
dataset comprises EEG recordings from 109 participants who
performed 4 tasks across 14 experimental runs. Participants
utilized the BCI 2000 system to record 64-channel EEG sig-
nals at a sampling rate of 160 Hz while performing tasks. The
14 experiments consisted of 2 baseline runs, 6 actual move-
ment runs, and 6 motor imagery (MI) runs, which included
four types of MI tasks: left fist (L), right fist (R), both fists
(LR), and both feet (F). Each type of MI task consisted of
21 trials, each lasting 4 seconds and containing 640 time
points. Data related to participants 38, 88, 89, 92, 100, and
104 were excluded from the sample due to annotation errors.

B. EVALUATION METHOD AND PERFORMANCE METRICS
On the BCI-IV 2a dataset, the proposed model was evaluated
through subject-independent and subject-dependentmethods.
Subject-dependent evaluation was conducted using original
competition testing and training data. The model underwent
training on 9 × 288 trials in Phase 1 and was then evaluated
in Phase 2 using another set of 9 × 288 trials. The ‘Leave-
One-Subject-Out’ (LOSO) evaluation method was used for
subject-independent evaluation [26].

On the Physionet dataset, the proposed model was eval-
uated through subject-independent methods. Specifically,
we employ 10-fold cross-validation to evaluate the model
performance. In each validation, 10% of the data is randomly
selected for testing, while the remaining 90% is used for
training. This process is repeated ten times, and the average
of the ten accuracies obtained is taken as the classification
result.

In this research, accuracy and Kappa scores are utilized
to evaluate the proposed models, which are described as
follows:

ACC =

∑n
i=1 TPi/Ii
n

(9)

where n indicates the number of classes, Ii is the number of
samples in class i, and TPi is the true positive, i.e., the number
of correctly predicted samples in class i.

kscore =
1
n

n∑
a=1

Pa − Pe
1 − Pe

(10)

where Pe is the expected percentage chance of agreement, Pa
is the actual percentage of agreement, and n is the number of
classes.

TensorFlow framework and Python 3.8 were utilized to
train and test the model on a single Nvidia GTX 3080 10GB
GPU. Initialize the weights using the Glorot uniform ini-
tializer. The Adam optimizer was utilized with a learning
rate of 0.0009, and a categorical cross-entropy loss function.
The BCI-IV 2a dataset was trained for 1000 epochs with a
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TABLE 1. Contribution of each block in the DB-ATCNet model to the
performance of MI Classification using the BCI-2a dataset.

patience of 300 and a batch size of 64, while the Physionet
dataset was trained for 500 epochs with a patience of 100 and
a batch size of 32.

C. THE CONTRIBUTIONS OF DB-ATCNet BLOCKS
This section evaluates the performance of each module in
the DB-ATCNet model through ablation analysis. Table 1
shows the effect of deleting single or multiple blocks in
the DB-ATCNet model on MI classification performance
applying the BCI-2a dataset. The results show that the MSA
and SW modules improve the overall accuracy by 1.85%
and 2.05%, respectively. Compared to the absence of the
ECA 1 and ECA 2 modules, adding only the ECA 1 module
decreases the overall accuracy by 0.12%, adding only the
ECA 2 module increases it by 0.08%, and including both the
ECA 1 and ECA 2 modules together increases it by 0.31%.

In addition, when considering the DBCN module alone,
adding the ECA 1 module decreases accuracy by 0.35%,
adding the ECA 2 module increases it by 0.39%, and adding
both the ECA 1 and ECA 2 modules together increases it by
1.16%. This indicates that the ECA 1 and ECA 2 modules
affect the overall accuracy of the model by working together
with the DBCN module, adding the ECA 1 and ECA 2 mod-
ules simultaneously can achieve the best results of the model.
Additionally, the introduction of the TCFN module results in
a 2.43% increase in accuracy compared to the ATBC module
alone.

Overall, with the exception of the MSA and ECA 1 mod-
ules, the independent addition of the other modules improves
the overall accuracy. When the TCFN module is added fol-
lowing the MSA module, it improves accuracy; conversely,
when the MSAmodule is removed before the TCFN module,
accuracy decreases and may fall below that achieved with the
DBCN module alone. This suggests that placing the MSA
module directly in the end may degrade performance, but
adding an extra classification layer could potentially improve
model performance. In conclusion, our ablation experiments
show that the proposed modules have a beneficial effect on
the results of MI-EEG classification tasks.

FIGURE 7. Accuracy of the BCI-2a as a function of the number of output
channels in the deep-wise convolutional layers.

D. VARYING THE NUMBER OF OUTPUT CHANNELS IN
THE DEEP-WISE CONVOLUTIONAL LAYERS OF DBCN
This section examines the effect of varying the output chan-
nels of the two deep convolutional layers of the DBCN
module on the accuracy of DB-ATCNet on the BCI-IV 2a
dataset. The output channels of deep-wise convolutional lay-
ers are determined by F ×D, where F is the number of input
channels and D is the number of filters connected to every
feature map in the previous layer. In our study, both deep con-
volutional layers had F set to 16, so the output channels were
uniquely determined by the parameters D1 and D2. We used
a controlled experimental design to analyze the influence
of D1 and D2 on the performance of DB-ATCNet. Based
on experience, we set the range of D1 and D2 to integers
between 2 and 6. Fig. 7 illustrates the change in DB-ATCNet
accuracy when we fixed the value of D2 and then increased
D1 from 2 to 6. The graph shows that when D2 is fixed, the
accuracy is lower when D1 is the same as D2 than when
they are different. This indicates that when both branches
have the same number of channels, the learned features are
similar, limiting the advantage of the dual-branch structure in
enriching features. In addition, DB-ATCNet achieves optimal
performance when D1 and D2 are both set to 2 and 4.

E. COMPARING DIFFERENT CHANNEL ATTENTION
SCHEMES
In this study, we increased the performance of the
DB-ATCNet by integrating channel attention modules before
and after the dual-branch convolutional network (DBCN)
module. For the sake of clarity in the following experimental
descriptions, we will refer to these two channel attention
modules as CA 1 and CA 2.
In this section, we used three different attention mecha-

nisms (ECA [31], CBAM [32], and SE [30]) to validate the
effectiveness of the insertion positions of CA 1 and CA 2,
and to explore the optimal choices for CA 1 and CA 2. Fig. 8
illustrates our experimental results on the BCI-IV 2a dataset,
where ‘‘None’’ indicates the absence of an attention module.
When either CA 1 or CA 2 was added individually, the

use of ECA for CA 2 resulted in improved accuracy. When
both CA 1 and CA 2 were added simultaneously, selecting
CBAM for either CA 1 or CA 2 decreased accuracy, whereas

74938 VOLUME 12, 2024



K. Zhou et al.: Dual-Branch Convolution Network with Efficient Channel Attention

FIGURE 8. Performance of DB-ATCNet model with different channel
attention schemes: ECA, CBAM, and SE.

selecting ECA or SE for both CA 1 and CA 2 increased
accuracy. Notably, when ECA was used for both CA 1 and
CA 2, accuracy improved by 0.31% and the highest accu-
racy was achieved. These results suggest that strategically
inserting channel attention at specific locations can improve
model performance. Furthermore, CBAM was found to be
inappropriate for this model, while SE and ECA were found
to be appropriate for the EEG representation in this model,
with ECA being the optimal choice for channel attention in
this context.

F. COMPARISON TO RECENT STUDIES ON
THE BCI-IV 2a DATASET
In this section, we use the BCI-IV2a dataset to evalu-
ate the performance of DB-ATCNet and compare it with
other reproduced models, including EEGNet [7], EEG-
TCNet [24], TCNet_Fusion [25], and ATCNet [26]. These
models were preprocessed, trained, and evaluated according
to the methods specified in this study, while their results
depend on the parameters specifiedwithin the original papers.
Table 2 presents the average and best performance of every
model according to 10 random runs. The results show that
DB-ATCNet achieves an accuracy of 87.5% and a κ-score
of 0.83 and outperforms the other models in all subjects.
DB-ATCNet also has better average performance than other
models. This shows that the designed model has excellent
learning capabilities as well as is able to achieve the same
stable performance over multiple runs. Additionally, the pro-
posed model showed minimal standard deviation, meaning
better stability across subjects than the other models.

Fig. 9 presents the confusion matrix of reproduced net-
works and DB-ATCNet. In comparison, DB-ATCNet pre-
sented gains in classification performance for all MI classes.

T-distributed stochastic neighbor embedding (t-SNE) [43]
is a widely employed statistical technique for reduc-
ing dimensionality and visualizing features. t-SNE maps
high-dimensional data points to a low-dimensional space
while retaining the local structure of the data. Fig. 10
illustrates the feature distributions of the BCI-IV2a dataset
after separate training using reproduced networks and DB-
ATCNet. The visualization results indicate that the fea-
tures extracted by the proposed DB-ATCNet model have
clearer boundaries and more distinct clustering. This further

FIGURE 9. Confusion matrices of the reproduced models and DB-ATCNet.

FIGURE 10. The results of t-SNE visualization of the extracted features
using the reproduced networks and DB-ATCNet for the subject-specific
classification task on the BCI-2a dataset.

demonstrates the model’s ability to effectively extract fea-
ture information and enhance the separability of different
categories.

Table 3 presents a comparison of recent research in MI
decoding, considering preprocessing techniques, input for-
mulations, model architectures, and model performance in
subject-independent and subject-dependent methods. For all
researches, leave-one-subject-out (LOSO) cross-validation
was utilized for subject-independent evaluation and the orig-
inal BCI-IV2a competition division (Session 1 for training
and Session 2 for testing) was utilized for subject-dependent
evaluation. Our proposed DB-ATCNet outperforms previous
studies utilizing raw MI-EEG signals without preprocessing.
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TABLE 2. Performance (accuracy (%) and-score (k)) comparison of subject-specific classification using BCI-2a dataset for the proposed model with other
reproduced models.

TABLE 3. Subject-dependent and subject-independent performance comparison between DB-ATCNet and recent studies using the BCI-IV2a dataset. The
average score (k) and accuracy (%) of all subjects is presented.

In particular, proposed model demonstrates superior per-
formance in subject-independent and subject-dependent eval-
uations, demonstrating its robust generalization capability to
new subjects.

G. COMPARISON TO RECENT STUDIES ON THE
PHYSIONET MI-EEG DATASET
In this section, we conducted two-class (L and R) and four-
class (L, R, LR, and F) classification tasks using the Physionet
MI-EEG dataset to test the generalization performance of
the DB-ATCNet model. We compared the performance of

DB-ATCNet with other state-of-the-art models on the same
dataset.

Table 4 shows that the proposed model achieved accura-
cies of 87.33% and 69.58% in the two-class and four-class
classification tasks, respectively. Compared to other state-of-
the-art models, the proposedmodel demonstrated an accuracy
improvement of 0.63% and 1.04% in the two-class and four-
class tasks, respectively.

Fig. 11 illustrates the confusion matrices of DB-ATCNet in
the two-class and four-class classification tasks. The results
indicate that DB-ATCNet performed well in classifying the
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TABLE 4. Comparison of DB-ATCNet and state-of-the-art methods on the PhysioNet dataset.

FIGURE 11. Confusion matrix of DB-ATCNet for two-class and four-class
classification tasks on the Physionet dataset.

left fist, right fist, and feet categories, but exhibited poorer
performance in identifying the both fists category. This sug-
gests that the proposed model has a good ability to recognize
neural activity in bilateral brain regions during single-hand
movements, but lacks the ability to effectively recognize
neural activity during both-hand movements. Additionally,
this model demonstrates better capacity in processing neural
activity information from the unilateral motor cortex.

We visualized the features extracted by the DB-ATCNet
model during two-class and four-class classification tasks
on the Physionet dataset using the t-SNE method, and the
results are shown in Fig. 12. In both tasks, most samples
from the left fist and right fist categories exhibit high fea-
ture distinguishability, indicating that the DB-ATCNet model
can effectively extract features for these two types of motor
imagery tasks. However, in the four-class classification tasks,
the features extracted for both feet motor imagery demon-
strate high distinguishability, while those for both fists motor
imagery overlap significantly and have low distinguishability,
which hinders accurate classification.

FIGURE 12. The results of t-SNE visualization of the extracted features
using the DB-ATCNet for the two-class and four-class classification tasks
on the Physionet dataset.

IV. CONCLUSION
This paper proposes a dual-branch attentional temporal con-
volutional network (DB-ATCNet) model to recognize the MI
activities based on EEG signals. The proposedmodel consists
of two modules: attention dual-branch convolution (ADBC)
module and attention temporal fusion convolution (ATFC)
module. The ADBC module employs a dual-branch convolu-
tional network (DBCN) to extract low-level spatio-temporal
features and enhances spatial feature extraction using the
ECA module. The ATFC module utilizes sliding windows,
self-attention mechanisms, and the temporal convolutional
fusion network (TCFN)module to extract high-level temporal
features. Ablation experiments indicate the contributions of
each module to the overall performance of the DB-ATCNet
model. When evaluated on the challenging BCI-IV2a dataset
with little preprocessing and without removing artifacts, the
model achieves a subject-independent accuracy of 71.34%
and a subject-dependent accuracy of 87.54%, outperforming
current DL architectures. This indicates the robust capability
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of the DB-ATCNet model to recognizeMI activities from raw
brain signals. The DB-ATCNet model improves EEG decod-
ing performance for all subjects in the BCI-IV2a dataset,
showing its capability to extract generalizedMI features from
different categories and subjects. Furthermore, we obtained
accuracies of 87.33% and 69.58% in the two-class and
four-class classification tasks, respectively, on the PhysioNet
dataset, which further confirms the strong generalization
and feature recognition abilities of DB-ATCNet. With high
performance and relatively fewer parameters (150k), the
DB-ATCNet model is well-suited for resource-constrained
Internet of Things (IoT) and edge devices.

Although our research has yielded promising results, there
are still some limitations that impede its practical application
in engineering. One such limitation is the length of the time
window, which is currently too long. Future work will focus
on reducing the length of time windows (4.5s for the BCI 2a
dataset and 4s for the Physionet dataset) used by DB-ATCNet
and other CNN-based BCI methods, as these windows result
in excessive latency for online BCI applications. We will
also address the challenge of handling continuous incoming
data streams from EEG recordings, which makes aligning
the onset of imagined events with the data window fed to
the CNN difficult. Despite these challenges, continuing this
work will contribute to the future development of affordable,
portable EEG-based BCI systems.
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