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ABSTRACT The current multi-objective particle swarm algorithms excel in convergence speed for solving
complex problems but often suffer from a loss of population diversity. Conversely, composite differential
evolution algorithms maintain superior solution distribution but lag in convergence efficiency. This research
introduces an improved hybrid algorithm, CoDE-MOPSO, which integrates multi-objective particle swarm
optimization with composite differential evolution based on clustering technology. The clustering algorithm
is used for all individual clusters to analyze the distribution constructs of populations, which determines
whether the new solutions come from global or local populations at a mating restriction probability. The
mating restriction probability is updated at each generation. To adapt the balance between the population
solution diversities and the convergence speed of the algorithm, at each generation, the control probability
is adjusted by a developed adaptive strategy according to the reproduction utility of the two mechanisms
of generating new solutions over the last certain generations. This research introduces the CoDE-MOPSO
algorithm, designed to transcend existing multi-objective optimization methods’ limitations by optimally
balancing exploration and exploitation. Our approach significantly advances evolutionary multi-objective
optimization, demonstrating superior performance through lower Inverse Generational Distance and higher
Hypervolume metrics, indicating enhanced efficiency in solving complex MOPs across various fields.
In practical scenarios like gear reducer optimization, CoDE-MOPSO showcases remarkable effectiveness,
highlighting its value in engineering applications and setting a foundation for sophisticated optimization
strategies that combine speed with solution quality.

INDEX TERMS Clustering algorithm, composite differential evolution, gear reducer, multiobjective opti-
mization, particle swarm algorithm.

I. INTRODUCTION
In practical engineering, multi-objective optimization prob-
lems (MOPs) often refer to those with several independent
variables, with inequality constraints or equality constraints,
and with nonlinear objective functions. The general
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constrained MOP [1] can be stated as follows.

minF(x) = [f1(x), f2(x), . . . , fm(x)]T

s.t. =

 x = (x1, . . . , xn)T ∈ �

gi(x) ≤ 0 i = 1, 2, 3, · · · , p
hj(x) = 0 j = 1, 2, 3, · · · , q

(1)

where x = (x1, . . . , xn)T is the n-dimensional decision vector,
� =

∏n
i=1[ai, bi] ⊆ Rn represents the decision space where

the variable xi is restricted to [ai, bi], and F(x) is the objective
vector with m objective function fi(x), i = 1, · · ·m in the
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objective space. In (1), p inequality constraints gi(x) and q
equality constraints hj(x) are also considered.
In general, unlike a single objective optimization prob-

lem which has one or several isolated optimal solutions,
MOP, as the objectives are conflicting, always could not
obtain the solutions to optimize them simultaneously but a
set of tradeoffs, called Pareto set (PS). Then all the PSs are
mapped to the target space to get the target vectors, which
are called Pareto front (PF). Solving MOPs is to acquire the
approximation front close to and covering all the PFs by the
evolutionary algorithms. Traditional methods are not good at
dealing withMOPs, whileMultiobjective Evolutionary Algo-
rithms (MOEAs), free of restrictions of problem regulation
characteristics, do well in them and have gained remarkable
achievements [2]. Along this way, more and more MOEAs
have been proposed, and among them, multi-objective parti-
cle swarm optimization (MOPSO) and composite differential
evolution (CoDE) exhibit advantages in approximating PF.
The former is a simple algorithm with fewer control parame-
ters and fast convergence speed. It depends on the information
sharing mechanism to make each particle adjust its velocity
and position according to the experience of the global opti-
mum and past optimum when a new solution is achieved [3],
[4], [5]. However, this mechanism may extinguish the diver-
sity, which causes the approximation front not to distribute
along the whole PF as evenly as possible. The latter,
the CoDE algorithm, maintains diversity by utilizing three
complementary difference operators to generate new solu-
tions, however, at the cost of low convergence speed [6].
Considering the advantages and disadvantages of the afore-
mentioned two algorithms, some improved algorithms are
proposed. Therefore, a hybrid composite differential evolu-
tion and multi-objective particle swarm optimization evo-
lutionary algorithm (CoDE-MOPSO) is proposed in this
paper and then applied to the optimum design of mechanical
structure for a two-level straight gear reducer. This study
presents the CoDE-MOPSO algorithm, designed to address
the critical challenges in multi-objective optimization by syn-
ergistically integrating Composite Differential Evolution and
Multi-Objective Particle Swarm Optimization. Our approach
significantly enhances the capacity to navigate the intricate
landscapes of complex optimization problems, providing a
robust solution that balances the dual needs of diversity and
convergence, with wide-reaching implications for both the-
oretical advancements and practical applications in various
fields. To make the topic of this paper clear, the main contri-
butions are listed as follows:

• Coordinate Particle Swarm Optimization Algorithm
with Composite Differential Evolution Algorithm to
get a new solution. To balance between the population
diversity and convergence speed, CoDE-MOPSO intro-
duces the control probability β to determine the way
to generate a new solution, Particle Swarm Algorithm,
or Composite Differential Evolution Algorithm and thus
improves the solving ability.

• The control probability β is updated adaptively in each
iteration according to the utilization of different repro-
duction mechanisms so as to adapt to different MOPs
and different evolutionary stages.

• The novelty of our method lies in the adaptive integra-
tion of K-means [7] clustering with CoDE and MOPSO
algorithms to dynamically segment the population based
on the evolving solution landscape. This integration
allows for a more nuanced balance between explo-
ration and exploitation by identifying and focusing on
promising regions of the search space, while maintain-
ing diversity across the population.

Section II states a brief description of the related works,
including MOPSO-based MOEAs and CoDE-based MOESs.
Section III describes the framework and other parts of
CoDE-MOPSO in detail. Section IV gives the experimental
results of CoDE-MOPSO with four state-of-the-art popular
MOEAs on the test instances. Section V discusses instances
with complicated PF shapes and parameter sensitivity fur-
ther. Section VI explains the application of CoDE-MOPSO
algorithm in optimum design of gear reducer. Finally, the
conclusion of the paper is drawn in Section VII.

II. RELATED WORK
A. COMPOSITE DIFFERENTIAL EVOLUTION ALGORITHM
The differential evolution, proposed by Storn and Price,
is a population-based evolutionary algorithm to solve
single-objective optimization problems [8]. DE receives
great popularity because of the simplicity of being imple-
mented and coded, the advantage of optimizing no separable
objective functions, and few number of control parameters
needed [9]. There are 5 widely used DE mutation operators
such as rand/1, best/1, rand/2, best/2 and current-to-rand/1
[10]. Considering different reproduction operators hold dif-
ferent search abilities on different regions in the search space,
at different stages of the search, or on different optimiza-
tion problems. Zhang et al. proposed a novel framework of
coordinating with multiple operators to reach a new solution,
named Composite Differential Evolution Algorithm [11].
In this algorithm, two candidate pools are prepared to store
mutation strategies and control parameter settings. The CoDE
algorithm chooses mutation strategies and control parameter
settings from candidate pools to generate new individuals.
The efficiency and robustness have been proved by simula-
tion in the existing literature. Then CoDE was studied more
deeply and used in many fields [12].In order to improve
the effectiveness and robustness, Zhang et al. proposed an
algorithm with the ensemble of two CoDEs biased toward
exploration and exploitation respectively [13]. Yang and
Liu proposed a self-adaptive clustering-based differential
evolution with new composite trial vector generation strate-
gies [14].

This paper utilizes the diversity maintenance mechanism
of CoDE algorithm to make up the defect that particle swarm
algorithm is apt to suffer local optimum. Therefore, CoDE
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uses 3 mutation strategies with control parameter pool whose
size is three to enhance performance of individuals. For
diversity, three mutation operators, rand/1/bin, rand/2/bin,
and current-to-rand/1, are selected as per (2), (3), and (4).
The ‘‘bin’’ in ‘‘rand/1/bin’’ and ‘‘rand/2/bin’’ indicates that
a binomial crossover is used. During this crossover, for each
gene (or parameter) in the solution vector, a randomnumber is
compared with the crossover rate (CR). If the random number
is less than CR, the gene from the mutated vector is carried
over to the offspring; otherwise, the gene from the target
vector is retained. This approach combines information from
different solutions, maintaining diversity in the population
and helping the algorithm escape local optima.

ui,j,t =


xr1,j,t + F(xr2,j,t − xr3,j,t )
rand(j) ≤ CR or j = randn(i)

xi,j,t otherwise

(2)

ui,j,t =


xr1,j,t + F(xr2,j,t − xr3,j,t ) + F(xr4,j,t − xr5,j,t )
rand(j) ≤ CR or j = randn(i)

xi,j,t otherwiseor
(3)

ui,j,t =


xi,j,t + F(xr1,j,t − xi,j,t ) + F(xr2,j,t − xr3,j,t )
rand(j) ≤ CRorj = randn(i)

xi,j,t otherwise
(4)

where randn(i) generates random integer from 1 to n. In muta-
tion, F amplifies the difference vectors. xr1, xr2, and xr3
are randomly chosen individuals from the current population
and are required to be different from the current solution.
Rand/1 has superior exploration capability and large per-
turbations, but it has a slow convergence speed. Compared
with rand/1, rand/2 is more robust and explorative with
additional two difference vectors when scaling factor F is
kept unchanged. Rand/2 suffers from slower convergence.
Operator current-to-rand/1 makes the perturbation between
the current individual (based vector) and two perturbation
vectors, helping the solution of population maintain a good
distribution. Current-to-rand/1 is rotation-invariant and suit-
able for rotated problems.

The important parameters in CoDE include scale factor
(F),crossover rate and population size (N ) [4]. There are
3 control parameters are listed as follows:

• [F = 1.0, CR = 0.1] is used to solve separate problems.
• [F = 1.0, CR = 0.9] is used to maintain the diversity of
the population.

• [F = 0.8, CR = 0.2] is used to enhance the exploration
of the algorithm.

B. MULTIOBJECTIVE OPTIMIZATION ALGORITHM
Multiobjective optimization algorithms are algorithms used
to solve optimization problems involving multiple objec-
tive functions [15]. In real-world decision-making scenar-
ios, we often need to consider multiple goals or criteria

simultaneously, and these goals may have conflicting or com-
plementary relationships. It is generally impossible to achieve
the optimum for all these objectives simultaneously, therefore
the purpose of multiobjective optimization is to find a set
of optimal solutions that provide the best trade-offs among
different objectives [16].
Li et al. [17] presents a hybrid MOO algorithm combining

enhanced NSGA-II with MOPSO, utilizing logistic map-
ping for better initial population distribution and a dynamic
selection mechanism for crossover and mutation operators to
balance search capabilities. It shows improved convergence
and diversity on standard tests and the TEAM 22 benchmark
compared to standalone methods. The MOIMPA [18] com-
bines quantum theory with the marine predators algorithm
to improve search efficiency in multi-objective optimization.
It uses a modified Schrödinger equation for particle posi-
tioning and incorporates a Pareto dominance mechanism for
solution selection. Abdullah et al. [19] introduces MOFDO,
extending the single-objective Fitness Dependent Optimizer
for multi-objective scenarios. It incorporates situational, nor-
mative, and other knowledge types, uses an archive for Pareto
solutions, and employs polynomial mutation. Tested on ZDT
and CEC 2019 benchmarks, MOFDO outperforms or equals
existing methods like MOPSO and NSGA-III, proving its
effectiveness in diverse problems. PSOMOFS [20] intro-
duces a novel approach to feature selection by incorporating
fuzzy cost considerations, utilizing particle swarm optimiza-
tion. This method excels in balancing the trade-offs between
minimizing feature costs and maximizing classification accu-
racy, showcasing significant advancements over conventional
selection techniques.

Multi-objective particle swarm optimization (MOPSO )
was introduced by Coello et al. [4]. MOPSO is a population
based meta-heuristic algorithm that is illuminated by the
social behavior of birds clustering to find food [3]. MOPSO
with different strategies has been widely used to solve MOPs
in many fields [21], [22], [23].

In recent years, MOPSO has been studied more deeply and
more improvements are proposed. Zheng and Liu integrated
the mutation strategies into MOPSO, which enhances the
ability of MOPSO to jump out of the local optimal solution in
the search process [24]. In order to improve the convergence
of MOPSO, Zhao et al. proposed the decomposition strategy
after the basic PSO to update the particle (MOPSO/AD) [25].
A new algorithm called I-MOPSO was introduced by A.
Britto et al. It utilized archive and leader’s selection methods
to introduce more convergence to the Pareto front and address
diversity of the obtained solutions [26]. In [27] Britto and
Pozo enhanced I-MOPSO algorithm, and the new algorithm
is called REF-I-MOPSO. In this algorithm, the I-MOPSO
algorithm is evaluated in different scenarios and increases the
search convergence.

MOPSO algorithms, proposed to deal with multiple objec-
tives as well as multiple constraints, aim to search for the
best approximation of PS. MOPSO algorithm has to find the
global best particle gbest it and the past best particle pbest

i
t of
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the individual x i, and then update the information of parti-
cle by the velocity and position. We perform environmental
selection based on Pareto and hyper-volume. The new pop-
ulation combined with an external archive in environmental
selection. The external archive is updated by dominating
relationships.

In each generation, the velocity and position of the par-
ticle x i denoted as V i

t,j =

(
vit,1, v

i
t,2, · · · , vit,j

)
and X it,j =(

x it,1, x
i
t,2, · · · , x it,j

)
, respectively, are updated as follows.

vit+1,j = w× vit,j + c1r1(pbest it,j−x
i
t,j)+c2r2(gbest

i
t,j−x

i
t,j)

(5)

x it+1,j = x it,j + vit,j (6)

where w is inertial weight, c1 is cognition coefficient, c2 is
social coefficient, r1 and r2 are random constant between
0 and 1, which are employed to prevent the algorithm being
jumped into local convergence, is current evolutionary gen-
eration number and j = 1, . . . , n represents dimension.

III. PROPOSED METHOD
A. ALGORITHM FRAMEWORK
The main ideas of CoDE-MOPSO is to partition the pop-
ulation by the k-means algorithm, and then build several
clusters. The global cluster (GC) is established based on the
clusters. In order to balance exploration and exploitation, the
mating parents are selected from the global cluster or local
population with a mating restriction probability. Then to trade
off diversity and convergence, the control probability β will
adapt to decide how to generate a new solution, byMOPSO or
by CoDE. Moreover, parameter β can update itself according
to the utility of producing new individuals by different repro-
ductive mechanisms. The pseudo code of the CoDE-MOPSO
algorithm is shown in Algorithm 1.

In algorithm 1, K represents the number of clusters. N is
the population size. Population Pwith the sizeN is initialized
firstly. Mating restriction probability α and control param-
eter β are also initialized in line 1.Then; we set an archive
population A = P(line 2). In each generation, population is
partitioned into clusters by k-means (line 4). We established
GC which individuals are selected from each cluster (line 5).
Next, the mating pool for x i consists of neighbor population
with a probability α and the other is composed of the global
cluster with a probability 1 − α (line 6). MOPSO or CoDE
serve as the method to generate new solution with a possi-
bility β and a possibility 1 − β, and then new solution yi is
achieved and stored in the external archive A (line 7-8). The
population P is updated in environmental selection and the
numbers NRgsp(clu) of newly generated solutions come from
global or from local population at a given rate (line 9). At last,
mating restriction probability α and the control possibility
β is updated (line 10-11). After T iterations of evolutionary
optimization, the final population P is obtained. This final
population is the product of the algorithm’s comprehensive
application of MOPSO and CoDE strategies, along with

Algorithm 1 CoDE-MOPSO

1 Initialize the populationP = {x1, x2, · · · , xN }, initialize
the algorithm parameters: α1 and β1.

2 Set an archive population A = P.

3 for t =1, · · · ,T do
4 Partition P = EnvironmentSel(A ∪ P) into K clus-
ters by K -means algorithm, {LC1,L,LCk

} = K −

means(P,K ).
5 Establish global classes GC .
6 Set the mating pool Qi for x i as Qi ={

W i
\{x i} if rand < α

GC otherwise
.

7 Generate a new solution yi = SolGen(Qi, x i, α, β).
8 Update the archive population, A = A ∪ {yi}.
9 P = EnvironmentSel(A ∪ P), update the population.
Record the numbers NRgsp(clu) of newly generated solu-
tions come from global or from local population at a
given rate.

10 Update βt+1 according to the raw fitness, βt+1 =

Update1
(
RFcode(mopso),GN code(mopso)

)
.

11 Update αt+1 according to the number of newly gener-
ated individuals, αt+1 = Update2

(
NRgsp(clu), t

)
.

12 end for
13 Return final population P.

population segmentation and adaptive updating of control
parameters through k-means clustering technology (line 13).

B. K-MEANS ALGORITHM
K-means algorithm, known as one of the typical clustering
technologies, the main idea is to classify a given data set
by clustering population iteratively so that every point is
assigned to the nearest cluster centers based on Euclidean dis-
tance. This clustering is based on minimizing the Euclidean
distance between the individuals and the centroids of the
clusters, effectively grouping similar solutions together. The
k-means process iterates by first randomly selecting clus-
ter centers, assigning each individual to the closest cluster
based on the shortest Euclidean distance, and then updating
the cluster centers based on the current members. Through
this iterative process, the population is organized into dis-
tinct clusters that are used in the mating selection process.
The algorithm dynamically chooses mating parents from
either the entire population or specific clusters, controlled
by a mating restriction probability. This clustering approach
allows the CoDE-MOPSO algorithm to maintain a balance
between exploration and exploitation, enhancing its perfor-
mance on complex multi-objective optimization problems by
leveraging localized search strategies within the clustered
population. The basic procedure of K-means algorithm is
shown in Algorithm 2.
K-means algorithm first randomly selects the cluster

centers from P and set K empty clusters (line 1). Next, it cal-
culates the Euclidean distance between the other individuals
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Algorithm 2 K − means(P,K )

1 Initialize cluster centers
{
c1, · · · , cK

}
, setK empty clusters

{LC1, · · · ,LCk
}.

2 while failure to meet end condition do
3 for i = 1 to N
4 if k = arg min

j=1,··· ,K
distance

(
xi, cj

)
5 x i to cluster LCk , x i ∈ P, i = 1, 2, . . . ,N .
6 end if
7 end for
8 for k = 1 to K
9 Update cluster centers by ck =

∣∣∣ 1
LCk

∣∣∣ ∑
x∈LCk

x.

10 end for
11 end while

to the centers and classifies them to the clusters with the
shortest distance (line 3-5). Then, the cluster centers are
updated (line 6-8). By averaging the positions (in the solution
or feature space) of all individuals assigned to each cluster,
thereby determining the new geometric center (line 9). The
algorithm continues to classify and update until the clustering
requirement is satisfied.

The innovative application of K-means in our CoDE-
MOPSO framework specifically targets the clustering of the
solution population to enhance the algorithm’s exploration
and exploitation capabilities. The application of K-means
within our algorithm involves the following custom steps:

Initialization: At the start of the clustering process,
we select initial cluster centers within the solution space
based on a diversity measure to ensure a wide coverage across
the population.

Assignment: Solutions (or individuals in the population)
are then assigned to the nearest cluster not just based on
their Euclidean distance in the objective space, but also con-
sidering their distribution in the decision space to maintain
diversity within clusters.

Update: After all solutions are assigned, cluster centers
are updated to reflect the current state of the population. This
step may also include an adaptive mechanism to adjust the
number of clusters based on the population’s diversity and
the optimization stage.

Integration with Evolutionary Processes: Clusters are
then utilized to direct the selection process, where solutions
from less crowded clusters are given preference to maintain
diversity. Moreover, cluster information guides the crossover
and mutation processes by encouraging intra-cluster explo-
ration and inter-cluster exploitation.

Adaptive Clustering: The number of clusters and the
clustering criterion are adaptively adjusted based on the
evolutionary stage to balance exploration and exploitation
dynamically.

C. NEW SOLUTION GENERATION
In CoDE-MOPSO, we use β to control new solutions gen-
erated by MOPSO or CoDE. A mating restriction α was set

to control the source of parents. New solutions are generated
through the Solution Generation (SolGen( )) function. The
SolGen( ) function facilitates a balanced approach to opti-
mization, allowing the algorithm to navigate the trade-offs
between exploring new regions of the solution space and
exploiting known promising areas. By dynamically adjusting
its strategy based on the algorithm’s current needs and the
characteristics of the solution space. The detail is shown in
Algorithm 3. For all the targets in population, if rand <

β, the new solutions are generated by MOPSO algorithm
(line 1-4), and are repaired with its boundaries to ensure
the flexibility (line 5). aj and bj(j = 1, 2, . . . , n) denote
the lower and upper boundaries of the j-th variable. The
function rand() means a random number between [0, 1]; if
rand > β, the new solutions are created by CoDE (line 7-
11), CoDE operator consists of three ordinary DE operators,
named, ‘‘rand/1/bin’’ ‘‘rand/2/bin’’ and ‘‘current-to-rand/1’’.
Two parents are selected according α (line 7). CoDE control
parameters are selected to perform DE operator and evaluate
the gene of yi (line 8-10). We repair the gene of yi (line 11).
Finally, trial solution is generated (line 13).

D. ENVIRONMENTAL SELECTION
After generating new solution, EnvironmentSel(A ∪ P) will
select the best ones from A ∪ P to enter next evolution
procedure.We execute environmental selectionmethod based
on hypervolume and Pareto dominance [28]. How to con-
duct EnvironmentSel(A ∪ P) in CoDE-MOPSO is depicted
in Algorithm 4. Firstly, We set the reference points for cal-
culating hyper volume (line 1). Then add the trial solution yi

to archive population A to form P′ (line 2). After calculating
the number of dominating points dpi for each individual in
P′ (line 3-4), the one with the largest dp or the one with
the smallest HVi is deleted according the calculating results
(line5-11). Finally, P is updated and as the next generation
population (line 12).

E. UPDATE OF CONTROL AND MATING RESTRICTION
PROBABILITY
In the CoDE-MOPSO algorithm, there are two ways to gener-
ate a new solution, one is MOPSO and the other is crossover
mutation operator of CoDE. The former may accelerate the
convergence but lose the diversity of the solutions. The latter
could maintain the diversity but suffer from slow conver-
gence. To make full use of the advantage of both methods,
control possibility β has to be designed elaborately, because
it directly decides the proportion of these two methods to
generate a new solution. In the real optimization procedure,
a special MOP often needs special value of β and even for
the same MOP, different stages in the evolutionary process
always need different values of β, so it’s of high importance
to set a proper value for β. Therefore, it’s so interesting that
β in the proposed CoDE-MOPSO can update itself adap-
tively in the evolution procedure. The procedure of updating
control possibility is shown in Algorithm 5. Here, we set

VOLUME 12, 2024 74421



J. Shang, G. Li: Hybrid CoDE and MOPSO Evolutionary Algorithm and Its Application

Algorithm 3 Hybrid Solution Update Mechanism
1 if rand() < β
2 Find out pbest it and gbest

i
t of particle x

i;

Choose gbest it from Qi =

{
W i

\{xi} if rand < α
GC otherwise

.

3 update the velocity of particles: vij = w × vij + c1r1(pbest ij −

xij ) + c2r2(gbest ij − xij ), j = 1, . . . , n.
4 update the position of particles: xij = xij + vij, j = 1, . . . , n.
5 Repair the trial gene of current solution yij =

aj xij < aj
bj xij > bj j = 1, 2, . . . , n
xij otherwise

.

6 else
7 Select two parents p1 and p2 from the mating pool randomly

(p1, p2) =

{
x|x ∈ W i if rand < α
x|x ∈ GC otherwise

.

8 Utilize the following three trial vector generating strategies,
‘‘rand/1’’, ‘‘rand/2’’ and ‘‘current-to-rand’’, and choose a con-
trol parameter from candidate pool, which combined with it to
generate three solutions are yi1, yi2, yi3.

9 yi = (yi1, yi2, yi3)

yi1j =


xij + F(p1j − p2j )
rand ≤ CRorj = randn(i)

xij otherwise

yi2j =


xij + F(p1j − p2j ) + F(p3j − p4j )
rand ≤ CRorj = randn(i)

xij otherwise

yi3j =


xij + F(p1j − xij ) + F(p2j − p3j )
rand ≤ CRorj = randn(i)

xij otherwise
10 Evaluate three new solutions yi = (yi1, yi2, yi3), choosing a

best yi according to non-dominated sort and degree of conges-
tion.

11 Repair the gene of current solution yij =


aj
bj
xij

xij < aj
xij > bj
otherwise

j =

1, 2, . . . , n.
12 end if
13 Return new solution yi = (yi1, · · · , yin).

Algorithm 4 EnvironmentSel(A ∪ P)
1 Set the reference points.
2 Add the trial solution yi to archive population A to form

P′
= A ∪ {yi}.

3 for i = 1 to N + 1 do
4 Calculate number of dominating points dpi to each individual

xi, xi ∈ P′.
5 end for
6 if ∃dp ̸= 0 then
7 Delete the individual with the largest dp from P′.
8 end if
9 for i = 1 to N + 1 do
10 Calculate hyper volume HVi of each individual xi, xi ∈ P′.
11 end for
12 Delete the individual with smallest HVi from P′.
13 P = P′.

ε = 10−10 to guarantee the validity of the calculation.
GNMOPSO(CODE)

k is the number of new solutions generated,

Algorithm 5 Update1
(
RFcode(mopso),GN code(mopso)

)
1 Find GNMOPSO(CODE)

k the number of new solution gen-
erated by MOPSO (CoDE).

2 Calculate RFMOPSO(CODE)k for all the individuals gener-
ated by MOPSO (CoDE) in the generation k .

3 Calculate the reproduction utility by MOPSO (CoDE)

uMOPSO(CODE)t =



t∑
k=t−HL+1

RFMOPSO(CODE)k

/
t∑

k=t−HL+1
GNMOPSO(CODE)

k t > HL

t∑
k=1

RFMOPSO(CODE)k

/
t∑

k=1
GNMOPSO(CODE)

k t < HL

.

4 Calculate control possibility β by βt+1 = (uMOPSOt +

ε)/(uMOPSOt + uCODEt + ε).

Algorithm 6 Update2
(
RFcode(mopso),GN code(mopso)

)
1 Calculate the total number of generating solutions using
clusters (populations) in the past generation HL.

NRclu(gsp) =


t∑

k=t−HL+1
NT clu(gsp)k t < HL

t∑
k=1

NT clu(gsp)k t > HL

2 Calculate the total number of individuals survived from
environmental selection.

SNRclu(gsp) =


t∑

k=t−HL+1
NSclu(gsp)k t < HL

t∑
k=1

NSclu(gsp)k t > HL

3 Calculate the utility utclu(gsp)t =

SNRclu(gsp)/(NRclu(gsp) + ε).
4 Calculate mating restriction probability αt+1 = (utclut +

ε)/(utclut + ugspt + ε).

and RFMOPSO(CODE)k represents the sum of fitness values of
all the individuals generated by MOPSO(CoDE) the genera-
tion k.

Furthermore, population in CoDE-MOPSO is divided into
several clusters by k-means algorithm. Themating parents are
chosen from the whole population for exploration or selected
from the clusters for exploitation. In order to balance explo-
ration and exploitation, the mating restriction probability is
used to control the source of the mating parents. In each
generation, the mating restriction probability is updated. The
detail is dictated in Algorithm 6.

IV. RESULTS AND DISCUSSION
A. DESIGN OF EXPERIMENTS
This subsection outlines the comprehensive experimental
setup designed to evaluate the effectiveness and efficiency
of the CoDE-MOPSO algorithm. Our objective is to demon-
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strate the algorithm’s capabilities in addressing complex
multi-objective optimization problems and to compare its
performance with that of other state-of-the-art algorithms.

In the following experiments, performance of CoDE-MOPSO
will be tested by six benchmark instances GLT1-GLT6 [29]
with complex PF shapes, and two quality metrics named
inverse generational distance (IGD) [30] and hypervolume
(HV) [31] are employed. Both IGD and HV are able to
measure convergence and diversity of approximation PF
meanwhile. Obviously, small value of IGD and large value
of HV mean the approximation PF has fast convergence
and good diversity. Statistical tests, such as the Wilcoxon
rank-sum test, will be conducted to determine the statisti-
cal significance of the observed differences in performance
between CoDE-MOPSO and other algorithms.

In the test instances, metric value of HV is calculated
with the reference points as r=(2,2)T in GLT1, r=(2,11)T in
GLT2, r=(2,2)T in GLT3, r=(2,3)T in GLT4, r=(2,2,2)T in
GLT5-GLT6.

CoDE-MOPSO will be compared with four other typ-
ical multi-objective multi-objective algorithms: NSGA-II,
SMS-EMOA, RM-MEDA [30] and TMOEA/D [32], [33].
To ensure the comparison fairness, these algorithms will
choose the corresponding optimum parameters and be imple-
mented byMATLAB in the same computer. All the parameter
settings are listed in Table 1.

B. COMPARATIVE EXPERIMENTS
To get a convincing statistics conclusion, the averages and
standard deviations of the IGD and HV metric values are
obtained from 33 independent runs on each test instance.
In Table 2, the means of IGD (HV) metric values on each
test question are sorted in an ascending (descending) order
and filled in the square brackets, and the average values
(average rank) of IGD and HV obtained by each algorithm
to the GLT1-GLT6 questions are also listed. Wilcoxon’s
rank sum test at a 5% significance level is employed
between CoDE-MOPSO and comparison algorithms. Sym-
bols ‘‘†’’, ‘‘§’’, and ‘‘≈’’ denote that the performance of
CoDE-MOPSO is better than, worse than, and similar to that
of the comparison algorithm according to Wilcoxon’s rank
sum test, respectively.

C. EXPERIMENTAL RESULTS FOR SEARCH QUALITY
In Table 2, the statistical results of HV and IGD are calcu-
lated from 33 independent runs of GLT tests for NSGA-II,
SMS-EMOA, RM-MED, TMOEA/D, and CoDE-MOPSO
algorithm. It can be seen that CoDE-MOPS gets 6 opti-
mum and 6 suboptimum metric values under two quality
metrics for GLT1-GLT6. According to Wilcoxon’s rank
sum test, compared to NSGA-II, SMS-EMOA, RM-MEDA,
and TMOEA/D with 12 times comparison, CoDE-MOSPO
reaches 12, 12, 12, and 6 significantly better mean metric
values, respectively. Besides, the mean rank value shows that
in solving GLT tests, the resorting order of the performance

is CoDE-MOSPO, TMOEA/D, SMS-EMOA, RM-MEDA,
and NSGA-II. To sum up, CoDE-MOPSO has the optimal
solution performance.

D. EXPERIMENTAL RESULTS FOR SEARCH EFFICIENCY
The evolution curves of IGD mean value derived from
33 times independent runs on GLT test for NSGA-II,
SMS-EMOA, RM-MED, TMOEA/D, and CoDE-MOPSO
algorithm are depicted in Figure 1. For GLT 3 and GLT 5-
GLT 6, CoDE-MOPSO receives minimum mean IGD metric
values with the smallest numbers of evolution. For GLT 2,
CoDE-MOPSO gets a similar solution effect as well as
TMOEA/D. For GLT 1 and GLT 4, CoDE-MOPSO archives
the second lowest mean IGD values. Anyhow, compared
with the other four algorithms, CoDE-MOPSO exhibits better
convergence and diversity in the evolutionary procedure on
GLT tests.

E. EXPERIMENTAL RESULTS FOR APPROXIMATED FRONTS
OF GLTS
In order to show the superiority of CoDE-MOPSO, the two
best algorithms in Table 2 are selected to run 33 times on
GLT test, both the approximation fronts of CoDE-MOPSO
algorithm and TMOEA/D algorithm obtained from runs (See
Figure 2 (a) and Figure 2 (b))and the representative approx-
imation fronts corresponding to average IGD metric value
(See Figure 2 (c) and Figure 2 (d)) are shown in Figure 2.
From Figure 2 (a) and Figure 2 (b), we can observe that
for GLT 1–GLT 3 and GLT 5 – GLT-6, the approximated
front obtained by CoDE-MOPSO can steadily converge to
PFs and evenly cover them. But for the GLT 4 – GLT 6 test,
the approximated front obtained by TMOEA/D could nei-
ther converge to PFs completely nor cover the whole PFs.
From Figure 2 (c) and Figure 2 (d), it can be seen that
CoDE-MOPSO could successfully converge to PFs and cover
them on GLT1-GLT6 test except on GLT 3 test, while the
representative approximated front obtained by TMOEA/D for
GLT 3–GLT 6, shows a poor uniformity of distribution and at
the same time, some of the representative approximated fronts
for GLT 5–GLT could not converge to PFs. The visible results
indicate CoDE-MOPSO is prior to TMOEA/D on GLT tests.

F. COMPUTATIONAL COMPLEXITY ANALYSIS
The computational complexity of the CoDE-MOPSO
algorithm primarily stems from three components: the Com-
posite Differential Evolution operations, the Multi-Objective
Particle Swarm Optimization procedures, and the K-means
clustering process integrated into the framework.

The complexity of CoDE is influenced by the differential
mutation and crossover operations. For a population of size
N , with D dimensions, the complexity of generating new
solutions using CoDE isO(N ·D), considering each individual
requires D operations for mutation and crossover.
MOPSO involves calculating velocities and updating posi-

tions for each particle, which also operates with a complexity
ofO(N ·D). Additionally, the complexity of updating personal
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TABLE 1. Common Parameters to solve GLT Test Suite and Parameters of NSGA-II, SMS-EMOA, RM-MEDA, TMOEA/D, CoDE-MOPSO.

TABLE 2. Statistical results (Mean(Std.Dev.)[rank]0 of IGD and HV values of approximated fronts obtain by NSGA-II, SMS-EMOA, RM-MEDA, TMOEA/D and
CoDE-MOPSO, respectively, over 33 independent runs on the GLT test suite.

and global bests depends on the comparison operations,
which are O(N ) in the worst case.

The complexity of K-means clustering is O(N · K · D · I ),
where K is the number of clusters and I is the number of iter-
ations until convergence. While K and I are typically much
smaller than N , they introduce an additional computational
burden.

In aggregate, the overall computational complexity of the
CoDE-MOPSO algorithm can be approximated as O(N · D ·

(1 + I · K )), acknowledging that the most significant factors
are the population size, dimensionality of the problem, and
the K-means iterations.

G. COMPARISON OF CODE AND MOPSO
we have added comparisons with algorithms related
to the Composite Differential Evolution (CoDE) and
Multi-Objective Particle Swarm Optimization (MOPSO) in

our study. In the Table 3, we provided statistical results (Mean
and Standard Deviation) of Inverse Generational Distance
(IGD) and Hypervolume (HV) values for CoDE, MOPSO,
and our proposed CoDE-MOPSO algorithm across various
instances of the GLT test suite.

The CoDE-MOPSO algorithm outperforms individual
CoDE and MOPSO algorithms across various test instances
in terms of IGD and HV metrics. Specifically, CoDE-
MOPSO consistently achieved lower IGD values, indicating
superior precision in approximating the Pareto front, and
higher HV values, demonstrating greater coverage of the true
Pareto front. For example, in the GLT1 test, while CoDE
and MOPSO scored 2.170 and 3.231 respectively, CoDE-
MOPSO achieved a superior value of 3.336.

Furthermore, the integration of CoDE’s diversity preserva-
tion with MOPSO’s fast convergence in the CoDE-MOPSO
algorithm has proven effective, providing a robust solution
that performs consistently across different scenarios (GLT1
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FIGURE 1. Evolution of the mean IGD metric value.

TABLE 3. Statistical results (Mean(Std.Dev.) of IGD and HV values of approximated fronts obtain by CoDE, MOPSO and CoDE-MOPSO, respectively, over
33 independent runs on the GLT test suite.

to GLT6). This synergy enhances the algorithm’s ability to
balance exploration and exploitation, which is critical for
navigating complex Pareto fronts inmulti-objective optimiza-
tion. These findings confirm the efficacy of our approach,
addressing the limitations of existing methods.

H. PERFORMANCE ON WFG TEST SUITE
In order to verify the performance of CoDE-MOPSO fur-
ther, WFG test instances [34], [35] are chosen, because
they have complex Pareto front shapes and complicated
Pareto set characteristics. By similar statistic calculations
as in Section IV, NSGA-II, SMS-EMOA, RM-MEDA,
TMOEA/D, and CoDE-MOPSO will run each WFG test
33 times. The optimal parameter settings are shown in
Table 4. The HV metric value is obtained with the reference

point (3, 5) T for all instances. The comparison results are
listed in Table 5. It can be found that compared with each
of the other algorithms for 18 times, NSGA-II, SMS-EMOA,
RM-MEDA, and TMOEA/D, CoDE-MOPSO obtained 18, 9,
15 and 15 significant superior, 0, 8, 3 and 2 significant sub-
standard, and 0, 1, 0 and 1 non-differential mean index value.
According to Wilcoxon’s rank sum test, CoDE-MOPSO per-
forms similarly to SMS-EMOA onWFG tests, while on GLT
tests, it shows an advantage over SMS-EMOA.

I. EFFECTIVENESS OF CLUSTER AND CODE
The effectiveness of cluster and composite difference oper-
ators in CoDE-MOPSO is demonstrated by the comparison
with CoDE-MOPSO-NoC and DEPSO based on GLT tests.
In fact, CoDE-MOPSO-NoC is a simplified CoDE-MOPSO
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FIGURE 2. Approximated fronts obtained by CoDE-MOPSO and TMOEA/D. (a) All AFs of CoDE-MOPSO; (b) All AFs of TMOEA/D;
(c) Representative AFs of CoDE-MOPSO; (d) Representative AFs of TMOEA/D.

without cluster technique, that is, it randomly selects a parent
individual in the whole population to recombine. DEPSO is
another simplified CoDE-MOPSO with the CoDE operator
replaced by DE operator. Here, the control parameter set-

ting of DE operator is chosen as F=0.3, CR=0.8 and other
parameter settings for the three algorithms are the same as in
Section IV. Each of the three algorithms executes 33 times
GLT tests and then the statistic results are shown in Table 6.

74426 VOLUME 12, 2024



J. Shang, G. Li: Hybrid CoDE and MOPSO Evolutionary Algorithm and Its Application

TABLE 4. Common Parameter to solve WFG Test Suite and Parameters of NSGA-II, SMS-EMOA, RM-MEDA, TMOEA/D, CoDE-MOPSO.

TABLE 5. Statistical results (Mean(Std.Dev.)[rank] of IGD and HV values of approximated fronts obtain by NSGA-II, SMS-EMOA, RM-MEDA, TMOEA/D,
CoDE-MOPSO, respectively, over 33 independent runs on the WFG test suite.

TABLE 6. Statistical results (Mean(Std.Dev.)[rank] of IGD and HV values of approximated fronts obtain by DEPSO, CoDE-MOPSO-NoC, CoDE-MOPSO,
respectively, over 33 independent runs on the GLT test suite.

In Table 6, it can be found that CoDE-MOPSO gained
10 best results of 12 compared with DEPSO and CoDE-
MOPSO-NoC. Such results highlight two advantages of
CoDE-MOPSO algorithm. On the one hand, CoDE-MOPSO

algorithm utilizes a clustering technique to assemble similar
individuals in one cluster and select parents from the whole
population or the same cluster with a certain mating restric-
tion probability, which speeds up CoDE-MOPSO’s searching
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FIGURE 3. History length (HL).

FIGURE 4. Analysis of clustering number (K).

performance. On the other hand, CoDE-MOPSO utilizes
three complementary DE operators and control parameters,
making it outperform DEPSO algorithm on GLT tests. In all,
CoDE-MOPSO has a certain advantage of converging and
distributing along PF for GLT test instances than DEPSO and
CoDE-MOPSO-NoC.

J. SENSITIVITY ANALYSIS ON PARAMETERS
History length HL determines value of control possibility
β which directly decides the proportion of MOPSO and
CoDE operator and further influences the performance of
CoDE-MOPSO. In order to analyze the influence of HL,
we set HL = 5, 10, 15, 20, 25 in CoDE-MOPSO and respec-
tively with all the other parameters same as Section IV.
By 33 times independent run on GLT instances, the means
and standard deviations of IGD metric values obtained from
CoDE-MOPSO with different HL are depicted in Figure 3.
We can see that different HL value will cause great fluctu-
ation of mean IGD metric value on GLTs except on GLT 2.
On GL1, GL3 and GLT4 – GLT6 test, smallest mean IGD
metric values are achieved when HL = 20, so this value is a
good choice in the experiments.

In the CoDE-MOPSO algorithm, K-means method is
employed to explore the distribution information of each
individual in the population. In order to explore the influence
of the largest cluster number, CoDE-MOPSO algorithmswith
different Kwill be executed onGLT tests. Other parameters in
CoDE-MOPSO algorithm are the same as in Section IV. Each

FIGURE 5. Schematic diagram of structure of gear reducer.

TABLE 7. Common Parameter to solve WFG Test Suite and Parameters of
NSGA-II, SMS-EMOA, RM-MEDA, TMOEA/D, CoDE-MOPSO.

algorithmwith a different value of K should be independently
calculated 33 times for each test. The obtained mean and
standard deviations of the IGD metric values are shown in
Figure 4.

From Figure 4, it shows that for GLT1 and GLT3–GLT4
tests, the mean IGD values obtained by CoDE-MOPSO algo-
rithms with different K values exhibit significant difference,
while for the other tests, the mean IGD values are almost
same. When K = 5, IGD metric values are all minima for
GLT 1, GLT 3 and GLT 5, and for the other tests, mean IGD
values are comparatively smaller. Therefore, K = 5 will be
selected in the experiments.

V. APPLICATION OF CoDE-MOPSO ALGORITHM IN
OPTIMUM DESIGN OF REDUCER
A. MATHEMATICAL MODEL
In order to test the effectiveness of CoDE-MOPSO algorithm
in solving real problems, optimizing the problem for the
volume of certain two-grader cylinder gear reducer and the
stress of Axis is considered in the section. The simplified
model of the gear reducer [36], [37] is shown in Figure 5.
MOP is designed to minimize the volume fvolume of gear
reducer and the stress fstress of Axis II. The mathematical
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FIGURE 6. HV indicator box diagram. (a) Original photo; (b) Partial enlarged photo.

model is described as follows.
min fvolume = 0.748x1x22 (10x

2
3/3 + 14.933x3 − 43.093)

−1.508x1(x26 + x27 ) + 7.477(x36 + x37 )
+0.785(x4x26 + x5x27 )

min fstress =

√
(745x4/x2x3)2 + 1.69 × 107/0.1x36

(7)

g1 :
1

x1x22x3
−

1
27

≤ 0 g2 :
1

x1x22x
2
3

−
1

397.5
≤ 0

g3 :
x34

x2x3x46
−

1
1.93

≤ 0 g4 :
x35

x2x3x47
−

1
1.93

≤ 0

g5 : x2x3 − 40 ≤ 0 g6 : x1/x2 − 12 ≤ 0
g7 : 5 − x1/x2 ≤ 0 g8 : 1.9 − x4 + 1.5x6 ≤ 0
g9 : 1.9 − x5 + 1.1x7 ≤ 0 g10 : fstress ≤ 1300
g12,13 : 2.6 ≤ x1 ≤ 3.6 g14,15 : 0.7 ≤ x2 ≤ 0.8
g16,17 : 17 ≤ x3 ≤ 28 g18,19 : 7.3 ≤ x4 ≤ 8.3
g20,21 : 7.3 ≤ x5 ≤ 8.3 g22,23 : 2.9 ≤ x6 ≤ 3.9
g24,25 : 5.0 ≤ x1 ≤ 5.5

g11 :

√
(745x4/x2x3)2 + 1.575 × 108/0.1x37 ≤ 1100

(8)

where x1 is gear width, x2 is gear module, x3 is pinion teeth
number, x4 is distance between two bearing of AxisI, x5 is
distance between two bearing of AxisII, x6 is diameter of
shaft of Axis I, x7 is diameter of shaft of Axis II, g1 is bending
stress constraint of teeth, g2 is contact stress constraint of
teeth, g3 and g4 are deformation constraints of Axes, g5, g6
and g7 are spatial dimension-based limitation and empirical
constraint. g8 and g9 are requirements of design shaft by
experience, g10 and g11 are the Axis stress constraints, g12
to g25 are maxima and minima values of 7 variables.

B. ALGORITHM PARAMETER SETTING
NSGA-II, SMS-EMOA, RM-MEDA, TMOEA/D, CEDA,
and CoDE-MOPSO are used to solve gear reducer optimal
design model. Parameter settings are listed in Table 7. Other

TABLE 8. Special solution of the optimization design model of gear
reducer by CoDE-MOPSO.

parameters are the same as in Section IV. Each algorithm
calculates the model 33 times and takes the Hyper-volume
HV metric value as the criterion to measure the obtained
approximate front. Here, reference value r=[6600,1600]T is
chosen to solve the HV value.

C. ALGORITHM RESULTS AND ANALYSIS
The box diagrams of HV indicator values obtained byNSGA-
II, SMS-EMOA, RM-MEDA, TMOEA/D, and CoDE-
MOPSO, respectively, over 33 independent runs on themodel
of gear reducer are shown in Figure 6 (on the left is the
original photo, on the right is a partially enlarged photo).
It can be seen that CoDE-MOPSO obtains the largest median
HV index value and the smallest quartile range. In this
way, it can be proved that in solving gear reducer optimally
designed model CoDE-MOPSO shows a better diversity and
convergence. The revolutionary curves of mean HV value
with NSGA-I, SMS-EMOA, RM-MEDA, TMOEA/D, and
CoDE-MOPSO respectively, over 33 independent runs on the
model of gear reducer are plotted in Figure 7 (the left is the
original photo, and the right is a partially enlarged photo).
It can be observed that CoDE-MOPSO obtains the highest
HV index value in the smallest number of revolutionary gen-
erations, that is, CoDE-MOPSO gains the fastest convergence
speed and maintains population diversity in the revolutionary
procedure. Ranking these five algorithms in order of solving
the gear reducer optimal is CoDE-MOPSO, NSGA-II, SMS-
EMOA, RM-MEDA, and TMOEA/D. Table 8 shows the two
solutions of the optimization model of gear reducer when
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FIGURE 7. Evolution of mean IGD indicator values. (a) Evolution of HV; (b) HV partial enlarged photo.

fvolume is minimum and when fvolume is minimum, respec-
tively, and a trade-off solution.

VI. CONCLUSION
A hybrid composite differential evolution andmulti-objective
particle swarm optimization evolutionary algorithm (CoDE-
MOPSO) based on cluster technique is proposed in this paper.
At first, K-means cluster technique, from part class or global
class with a certain possibility chooses the parent population
to generate new solution. Then, according to the utility of
different reproduction mechanisms in the past generations,
the control probability β is adjusted adaptively in each gen-
eration. Finally, β decides which algorithm will be selected
to generate new solution, CoDE or MOPSO.

In order to verify the performance of CoDE-MOPSO
algorithm, we choose other four typical multi-objective evo-
lutionary algorithms to make a comparison in solving GLT
test and WFG test. The results show that the proposed
algorithm exhibits fast convergence speed and good diver-
sity. The effectiveness of cluster operator and composite
differential evolution operator is demonstrated by the anal-
ysis experiments. Flexibility analysis of control parameter
indicates CoDE-MOPSO algorithm is sensitive to some
parameter settings.

CoDE-MOPSO algorithm and other four multi-objective
evolutionary algorithms are also used to optimize the
designed model of a two-grader straight tooth column gear
reducer. The analysis of HV box plot and the evolutionary
curve of mean HV over 33 independent runs indicate the
proposed CoDE-MOPSO algorithm has an advantage in this
problem. Accordingly, it deserves to be applied in engineer-
ing.

Despite demonstrating promising performance across var-
ious benchmark functions, we recognize certain limitations
inherent to our approach. Specifically, the performance of
CoDE-MOPSO is sensitive to parameter settings, such as
differential weights, crossover probabilities, and parame-
ters related to the particle swarm’s social and cognitive

behaviors, which can significantly influence the algorithm’s
convergence speed and solution quality. Additionally, the
algorithm may encounter challenges in efficiently handling
high-dimensional optimization problems due to the increased
complexity of searching within high-dimensional spaces.
Moreover, computational efficiency becomes a concern for
particularly complex or large-scale problems, limiting the
algorithm’s applicability in real-time or resource-constrained
scenarios.

To address these limitations and pave the way for future
research, we propose several technical solutions. First,
exploring adaptive parameter adjustment mechanisms could
reduce the impact of parameter selection, dynamically tun-
ing parameters based on feedback during the algorithm’s
execution. Integrating techniques for high-dimensional opti-
mization, such as sparse representation and dimensionality
reduction, could enhance the algorithm’s ability to navigate
high-dimensional spaces more effectively. Leveraging paral-
lel computing frameworks could accelerate the algorithm’s
execution, particularly for large-scale problems, and inves-
tigating more efficient data structures and algorithm imple-
mentations could further improve computational efficiency.
Additionally, combining theoretical research with empiri-
cal studies to deepen the understanding of the algorithm’s
convergence and stability, as well as exploring its applicabil-
ity across diverse fields such as bioinformatics, sustainable
energy management, and smart manufacturing, could reveal
new challenges and directions for algorithm improvement.
Through these technical advancements and a broader applica-
tion scope, we aim to continuously refine and innovate within
the field of multi-objective optimization, contributing robust
tools for solving complex optimization challenges.
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