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ABSTRACT This paper introduces an innovative Expectation-Conjugate-Gradient (ECG) approach
designed for the management of the interfacing inverter in a grid-connected fixed tilt bifacial Photovoltaic
(PV) system. The focus of this algorithm is to address current harmonics issues and elevate power quality.
Additionally, the proposed control strategy integrates with an Enhanced Dual second-order generalized
integrator phase-locked loop (EDSOGI-PLL), enhanced with a Savitzky-Golay Filter (SGF) to achieve grid
synchronization, mitigate voltage harmonics, and estimate symmetrical components during unbalanced grid
conditions. The state-of-art Double deep Q-network (DDQN) maximum power point tracking algorithm is
introduced, integrating centralized start-up condition computation to stabilize voltage levels at the shared
DC-link bus terminal. Key benefits include reduced harmonics, enhanced stability, adaptive control, and
minimal computational load. Simulation confirms compliance with IEEE 519 Standards, THD < 3%, PF ≈

1, and reveal a significant reduction in CO2 emissions.

INDEX TERMS Expectation-conjugate-gradient, double deep q-network, bifacial photovoltaic system,
power quality, maximum power point tracking, total harmonic distortion.

I. INTRODUCTION
The usage of renewable energy sources such as solar pho-
tovoltaic (PV) has gained increased attention in recent years
due to the diminution of fossil fuel, swift industrialization,
freely available, low maintenance costs, and technological
development [1]. In particular, bifacial PV (bPV) modules
technology are notably gaining attention due to the potential
of obtaining additional energy from the rear-side solar
insolation. Furthermore, the power gain of bPV modules can
be 25% higher than of a monofacial PV (mPV) modules
under optimized installation configuration [2]. Unavoidably,
the solar PV system has been connected into utility grid
distribution utilizing numerous power processing units.
However, the PV system has a few disadvantages such as
low voltage generation, and difficulty in tracking global
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maximum power point (GMPP) due to complex weather
conditions. The partial shading conditions (PSC) is generally
caused by passing clouds, dust, shades from trees, etc., as a
result, the PV panel efficiency is compromised. Another
major challenge is the low power quality due to the usage
of power electronics converters and nonlinear loads [3]. This
causes harmonic distortion in the current injected into the
grid and consequently, grievously influences the system’s
power quality. The harmonics can result in grid voltage
fluctuations, annoyance trips, voltage flickering, overheating
of electrical equipment, unintentional disconnections of the
PV system, electrical device failure due to excessive voltage
distortion, shortening of the life of the electrical equipment,
and ultimately lower system power factor leading to high
monthly utility costs. These elements serve as the impetus
for the researchers’ decision to focus their study on harmonic
compensation and maximum power point tracking (MPPT)
controllers for power quality improvement.
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To improve the PVmodule efficiency under rapidly chang-
ing weather conditions, researchers proposed optimization
algorithms for GMPP tracking under PSC. The Ant colony
bee optimization [4], Atom search optimization (ASO)
[5], Harmony search optimization [HSO], are proposed
as these techniques can track GMPP. However, all these
techniques suffer from large oscillations and convergence
around GMPP. In [6] and [7], Harris Hawk Optimization
(HHO), Golden eagle optimization (GEO), and Modified
Gray Wolf Optimization Algorithm [8], have been proposed
for fast GMPP tracking. The algorithms demonstrated
fewer oscillations and reliable convergence. These systems,
however, suffer from needless GMPP searches and have
power losses because the restart condition is not taken into
account. The reinitializing conditions present the biggest
problems for global search algorithms. The operation of PV
systems depends on avoiding pointless searching and offering
an assertive GMPP restarting condition.

To improve the output power of PV modules in PSC,
various optimization algorithms have been proposed for
tracking the GMPP amidst rapidly changing environmental
factors. Researchers have introduced algorithms like Particle
Swarm Optimization (PSO) [9], Enhanced Dandelion Opti-
mizer [10], Bat algorithm [11], and Neuro Fuzzy inference
system [12] due to their effectiveness in GMPP tracking.
However, these algorithms often exhibit significant oscilla-
tions and struggle with convergence issues around GMPP.
In an attempt to address these challenges, an Improved
(Cuckoo Search) CS MPPT algorithm was proposed in [13],
utilizing three search agents for power optimization through
the combination of Levy flight and the distance between
search agents. Additionally, a multi-universe optimization
algorithm method was introduced in [14] to mitigate high
oscillations and reduce convergence time. Nevertheless, these
approaches led to increased controller complexity, potentially
resulting in higher installation and commissioning costs.

Another avenue explored in [15] involved hybrid algo-
rithms such as CS combined with Fuzzy Logic Controller
(FLC), Genetic algorithm (GA) and Gated recurrent unit
(GRU) [16], aiming for swift GMPP tracking by leveraging
the advantages of both algorithms. Although these hybrid
methods demonstrated fewer oscillations and reliable con-
vergence, they faced drawbacks such as unnecessary GMPP
search and subsequent power losses due to the lack of
consideration for restarting conditions. One of the main
challenges associated with global search techniques lies
in addressing restarting conditions. It is crucial to avoid
unnecessary searches and establish a robust GMPP restarting
condition for the efficient operation of PV systems.

To maintain the power quality within acceptable standards
in the grid, inverter control schemes play a vital role in a
grid-connected PV system. The authors in [17], [18], [19],
and [20], proposed Newton-Raphson (NR), Improved linear
sinusoidal tracer (ILST), Genetic algorithm (GA) and Bee
algorithm (BA) to minimize harmonics and to control the

grid injected reactive power. However, these control strategies
have some limitations such as inadequate tracking of steady-
state response, lowweight convergence rate, high complexity,
and computational burden. Furthermore, these algorithms are
not effective under nonlinear loads or transient state.

In a grid-tied PV system, the effective control of inverters
is pivotal to ensure the quality of power fed into the
grid. A study conducted by Babu et al. [18] introduced
a Proportional-Integral (PI) current controller for the grid-
interfacing inverter. This controller aimed to make the output
current mimic a predetermined reference current, derived
from the required power transfer to the grid. However,
a limitation of this controller surfaced in its inefficacy under
nonlinear loads and unbalanced conditions.

Addressing this challenge, Authors in [21] proposed the
use ofQuasi-Recurrent Neural Network (QRNN) tominimize
harmonics and regulate the reactive power injected into the
grid. Despite its potential, this algorithm faced difficulties
in determining the appropriate learning parameters. Addi-
tionally, recent adaptive control techniques like Recursive
Least Square (RLS) [22], Improved Linear Sinusoidal Tracer
(ILST) [23], Variable Step-Size Least Mean Square (VSS-
LMS) [24], and Least Mean Fourth (LMF) [25] have
been introduced. However, these techniques are not without
limitations, including inadequate tracking of steady-state
response, slow convergence rates, high complexity, and
computational burden.

To overcome the aforementioned challenges, alternative
control techniques have been proposed. The Second-Order
Generalized Integrator (SOGI), Adaptive Differentiation Fre-
quency (ADF) [26], and Multiple Complex Coefficient Filter
(MCCF) based Phase-Locked Loop (PLL) [27] have been
suggested for rejecting current and voltage harmonics. These
approaches offer potential solutions without the drawbacks
associated with the previously mentioned control strategies.

Despite their impressive performance, the aforementioned
approaches fall short when dealing with nonlinear loads. As a
result, there is a demand for a novel inverter control strategy
that not only adapts and organizes itself but also outperforms
existing methods in attenuating harmonics during both
steady-state and transient states.

This study introduces the DDQN MPPT technique aimed
at stabilizing the DC voltage level at the common DC bus
under PSC conditions. Existing approaches often neglect the
need to restart the GMPP, leading to significant issues with
global search algorithms. This work emphasizes the impor-
tance of providing an assertive GMPP restarting condition
to avoid futile searches in PV systems. Additionally, a self-
adapting Expectation-Conjugate-Gradient (ECG) technique
is proposed to manage the interface inverter of grid-tied
PV systems, effectively reducing current harmonics, and
enhancing power quality. Moreover, an improved ECG based
on HBM is presented for grid synchronization, voltage
harmonics attenuation, and symmetrical component estima-
tion in unbalanced grid scenarios. Results obtained from
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MATLABSimulink simulations underscore the superiority of
the newly proposed grid-integrated PV system. Following is
a summary of how the innovation of this research adds to the
suggested work:

• A proposed grid tied bifacial PV system with a fixed
tilt configuration at Johannesburg location using PVSyst
software and environmental analysis.

• A novel DDQN MPPT algorithm with a centralized
start-up condition computation is introduced to enhance
PV system power tracking under PSC, ensuring stable
DC voltage and minimizing voltage fluctuations during
transient states. The DDQN is compared with existing
GEO MPPT algorithm.

• An ECG technique is proposed to reduce harmonics.
It incorporates an inverter management strategy for
calculating three-phase reference voltages, enabling
optimized PWM signal generation for improved grid-
tied inverter performance and enhanced power quality
in grid-connected PV systems.

• The novel ECG integratedwith EDSOGI-PLL (modified
with SGF) is proposed for grid synchronization, voltage
harmonics attenuation, and symmetrical components
estimation under unbalanced grid conditions, steady-
state, and transient states.

• Furthermore, the second stage of harmonic mitigation
is proposed using the Sequential Cascaded Harmonic
Blocking Module (HBM) with the aim of precisely
mitigating the emergence of low-order harmonics.

• To assess the proposed system’s power quality, the
proposed ECG inverter control technique is contrasted
with ASO & QRNN and subjected to a fast Fourier
transform (FFT) analysis.

The paper’s structure is as follows: Section II explains the
proposed system, Section III introduces MPPT and inverter
control algorithms, Section IV presents the system setup,
and Section V demonstrates results and discussions. Finally,
Section VI concludes the paper, summarizing key findings
and contributions.

II. SYSTEM DESCRIPTION
A. CRITICAL ANALYSIS OF BIFACIAL PV MODULES ON A
FIXED TILT CONFIGURATION
A critical analysis of bifacial PV panels on a fixed tilt
configuration using a SWOT analysis framework provides
a comprehensive evaluation of its strengths, weaknesses,
opportunities, and threats as shown in Table 1.

TABLE 1. A comparison between the proposed EDSOGI-PLL and the
standard DSOGI-PLL.

Bifacial photovoltaic (PV) panels on a fixed tilt configura-
tion offer several strengths, including enhanced energy gen-
eration from both front and back surfaces, higher efficiency
through utilization of reflected sunlight, design flexibility,
and reduced land requirements. However, limitations such as
limited sunlight capture optimization, sensitivity to ground
albedo, and higher upfront cost compared to mPV panels
should be considered. Opportunities exist in technological
advancements, increased adoption, and emerging applica-
tions. Threats include regulatory uncertainties, competition
from other PV technologies, and potential degradation
and durability issues. Overall, bifacial panels on a fixed
tilt configuration demonstrate promise but require careful
assessment and optimization to ensure their successful
implementation.

Strengths
• Enhanced Energy Generation: Bifacial panels generate
electricity from both sides, increasing energy produc-
tion.

• Higher Efficiency: They utilize reflected sunlight,
boosting overall efficiency and energy yield.

• Design Flexibility: Bifacial panels can be easily inte-
grated into fixed tilt configurations, requiring less
maintenance than tracking systems.

• Reduced Land Requirements: Their higher power
densities result in reduced land requirements for PV
installations.

Weakness
• Limited Sunlight Capture: Fixed tilt configurations may
not optimize exposure to varying solar angles, leading to
suboptimal performance and reduced energy generation
potential.

• Albedo Sensitivity: Bifacial panels’ rear-side power
generation relies on ground reflectivity, which can be
limited if the ground has low reflectivity.

• Higher Cost: Bifacial panels generally have a higher
upfront cost than mPV panels, potentially impacting the
overall economics and return on investment of a PV
system using fixed tilt bifacial panels.

Opportunities
• Technological Advancements: Ongoing research is
improving the efficiency and cost-effectiveness of
bifacial panels, enhancing their performance in fixed tilt
setups.

• Increased Adoption: Growing interest in renewable
energy and declining PV technology costs create
opportunities for wider adoption of bifacial panels in
fixed tilt configurations.

• Emerging Applications: Fixed tilt bifacial panels are
well-suited for solar farms, commercial rooftops, and
ground-mounted systems in locations with favorable
ground reflectivity.

Threats
• Regulatory and Policy Uncertainties: Government

policies and regulations regarding solar energy can
impact the economic viability and market dynamics for
fixed tilt bifacial panels.
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• Competition from Other PV Technologies: Other
PV technologies and alternative energy generation
methods may present competitive challenges to the
adoption of bifacial panels in fixed tilt setups.

• Potential Degradation and Durability Issues: Being a
relatively new technology, the long-term performance,
degradation, and durability of bifacial panels in fixed
tilt configurations need careful assessment to ensure
reliability and longevity.

B. PARTIAL SHADING CONDITIONS EFFECT
Partial Shading Conditions (PSC) pose a substantial threat
to the operational efficacy of solar farms, significantly
impacting the performance of PV systems. The introduction
of shading onto PV modules initiates what is known as the
‘‘partial shading effect,’’ inducing disparities in the current-
voltage characteristics between shaded and unshaded seg-
ments. This discrepancy translates into a tangible reduction
in overall power output, potentially giving rise to hotspots
and contributing to the degradation of modules over time. The
intricacies intensify when confronted with the challenge of
MPP tracking, exacerbating the overall reduction in energy
production.

Effectively addressing PSC necessitates the deployment
of advanced power electronics, prominently exemplified by
MPPT. This technology plays a pivotal role in optimizing
module performance by dynamically adjusting the operating
point to the true MPP. Accompanying MPPT, the integration
of shading analysis tools becomes imperative, facilitating
a nuanced understanding of the shading patterns and their
impact on the PV system. Moreover, layout optimization
strategies assume critical importance in mitigating the
adverse effects of partial shading, aiming to strategically
position panels to minimize shading occurrences and enhance
overall energy yield.

In the pursuit of maximizing energy yield and efficiency in
solar farms grappling with PSC, meticulous system design
and the implementation of effective mitigation strategies
are paramount. This involves the judicious incorporation of
advanced power electronics, particularly MPPT, to optimize
the performance of individual modules while intelligently
bypassing shaded areas. Comprehensive analysis, augmented
by sophisticated shading mitigation algorithms, plays a
crucial role in overcoming the multifaceted challenges posed
by PSC, ensuring the sustained and optimal functionality of
the solar system.

It is essential to acknowledge the disadvantages associated
with PSC, as they cast a shadow on the overall performance of
PV systems. The reduction in power output due to shading not
only limits the energy production capacity but can also lead to
thermal imbalances, creating hotspots and accelerating mod-
ule degradation. Furthermore, the complexity introduced by
PSC makes the tracking of GMPP challenging, contributing
to an overall decline in the efficiency of the PV system.
These drawbacks underscore the critical need for innovative
solutions and advanced technologies to mitigate the adverse

effects of partial shading conditions and bolster the resilience
of solar farms.

C. HARMONICS EFFECT
Undesirable electrical frequencies, commonly referred to as
harmonics, represent a significant challenge in grid-tied PV
systems. These harmonics, characterized by deviations from
the ideal sinusoidal waveform, primarily emanate from power
electronic devices such as inverters and DC-DC converters.
Interactions with other nonlinear loads connected to the
grid further contribute to their generation. The deleterious
consequences of harmonics encompass voltage and current
distortions, diminished system efficiency, and potential
repercussions on the performance and lifespan of sensitive
loads and equipment. Additionally, harmonics can interfere
with protective devices and control systems, inducing grid
instability.

To effectively tackle the challenges posed by harmonics,
the implementation of robust mitigation strategies is impera-
tive. Leveraging advanced power electronic devices equipped
with harmonic filtering capabilities proves instrumental in
curtailing harmonic emissions at their source. Both active
and passive filtering techniques, exemplified by active
power filters, harmonic compensators, machine learning-
driven control strategies, and dedicated harmonic filters, play
crucial roles in ameliorating harmonics and enhancing power
quality. Adherence to grid codes and industry standards is
paramount to ensuring that harmonic levels remain within
permissible limits, thereby upholding the stability of the
utility grid.

Expanding on the disadvantages associated with har-
monics in grid-tied PV systems, it is crucial to recog-
nize their potential to induce further complexities. High
levels of harmonics not only lead to increased voltage
and current distortions but can also instigate equipment
overheating, exacerbating the risk of premature equipment
failure. Moreover, harmonics can compromise the accuracy
and reliability of power meters, resulting in erroneous
measurements and billing discrepancies. The presence of
harmonics may also necessitate the installation of over-
sized equipment to accommodate the distorted waveforms,
leading to additional costs and reduced overall system
efficiency.

Identifying the root causes of harmonics in grid-tied PV
systems is paramount in formulating effective mitigation
strategies. In addition to power electronic devices and
nonlinear loads, intermittent cloud cover causing fluctu-
ations in solar irradiance and load variations contribute
to harmonic disturbances. These external factors necessi-
tate a comprehensive approach to harmonics management,
incorporating real-time monitoring and control systems for
swift detection and diagnosis. Timely mitigation actions,
informed by accurate monitoring, are essential to optimize
the performance and efficiency of grid-tied PV systems while
ensuring compliance with stringent quality standards and grid
stability.
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III. PROPOSED CONTROL ALGORITHMS
A. DOUBLE DEEP Q-NETWORK
An improvement on the Deep Q-Network (DQN) method
used in reinforcement learning is the Double Deep Q-
Network (DDQN). In order to solve Markov Decision
Processes (MDPs), the DQN technique blends deep neural
networks with Q-learning. [18]. DDQN improves upon
the original DQN algorithm by addressing its tendency to
overestimate action values. The main principle of DDQN is
to separate the decision-making process for actions from the
assessment of those actions during the learning process. Two
distinct neural networks—the target network and the online
network—are introduced to achieve this decoupling. The
target network is utilized to calculate the estimated Q-values
associated with these activities, while the online network is
in charge of choosing the actions.

The DDQN approach calculates the Q-values using a deep
neural network as a function approximator. This network
generates a Q-value for each potential action based on
the input of the environment’s state. The agent interacts
with the environment while being trained, perceiving states,
acting, and being rewarded. These experiences are stored
in a replay buffer, which acts as a memory to store and
randomly sample from past experiences. To address the
overestimation bias, DDQN introduces a separate target
network. The online network is duplicated in the target
network, but the weights are frozen. It receives updates less
frequently than the online network. The Q-value targets for
the online network’s training are produced using the target
network.

As opposed to the original DQN, which estimated the
ideal action by utilizing the maximum Q-value from the
target network, DDQN selects the action by using the online
network. The target network is then used to analyze this
activity in order to determine the matching Q-value. DDQN
seeks to lessen the overestimation bias seen in DQN by
separating the selection and evaluation processes. TheDDQN
training procedure comprises reducing the mean squared
error between the target Q-value acquired from the target
network and theQ-value predicted by the online network. The
reward acquired from the environment and the discounted
maximum Q-value of the subsequent state, as determined by
the target network, are added to create the Q-value target.
Target network update is a method that DDQN uses to further
stabilize the learning process. The weights of the target
network are updated periodically, usually with a soft update,
where a fraction of the online network’s weights is transferred
to the target network. This update strategy helps to make
the target network’s estimates more stable and less prone to
fluctuations. DDQN visualization can be demonstrated using
Fig.1.

DDQN can be represented mathematically as follows:
First, we select an action for the next state (s’) using the

online Q-Network:

a′
= argmax(Q_online(s′, a)) (1)

FIGURE 1. DDQN block diagram.

The target Q-value is then determined for the following
state (s’) and the chosen action (a’) using the target Q-
Network:

Q_targ(s, a) = r + γ ∗

Q_targ(s′, argmax(Q_online(s′, a))) (2)

where:
• ‘‘Q_targ(s, a) : Target Q-value for state s and action a’’.
• ‘‘r : Immediate reward received after taking actiona in
state s.’’

• ‘‘γ : Discount factor, a value between 0 and 1, which
discounts the importance of future rewards.’’

Changing from Q(s) to Q(s, a) in DDQN enables a more
precise evaluation of the quality of actions in different states,
enhancing decision-making accuracy. This transition allows
the algorithm to better capture the nuanced relationships
between states and actions, leading to improved approxima-
tion of expected future rewards for each action taken.

‘‘Update the online Q-Network using the Mean Squared
Error (MSE) loss between the predicted Q-value and the
target Q-value’’:

Loss = MSE(Q_online(s, a),Q_target(s, a)) (3)

In order to update the parameters of the online
Q-Network, perform gradient descent on the loss. To sta-
bilize the learning process, periodically update the target
Q-Network by replicating the weights of the online
Q-Network.

The DDQN algorithm represents a significant advance-
ment over its predecessor, DQN, by addressing the issue
of overestimation bias. Through the careful separation
of action selection and evaluation processes using two
distinct neural networks, coupled with the incorporation
of experience replay and a soft target network update
strategy, DDQN achieves enhanced stability, convergence,
and sample efficiency in solving complex reinforcement
learning problems. The mathematical formulation further
solidifies the algorithm’s theoretical underpinnings, provid-
ing a comprehensive understanding of its functioning in
Markov Decision Processes.
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B. CENTRALIZED START-UP CONDITION COMPUTATION
The process of unnecessary exploration can be intricate
and may lead to power inefficiencies when PV system
is already functioning at its GMPP. It is crucial and
rational for the MPPT controller to initiate a new GMPP
search only when the PV system is operating at the local
Maximum Power Point MPP. The start-up condition can be
triggered by monitoring power, insolation level, and changes
in cell temperature. However, relying solely on power,
irradiance, and temperature change as restart conditions
may be misleading during morning and afternoon intervals,
necessitating significant investment in meteorological towers
to address this challenge.

An alternative approach involves using a time-delay
method for GMPP search at predefined intervals. Unfortu-
nately, this method lacks the ability to identify PSC, leading
to unnecessary restart conditions at specific time windows.
This poses a significant challenge that needs to be resolved
to prevent unnecessary power losses and oscillations.

To address this issue, this paper proposes a novel
algorithm for a start-up condition that can distinctly identify
underperforming MPPT arrays and trigger restart conditions
for these specific arrays. The proposed control topology
is capable of assessing and analyzing the performance of
individual arrays. Typically, a PV system consists of multiple
inverters, each comprising one or more arrays. Each array is
equipped with a dedicated MPPT controller. The proposed
centralized topology can aggregate the power produced by
each array. In the event of shading in a particular PV
array, the controller activates a restart condition for that
shaded array upon receiving a trigger signal after detecting
the shade. Centralized topology employs data analysis to
identify underperforming PV arrays. The Average Absolute
Deviation (AAD) is utilized as a robust statistical tool for
outlier detection, involving a three-step process to compute
the average dataset from a central point.

1) SCREENING THE DATASET
The reset condition topology starts the filtering process for
each sample, i, by filtering the measured values N from each
array. AAD serves as the basis for the filter process, which
considers a time span of T prior measurements, maps those
measurements, and returns the average value for that time.

Measured power Pni at ith sample, the average for each
array is computed utilizing equation (4).

Ani = Average(Pni ,P
n
i−1, . . . ,P

n
i−n)

n = 1, 2, . . . ,N (4)

Equation (5), which accounts for period T of the previous
samples, yields the AAD of each array at sample i.

AADni = (|Pni − mni |,
∣∣Pni−1 − mni

∣∣ . . . , |Pni−w − mni |) (5)

Each data set’s standard deviation, δni , can be found by
multiplying its AAD by factor k = 1.4826, which can be

found through a relationship with the Gaussian error function.

δni = k × AADni (6)

A three-sigma filter is applied to each measured value.
If there is a discrepancy between the measured power and its
average, the measured value is regarded as an outlier and is
returned; otherwise, the measured value is kept. Equation (7)
is used to determine the filtered measured value, Pf ni .

Pf ni =

{
Pni , |P

n
i − mni | ≤ 3.δni

mni ,
∣∣Pni − mni

∣∣ > 3.δni
(7)

2) SYSTEMATIZATION
Every measured value that undergoes filtering based on prior
measurements is adjusted for normality by the PV array.
Prioritizing each array’s current generation according to its
maximal capacity is crucial. Pnnom, the total capacity of each
array, is found using equation (8).

Pnnom = Qsn. QPn. Pnpan (8)

QPn is the number of panels per array, Pnpan represents the
power provided by each panel per array, and Qsn is the
number of strings per array. Equation (9), when applied to
the filtered measured value, can normalize it.

Pnnorm =
Pmani
Pnnom

(9)

Afterward, equation (10) can be used to calculate each
array’s performance.

Pnnpfi =
Pnormni

max(Pnorm1
i ,Pnorm

2
i , . . . ,Pnorm

N
i

(10)

3) THE ACTIVATION OF THE GENERATION PROCESS
The AAD result provides a useful illustration of the data’s
variability around its average value. It is important to include
the final threshold for evaluation of shaded panels, even
though the standard deviation of its value might be utilized
as a threshold. The limit trigger (Limi) of 0.95 is suggested
by this algorithm. The optimal threshold value of 0.95 is
chosen to ensure a conservative approach to identifying
underperforming PV arrays, aiming to minimize the risk of
false positives while effectively triggering restart conditions
for arrays operating below expected levels. The electricity
generated by the PV panels is distributed normally around
the average, with three sigmas representing 99.9% of the
population:

Limi = max(0.95,mnpfi − 3δnpfi) (11)

An underperforming PV array is one whose performance
falls short of the predetermined threshold. Equation (12)
represents the triggering flag of each inverter (flagni ).

flagni =

{
0, Pnpfini ≥ Limi
1, Pnpfini < Limi

(12)
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Equation (13) can be used to represent the ultimate trigger
signal while accounting for changes in sun irradiation during
the day. Only when the homogenized generation is larger than
or equal to 0.05 p.u. does the flag get raised.

f ni =

{
flagni , max(Pnormni ) ≥ 0.05
0, max(Pnormni ) < 0.05

(13)

The controller notifies the inverter of the restart condition
by sending it the last triggering signal when it determines that
the PV array is not operating as expected. PV farms can utilize
this for monitoring purposes. The PV array may be deemed
permanently shaded or faulty if it exhibits poor performance
for a few hours.

FIGURE 2. Stat-up condition in GMPP search.

C. EXPECTATION CONJUGATE GRADIENT
The Expectation-Conjugate-Gradient (ECG) method is an
optimization algorithm that combines the concepts of expec-
tation and conjugate-gradient optimization techniques. It is
particularly useful for solving optimization problems involv-
ing large-scale data or computationally intensive objectives.
The ECG algorithm iteratively updates the search direction
and step size to minimize the expected objective function.
It belongs to the conjugate-gradient family, which offers
efficient solutions for linear systems and optimization tasks.
ECG specifically addresses the minimization of quadratic
functions when the underlying probability distribution is
unknown, making it suitable for problems involving proba-
bilistic models and expectation maximization.

The core objective of ECG is to iteratively update a
sequence of vectors to converge towards the optimal solution
of the quadratic function. The algorithm incorporates the
expectation operator, which computes the expected value of a

function based on a given probability distribution. This inte-
gration of probabilistic information allows ECG to navigate
the optimization process effectively. To accomplish opti-
mization, ECG iteratively minimizes the expected quadratic
function and its conjugate. In each iteration, it calculates the
expected gradient of the quadratic function by integrating
the product of the gradient and the probability density
function across the distribution. While this computation can
be computationally demanding for complex distributions,
it remains tractable for certain families of distributions.

ECG leverages the conjugate-gradient technique for effi-
cient optimization. This method exploits the conjugate direc-
tions of a matrix to solve linear systems swiftly. By utilizing
conjugacy properties, ECG determines optimal step sizes
and directions at each iteration, leading to rapid convergence
and reducing the need for numerous function evaluations.
The convergence properties of ECG are favorable, ensuring
that the algorithm reaches a local minimum of the expected
quadratic function. However, the rate of convergence can
be influenced by factors such as problem conditioning
and the choice of initial values. Effective initialization and
preconditioning techniques can mitigate these factors and
enhance convergence.

ECG finds applications in diverse domains, including
machine learning, image processing, and data analysis.
It proves particularly valuable when tackling complex
optimization problems involving probabilistic models.
By incorporating the expectation operator and leveraging
the conjugate-gradient technique, ECG provides an efficient
and effective solution for a wide range of problems.
Nevertheless, ECG has certain limitations. It assumes
an unknown underlying probability distribution, requiring
estimation during the optimization process. This estimation
can introduce additional computational complexity and
demand significant resources. Additionally, the algorithm’s
performance can be sensitive to the selection of optimization
parameters and the presence of data noise.

FIGURE 3. ECG direction determination.

The ECG algorithm is an iterative optimization method
used to find the minimum of a function. It is often employed
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in the context of variational inference for approximating
posterior distributions in probabilistic models. Below is the
basic outline of the ECG algorithm:

Compute the gradient of the function f (x) at the current
parameter xk : gk − ∇f (xk).
Compute the natural gradient g’k using the expectation of

the gradient of the log-likelihood with respect to a variational
distribution (which serves as a proxy for the true posterior):
g′k − Eqk[∇logp(x, θ) | xk],

Where qk is the current variational distribution and θ

represents other model parameters that x depends on.
Compute the search direction dk as a solution to the linear

equation: (I − αkBk)dk − g′k,
where αk is the step size (learning rate) at iteration k, and

Bk is the approximation of the Fisher information matrix,
which is positive definite and approximated from the current
variational distribution.

Update the parameter vector using the computed search
direction: xk + 1−xk + αkdk.
Finally, Increment the iteration counter: k − k + 1.
ECG Control Strategies in the Application of Power

Quality Improvement – The ECG algorithm emerges as
a potent tool for harmonic mitigation within Grid-Tied
PV systems by regulating the interfacing inverter. In the
pursuit of optimizing harmonic content in the PV system,
ECG provides a unique solution by iteratively adjusting
the inverter’s control parameters. The algorithm strategically
leverages the expectation operator to minimize the expected
quadratic function representing harmonic distortions. This
integration allows the ECG algorithm to effectively explore
the parameter space, enhancing the inverter’s adaptability
to the dynamic and probabilistic nature of grid harmonics.
The conjugate-gradient technique further refines this process
by efficiently determining optimal step sizes and directions,
ensuring a swift convergence towards an optimized inverter
configuration that mitigates harmonic distortions in the
system.

The application of the ECG algorithm in the control
strategy of interfacing inverters presents several noteworthy
advantages for Grid-Tied PV systems. By dynamically
optimizing the inverter parameters, ECG enables real-time
adaptation to varying grid conditions and PV power outputs,
contributing to improved harmonic mitigation performance.
The algorithm’s conjugate-gradient approach minimizes the
need for extensive function evaluations, thereby reducing
computational burden and enhancing overall efficiency.
Moreover, the probabilistic modeling incorporated in ECG
allows for a more robust and adaptive response, accommo-
dating uncertainties associated with grid harmonic character-
istics. In essence, the ECG algorithm adds significant value
to Grid-Tied PV systems by providing a sophisticated and
efficient solution for harmonicmitigation, fostering enhanced
power quality and stability.

The benefits derived from implementing the ECG
algorithm in harmonic mitigation for Grid-Tied PV systems
extend beyond mere technical improvements. The enhanced

power quality resulting from optimized inverter control
contributes to a more reliable integration of renewable energy
sources into the grid, minimizing the risk of disruptions and
ensuring sustained energy supply. Furthermore, the improved
efficiency in harmonic mitigation translates into reduced
wear and tear on electrical components, potentially extending
the operational lifespan of the PV system. The algorithm’s
adaptability to dynamic grid conditions aligns with the
evolving nature of renewable energy sources, positioning the
ECG-based control strategy as a valuable asset in the pursuit
of sustainable and resilient power infrastructures.

Consequently, the implementation of the proposed inner
current control strategy ensures an elevated standard of
current quality. This approach relies on the utilization of
three-phase grid currents as its primary input, with compu-
tations streamlined through the application of Synchronous
Reference Frame (SRF) theory, as discussed in [28]. The
three-phase grid currents (Iga, Igb,Igc) undergo sensing and
transformation into the d-q axis frame.

Upon transformation, the d-q components, denoted as Id
and Iq, are computed using the following expressions:

Id =
2
3
(Igasinωt + Igb

(
ωt −

2π
3

)
+ Igcsin(ωt +

2π
3
)

(14)

Iq =
2
3
(Igacosωt + Igb

(
ωt −

2π
3

)
+ Igccos(ωt +

2π
3
)

(15)

Subsequently, the transformed d-q components are
reverted back to three-phase reference voltages and then
forwarded to the Pulse Width Modulation (PWM) stage.
In this process, PWM generates pulses corresponding
to the reference voltage signals, subsequently controlling
the VSI IGBTs in the system. This intricate control
mechanism ensures precise manipulation of the inverter
output, maintaining optimal current quality in the grid-tied
system.

D. ENHANCED DSOGI-PLL
Addressing the imperative need for a precise and swift
approximation of grid information within grid-tied PV
systems, Phase-Locked Loop (PLL) schemes have been
employed due to their recognized superiority in performance,
as noted in [29]. The widely adopted DSOGI-PLL stands
out for its structural simplicity, especially in three-phase
grid synchronization, as corroborated in [29]. However,
the conventional DSOGI-PLL grapples with substantial
performance degradation under unbalanced grid conditions
and distortions. Moreover, it exhibits drawbacks such as
sluggish response times, considerable frequency overshot,
and limited disturbance rejection capabilities.

This paper introduces an enhanced DSOGI-PLL, denoted
as EDSOGI-PLL, designed to surmount the aforementioned
limitations, and elevate overall performance. Illustrated in
Figure 4, the proposed scheme employs a control loop
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based on the quasi-type 1 (QT1) strategy. Notably, the
Savitzky-Golay Filter (SGF) replaces the conventional mov-
ing average filter (MAF) within the DSOGI-PLL to enhance
dynamic performance. An SGF is a type of smoothing
filter particularly useful for noise reduction in time-series
data. It preserves important features while removing noise.
Positioned on the feedforward path, the SGF plays a pivotal
role in augmenting phase and frequency synchronization
response time, effectively eliminating frequency overshot.

The SGF stands out as a versatile and powerful filtering
tool due to its unique advantages over other filters. It excels
in simultaneously smoothing data while preserving crucial
signal features, making it ideal for applications where fidelity
to the original signal is paramount. The SGF’s capability
to perform both smoothing and differentiation in a single
operation is particularly valuable for extracting relevant
information from noisy data. Its adaptability with variable
window sizes ensures flexibility in handling signals with
diverse characteristics. Noteworthy is its ability to minimize
phase shift, making it suitable for applications requiring
accurate temporal relationships. The SGF’s robustness to
outliers, computational efficiency, ease of implementation,
and adaptability to unevenly sampled data further enhance
its appeal across a broad range of scientific and engineering
domains, solidifying its position as a preferred filter for
applications demanding precision and versatility.

In addition to its structural modifications, the proposed
EDSOGI-PLL undergoes a meticulous parameter design
procedure to bolster its disturbance rejection capabilities. It is
crucial to note that the standard DSOGI-PLL, expressed as:

DPLL =
ωp

s+ ωp
(16)

where ωp denotes the cut-off frequency, and ωp is chosen as
kωf /2, with ωf representing the fundamental grid frequency,
serves as the foundational framework for the enhanced
scheme.

The utilization of DSOGI-PLL, augmented by the SGF,
provides several advantages. The enhanced scheme addresses
the limitations of its conventional counterpart, delivering
improved performance in unbalanced grid scenarios and
distorted conditions. The replacement of the moving aver-
age filter with the SGF contributes to enhanced dynamic
response and eliminates issues like frequency overshot.
Additionally, the meticulously designed parameters enhance
disturbance rejection capabilities, ensuring the proposed
EDSOGI-PLL remains robust in real-world grid-tied PV
system applications. This innovative approach signifies a
substantial advancement in achieving precision and rapid
grid information approximation, thereby contributing to the
overall reliability and efficiency of grid-tied PV systems.

The selection of the window length (Lw) in SGF filters
plays a pivotal role and is determined based on the anticipated
harmonic content within the grid system. Specifically, the
dominant disturbances arising from the 3rd, 5th, 7th, 11th,
and 13th harmonics are crucial considerations in this context.

FIGURE 4. Evaluation of EDSOGI-PLL and DSOGI-PLL in the presence of
phase/frequency jumps.

In this paper, the period of the grid voltage (T ) is deliberately
set to T/7, given that the harmonics content of interest often
occurs within this timeframe. The adjustability of (Lw) in
SGF and the controller parameter (kp) follows the calculation
of ωpin the Digital Second-Order Generalized Integrator
Phase-Locked Loop (DSOGI-PLL). The determination of kp
involves establishing the open-loop transfer function, denoted
as G_ol(s), where:

Gol (s) =
1∅

+(s)
∅e(s)

=(
DPLL (s)

1 − DPLL (s) .SGR (s)
)(SGR (s) +

kp
s
)

(17)

Subsequently, the phase-tracking-error transfer function
(Ge (s)) is derived using Equation (18), representing the
relationship between ∅e (s) and 1∅

+(s).

Ge (s) =
∅e(s)

1∅i(s)
=(

1
1 − Gol (s)

) (18)

The plotting of the 1% settling time of Ge (s) under a
phase/frequency jump scenario, utilizing a specified kp value
of 89, reveals that the SGF showcased a diminished settling
time, indicative of a swifter and more efficient response.
This outcome suggests that the proposed Enhanced DSOGI-
PLL, configured with a kp value of 89 and employing the
SGF, demonstrates favorable dynamic performance, rapidly
adapting to variations in the grid system. Such adaptability
contributes significantly to the system’s reliability and
precision in real-world applications, affirming its suitability
for demanding operational environments.

Figure 5 visually depicts the proposed Enhanced DSOGI-
PLL (EDSOGI-PLL), emphasizing its high precision in
approximation. Comparative analysis, as detailed in Table 1,
highlights that the proposed method exhibits the lowest
frequency and phase overshot in contrast to the conventional
DSOGI-PLL. Additionally, the proposed EDSOGI-PLL
achieves a dynamic rapid settling time of 15ms within
2 cycles, indicating its efficiency in responding to dynamic
changes in the grid system. The comparison presented
in Table 1 provides insightful metrics for evaluating the
superiority of the proposed approach.
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FIGURE 5. Schematic diagram for the envisioned EDSOGI-PLL.

Notably, the settling time of the proposed EDSOGI-PLL is
measured at 15ms, demonstrating a substantial improvement
over the standard DSOGI-PLL’s settling time of 35ms.
This reduction in settling time signifies the enhanced rapid
response of the proposed EDSOGI-PLL to dynamic changes
in the grid system, contributing to its superior dynamic
performance.

Furthermore, the frequency overshoot for the proposed
EDSOGI-PLL is notably lower at 1% compared to the
standard DSOGI-PLL’s higher frequency overshoot of 35%.
This implies that the proposed EDSOGI-PLL achieves
more accurate frequency tracking with minimal overshoot,
enhancing its precision in maintaining synchronization with
the grid frequency. Although there is a marginal increase
in phase overshoot for the proposed EDSOGI-PLL (9◦)
compared to the standard DSOGI-PLL (8◦), this difference
is relatively minor. Overall, the results suggest that the
proposed EDSOGI-PLL outperforms the standard DSOGI-
PLL in terms of settling time and frequency overshoot, high-
lighting its superiority in dynamic response and frequency
tracking accuracy, which are critical attributes in grid-tied
PV systems.

The discussed adjustment to the circuit has improved the
dynamic performance of the EDSOGI-PLL.When high-order
harmonics and an uneven grid voltage are present, the grid
reacts swiftly. It has been demonstrated to give the ability to
extract phase information precisely and quickly from the grid
fundamental wave. The scheme’s drawback, however, is that
low order harmonics are a problem. The technique needs to
be enhanced in order to acquire more exact grid voltage phase
information because it’s necessary to lessen the influence of
low order harmonics.

The subsequent phase of the contribution involves the
proposition of an augmented enhancement to the DSOGI-
PLL scheme. This augmentation entails the incorporation of

a Sequential Cascaded Harmonic Blocking Module (HBM)
with the aim of precisely mitigating the emergence of
low-order harmonics. The schematic diagram depicting the
proposed EDSOGI-PLL, integrating the sequential cascaded
HBM, is delineated in Figure 6.

The 3-phase voltage can be described using equation (19)
under the conditions of more erratic low order harmonics in
the power systems grid.Va

Vb
Vc

 √
2U+1

 Cos(ωot + ϕ+1)
Cos(ωot + ϕ+1 −

2π
3 )

Cos(ωot + ϕ+1 +
2π
3 )


+

√
2U−1

 Cos(−ωot + ϕ+1)
Cos(−ωot + ϕ−1 −

2π
3 )

Cos(−ωot + ϕ−1 +
2π
3 )


∑

Un

 Cos(nωot + ϕn)
Cos(nωot + ϕn −

2π
3 )

Cos(nωot + ϕn +
2π
3 )

 (19)

where Un and ϕn denotes the amplitude and initial phase of
the nth harmonics. Then the transformation is represented by
equation (20).

Vαβ =

[
Uα

Uβ

]
= U+

αβ + U−

αβ +

∑
U
n

αβ
(20)

Put the resonance frequency of DSOGI-PLL to grid
frequency 0 and utilize the Vα&Vβ as input signals of
the integrator to determine the output signal that contains
positive and negative sequence and nth harmonic content. It is
represented by equation (21)-(22).V ′

α = V+
α + V−

α + V n∗
α

qV ′
α = V+

β + V−

β +
1
n
V n∗

β

(21)
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FIGURE 6. Proposed sequential cascaded HBM scheme.

FIGURE 7. Proposed integrative Grid-tied photovoltaic system diagram.

V ′
β = V+

β + V−

β + V n∗
β

qV ′
β = −V+

α + V−
α −

1
n
V n∗

α

(22)

Thus,

V n∗
α = |D|| ω = nωoUnCos(nωot + ϕn+ <D|ω = nωo

(23)

V n∗
β = |D|| ω = nωoUnCos(nωot + ϕn+ <D|ω = nωo

(24)

The integrator corresponds to the output as two component
frequencies with a 90-degree phase difference, however

equations (21) and (22) both modify the extremum and
phase position of the harmonic content. The term ‘‘positive
voltage sequence component’’ refers to both the positive and
negative sequence components (PNSC). Equation can be used
to represent the PNSC (25).

V n
α =

1
n
V+

α + qV ′
α = (

1
n
−1)V+

α + (
1
n
+1)V−

α

V n
β =

1
n
V+

β − qV ′
β = (

1
n
−1)V+

β + (
1
n
+1)V−

β

(25)

The modified two-phase voltage is shown to reduce the
harmonic content and only contain the PNSC with an
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amplitude change by comparing equations (21) and (22).
The large low order harmonics can be expressed using
equation (26).

V n
β =

[
V n

α

V n
β

]
= (

1
n

− 1)V+

αβ + (
1
n

− 1)V−

αβ + (
1
n

−
1
h
)V h

αβ

(26)

Equation (26) uses the HBM technique to reduce the
target subharmonic content. The amplitude of two orthogonal
harmonic content in equations (21) and (22) is only linked
to the number of harmonics. As a result, HBM is used to
filter out the arising low order harmonics. Equation (21)
demonstrates that since the coefficients are multiplied by
the PNSC of the voltage corresponding to each stage
of the HBM when the voltage harmonics are removed.
Before the Park’s transformation, a gain link is applied to cor-
rect the component amplitude, and the gain coefficients are
expressed as (27). 

k =
1

π ( 1n−1)

k ′
=

1

π ( 1n−1)

(27)

E. PROPOSED INTEGRATIVE GRID-TIED PV SYSTEM
CONFIGURATION
Figure 7 illustrates the qualitative aspects of power generation
and transmission within a grid-connected solar PV system,
incorporating a novel DDQN MPPT algorithm with a
centralized start-up condition and an ECG system enhanced
by an EDSOGI-PLL modified using the SGF algorithm. The
proposed system features a two-stage PV system contributing
power to the utility grid, employing 1STH-215-P Soltech
bifacial PV panels with specifications detailed in Table 2.
These bifacial PV modules are configured in a fixed-
tilt arrangement. The DDQN MPPT algorithm, optimized
through centralized start-up computation, is introduced to
attain the optimal DC link voltage at the common DC bus
under PSC. This integrative MPPT algorithm synergizes the
advantages of DDQN and centralized start-up computation,
enhancing overall performance within a unified framework.
Capable of discerning scheduled or underperforming PV
arrays, the algorithm globally searches specified arrays
after a trigger signal, optimizing energy capture. The
Boost DC/DC converter, designed with consideration for
DC link capacitor specifications, steps up the DC link
voltage to match the DC/AC inverter requirements. The
DC-link capacitor functions as an energy storage unit
and aids in mitigating voltage ripples across the PV
array [30].

The DC/AC inverter, connected to the utility grid via an
LC filter and step-up transformer, converts DC to AC power
while the LC filter minimizes high-order harmonics. The
novel ECG integrated with the EDSOGI-PLL,modified using
SGF, controls the grid interfacing inverter, thereby enhancing
power quality. The ECG-DSOGI-PLL with SGF strategy

TABLE 2. Specification of the proposed system.

employs a dual-loop power flow controller, encompassing
outer-loop voltage and inner-loop current controllers. This
involves sensing three-phase currents, converting them to
direct-quadrature (d-q) components using Parks Transforma-
tion, and determining three-phase reference voltages. These
reference voltages generate firing angle signals for the PWM
generator, driving the inverter IGBT’s gates to produce
a pure sinusoidal waveform. The EDSOGI-PLL ensures
synchronization between the grid and inverter. Notably, this
proposed grid-integrated PV system accommodates both
linear and nonlinear loads. The integrative scheme benefits
from improved MPPT efficiency, enhanced power quality,
and the ability to discern and optimize PV arrays dynamically,
thereby maximizing energy capture and grid performance in
diverse conditions.

IV. SYSTEM SETUP
This section illustrates the configuration of the proposed
bifacial Photovoltaic (bPV) system with a fixed tilt design,
emphasizing a meticulous installation approach aimed at
optimizing energy yield from bifacial modules [30]. The
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FIGURE 8. Proposed integrative Grid-tied photovoltaic system
architecture.

system is defined with a fixed tilt angle of 30 degrees and
a constant albedo of 30% for both modules. To achieve the
optimal system configuration, a ground coverage ratio (GCR)
of 35% is chosen, along with a collector height and width
of 2.1m and 3.75m, respectively. The simulation assesses
energy yield, bifacial gain, and tracking gain for this fixed-
tilt setup, utilizing the Johannesburg, Alberton dataset from
South Africa. The region exhibits an anticipated specific
production of 1753 kWh/kWp per year and an expected
Annual Global Horizontal Irradiation of 2,061 kWh/m2,
surpassing benchmarks set by other commercial PV projects
in South Africa. Detailed specifications of the proposed
system can be found in Table 2.

The proposed PV system, centered around the bifacial
modules, notably integrates the 1STH-215-P model, boasting
a 2 kW nominal power rating. The DC link voltage is
precisely set at 280VDC, complemented by the inclusion
of an LC filter to enhance system performance. Operating
at a high precision, the controller orchestrates a sampling
frequency of 20kHz, with a minimal sampling period of 5µs.
The inverter, a pivotal component in the system, is rated
at 2kVA, showcasing its capability to handle input voltages
within the range of 120Vdc to 290Vdc. Its output is a robust
380Vac (±5%), presented in a three-phase configuration
to ensure efficient power delivery. Key grid parameters
include a nominal voltage of 380Vac, a nominal current
of 25A, and a local power output of 1.7kW. Notably, the
system seamlessly aligns with the standard grid nominal
frequency of 50Hz. Figure 8 serves as a demonstrative visual
representation of the system’s architecture and functionality,
providing a comprehensive overview of its key components
and interconnections.

This paper encompasses four (4) distinct case studies
designed to assess and analyze the performance of the
proposed system. By examining multiple cases, this can
assess the system’s robustness, efficiency, and adaptability
across various environmental and operational parameters.

A. CASE STUDY 1 – FIXED TILT APPROACH
This segment outlines the proposed configuration for the bifa-
cial Photovoltaic (bPV) system, employing a fixed tilt design
aimed at optimizing energy yield from the bifacial modules.
The simulation is conducted to assess energy yield, bifacial
gain, environmental analysis and tracking gain for this fixed-
tilt configuration, utilizing the Johannesburg dataset in South
Africa. The chosen location boasts an anticipated specific
production of 1753 kWh/kWp annually and an expected
Annual Global Horizontal Irradiation of 2,061 kWh/m2,
surpassing benchmarks set by other commercial PV projects
in South Africa. Figure 9 provides a visualization of the solar
irradiance path and Iso-shading diagram for the proposed
location.

The average annual low temperature is recorded at 20.5◦C,
with December identified as the warmest month at an
average temperature of 25◦C, while July stands as the
coldest month at 18◦C. Detailed temperature statistics from
January 2009 to January 2023 are presented in Figure 10,
indicating a maximum recorded temperature of 29◦C and a
minimum of 1◦C, based on NASA’s weather dataset [31].
Furthermore, the average monthly relative humidity ranges
from 36% in July to 90% in January over the same
period.

Figure 11 visually depicts the global photovoltaic power
potential, with a specific emphasis on Johannesburg in
the Gauteng province of South Africa. The city stands
out as a strategic location for solar energy harvesting due
to its unique geographical positioning and ample solar
exposure. This case study is substantiated by the meticulous
modeling and simulation conducted through advanced tools,
including PV Syst 7.4, HOMER, and MATLAB R2023
Software.

The performance of the algorithms is evaluated using
three key metrics: Root Mean Squared Error (RMSE), Mean
Absolute Error (MAE), and Mean Squared Error (MSE).
These metrics, calculated using equations (28) to (30),
provide quantitativemeasures of the algorithm’s accuracy and
effectiveness in predicting outcomes.

MSE =
1
N

∑N

i=1
(y− t)2 (28)

RMSE =

√
1
N

∑N

i=1
(y− t)2 =

√
MSE (29)

MAE =
1
N

∑N

i=1
|(y− t)| (30)

B. CASE STUDY 2 – DYNAMIC MPPT ALGORTIHM
PERFORMANCE UBDER PSC
In Case Study 2, a notable variation in solar insolation levels,
transitioning from G1 at 1000W/m2 to G2 = 855W/m2,
G3 = 966W/m2, and G4 = 925W/m2 as shown in Table 3,
is employed to assess the efficacy of the proposed DDQN
with centralized start-up condition MPPT algorithm under
PSC. The PV module temperature undergoes changes
from T1 = 23◦C,T2 = 27◦C,T3 = 28◦C, and T4 = 15◦C
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FIGURE 9. Solar Sun path and Iso-shading diagram [31].

FIGURE 10. Johannesburg monthly average temperature [31].

during this investigation. To ensure a rapid dynamic response
and maintain a stable DC current within specified limits
for the inverter, the DC link inductor is kept constant at
100mH. The performance of the proposed DDQN MPPT
algorithm is evaluated under a linear load of 1.7 kW to
measure the Total Harmonic Distortion (THD) in the grid.
The THD for voltage and current is individually calculated
through equations (31) and (32), respectively. The THD level
is quantified using Fast Fourier Analysis (FFT) in accordance

with the IEEE 519 standard.

THDV =

√∑N
n=2 V

2
5

V1
×100% (31)

THDI =

√∑N
n=2 I

2
5

I1
×100% (32)

where THDV is the system voltage total harmonic distortion
and THDI system current total harmonic distortion.
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FIGURE 11. Photovoltaic power potential for South Africa,
Johannesburg [31].

TABLE 3. Specification of the proposed system.

Ultimately, the substantial impact of elevated THD levels
contributes to a degradation in the Power Factor (PF) of the
system, resulting in an escalation of customer tariffs. The
system PF is determined using equation (33) with reference
to the IEEE standard 1459 [32].

PF =
1√

1 +

(
THD%
100

)2 (33)

C. CASE STUDY 3 - EXPLORING PATTERNED SOLAR
IRRADIANCE VARIATION
Within the confines of Case Study 3, our objective
is to elucidate the intricacies of Patterned Solar Irra-
diance Variation (PSC Pattern 2) while scrutinizing the

efficacy of a novel DDQN. This scrutiny is conducted
amidst dynamic alterations in solar irradiance levels and
module temperatures, contemplating four distinct scenar-
ios G1 = 950W/m2, G2 = 800W/m2, G3 = 860W/m2, and
G4 = 790W/m2. Simultaneously, the module temperatures
exhibit variance with T1 = 28◦C,T2 = 29◦C,T3 = 31◦C,

and T4 = 32◦C.
The experimental complexity is heightened by the deliber-

ate reduction of the DC link inductor to 90mH . Additionally,
an innovative non-linear load is introduced, characterized by
a power ramp-up trajectory from 1.7kW to 1.9kW within
the temporal bounds of t = 0.3 − 0.6s. This non-linear
load integration serves as a conduit for the evaluation
of THD levels pertinent to the proposed ECG strategy.
The quantification and assessment of THD are executed
through the application of FFT methodologies, aligning
with the rigorous specifications articulated by the IEEE 519
standard.

Beyond the realms of THD scrutiny, due consideration
is accorded to the measurement of PF under the auspices
of the IEEE 1459 international standard for power quality
analysis. This multifaceted analytical approach ensures a
comprehensive evaluation of the proposed DDQN, fostering
nuanced insights into its resilience and efficacy within the
dynamic context of solar power generation. The richness
and depth of this investigation contribute substantively to
the scholarly discourse on advanced control strategies in
renewable energy systems [33], [34].

D. CASE STUDY 4 - ENHANCING POWER QUALITY IN LOW
IRRADIANCE ENVIRONMENTS
In the conclusive Case Study 4, a sophisticated Patterned
Solar Irradiance Variation (PSC) pattern is introduced,
presenting a challenging scenario for the solar panel. The
solar irradiance levels in this intricate pattern are notably low,
specifically denoted as G1 = 850W/m2, G2 = 640W/m2,
G3 = 670W/m2, and G4 = 590W/m2. Concurrently, the
module temperature undergoes fluctuations, transitioning
from T1 = 24◦C T2 = 20◦C,T3 = 18◦C, and T4 = 14◦C.

To intensify the complexity of the study, adjustments
are made to the DC link inductor, reducing it to 70 mH .

Moreover, a non-linear load is integrated into the system,
undergoing a power ramp-up from 1.7kW to 2kW . The
primary objective of this configuration is to assess the perfor-
mance of the propose MPPT and inverter control strategies in
enhancing the quality of power. In this case, QRNN control
strategy is also introduced to validate the effectiveness of the
proposed DDQN algorithm. This evaluation is conducted uti-
lizing the FFT toolbox, providing a comprehensive analysis
of the system’s response to challenging environmental condi-
tions. The outcomes of this investigation contribute valuable
insights into the robustness and effectiveness of the proposed
control strategy under real-world scenarios, specifically in
scenarios with low solar irradiance and varying module
temperatures.
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FIGURE 12. System performance ratio.

V. RESULTS AND DISCUSSION
In the system configuration, Case Study 1 aims to assess the
energy infusion into the grid and potential energy dissipation
by employing PVSyst software.

Moving on to Case Studies 2 through 4, the focus will
shift towards scrutinizing the effectiveness of the suggested
DDQN MPPT algorithm and ECG, with an emphasis on the
EDSOGI-PLL Inverter control strategy, all of which will be
implemented using MATLAB Simulink.

A. CASE STUDY 1 – FIXED TILT APPROACH
The evaluation of potential PV energy infusion into the
grid and associated power losses was conducted using
PVSyst simulation software. The study employed a fixed-
tilt installation configuration with bifacial PV modules,
utilizing meteorological data from Johannesburg, Alberton
in the design. Figure 12 illustrates that 83.47% of the
energy is generated at the inverter output, with corresponding
annual energy losses of 16.53%. The energy available
at the inverter output, contributing to the grid, amounted
to 2085 kWh/kWp/year and 4171 kWh/year as shown in
Table 4. These losses are attributed to various factors
such as irradiance, module temperature, overload, and
ohmic wiring loss within the PV array, as depicted in
Figure 13. Additionally, inverter losses during operations
also contribute to the overall energy loss. The findings
suggest that the Johannesburg site is well-suited for solar
renewable energies, yet there is room for improvement.
The proposed DDQN MPPT controller with a centralized

start up condition is expected to minimize energy losses
caused by the PSC on the PV array side, while the inverter
control technique ensures the injected power meets IEEE
standards.

Therefore, Case Studies 2-4 will delve into the perfor-
mance assessment of the proposed MPPT algorithm for
accurately tracking the GMPP and reducing power losses
at the PV array side, especially under challenging weather
conditions. Furthermore, the ECG based on EDSOGI-PLL
algorithm, is anticipated to enhance power quality in both
steady-state and transient conditions.

The solar energy data for the given month shows a global
horizontal irradiance of 2247.2 kWh/m2, with a temperature
of 17.56◦C. The photovoltaic system’s performance ratio
(PR) is 0.835, resulting in an effective global efficiency
(GlobEff) of 2448 kWh/m2 and an annual energy production
of 4339.3 kWh.

Table 5 offers a nuanced perspective on the environmental
impact of the analyzed energy system, crucial for an energy
and sustainability expert’s comprehensive evaluation which
were measured using PVSYST and HOMER software.
The production of 2.61 metric tons of CO2, meticulously
calculated from the underlying data, serves as a quantifiable
measure of the direct emissions associated with the energy
system. This figure underscores the imperative for cleaner
and more sustainable energy sources, as reducing such
emissions aligns with global efforts to mitigate climate
change. Moreover, the replaced emissions total of 46.6 tCO2
highlights the transformative effect of the examined energy
system.
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FIGURE 13. Loss diagram over the whole year.

TABLE 4. BPV Normalized performance.

where:
GlobHor - Global horizontal irradiation.
DiffHor - Horizontal diffuse irradiation.
T_Amb - Ambient Temperature.
GlobInc - Global incident in coll. Plane.
GlobEff - Effective Global, corr. for IAM and shadings.
EArray - Effective energy at the output of the array.
E_Grid - Energy injected into grid.

PR - Performance Ratio.
By displacing conventional energy sources, it substantiates

the tangible environmental benefits accrued through the
adoption of renewable or cleaner technologies, further
emphasizing the pivotal role such systems play in the
transition toward a low-carbon future.

Delving deeper into the broader sustainability context, the
calculated CO2 emission balance total of 37.8 tCO2 as shown
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in figure 14 provides a net assessment, amalgamating both the
produced and displaced emissions. This holistic perspective
is essential for evaluating the overall environmental efficacy
of the energy system. Additionally, considerations such as the
system’s 2085 kWh/kWp/year, its projected 30-year lifetime
as depicted in Figure 14, and the annual degradation rate
of 1.0% contribute to a comprehensive understanding of the
system’s long-term sustainability.

The incorporation of grid lifecycle emissions from the
IEA list, specifically tailored to the South African con-
text, further contextualizes the findings, illustrating the
significance of accounting for regional variations in energy
production.

FIGURE 14. CO2 emission balance diagram.

1) RESOURCE CONSUMPTION IMPACT
The production and installation of PV modules and related
components, which require substantial raw material con-
sumption and energy-intensive manufacturing processes,
may have major resource consumption consequences for
the proposed integrated grid-tied PV system. Strategies like
putting in place energy-efficient manufacturing procedures,
creating strong material recycling programs, and carrying out
thorough lifecycle assessments are crucial for minimizing
these effects because they lower resource consumption and
the environmental footprint of the system over its whole
lifespan.

2) WASTE GENERATION IMPACT
If PV systems are decommissioned and broken or out-
dated components are disposed of improperly, trash—
especially electronic waste, or e-waste—may be produced.
Implementing end-of-life recycling programs, advocating
extended producer responsibility legislation, and looking
into potential reuse and repurposing for decommissioned
components are just a few of the actions that must be
taken to solve this problem in order to minimize landfill
waste and maximize resource recovery. These tactics seek
to minimize the environmental effects of waste creation
and guarantee the responsible end-of-life management of
PV systems.

TABLE 5. System life cycle emissions.

TABLE 6. DDQN MPPT results.

TABLE 7. GEO MPPT results.

B. CASE STUDY 2 - DYNAMIC MPPT ALGORTIHM
PERFORMANCE UBDER PSC
The efficacy of the DDQN with EDSOGI-PLL based on
HBM MPPT technique in optimizing PV power under PSC
was verified and demonstrated. Figure 15 illustrates the suc-
cessful tracking of the GMPP at 212.89 W per panel within a
mere 0.012 seconds using the proposedDDQNapproach. The
results presented in Table 6 showcase a remarkable PV effi-
ciency of 99.88%, with power losses limited to 0.12%. The
proposedMPPT technique determined a PV current of 7.44A,
Vmpp of 28.9Vdc and the combined DC link of 289Vdc. The
duty ratio stabilized at D = 0.55 at GMPP. Notably, the
input side of the inverter consistently received an optimal
DC link voltage, courtesy of the proposed DDQN MPPT
approach.

The DDQN algorithm was compared with the existing
GEO MPPT algorithm as demonstrated in Figure 15. The
GEO algorithm tracked the GMPP of 201W in 0.013 seconds.
It recorded the PV efficiency of 93.49% as shown in Table 7.
The GEO recorded Vmpp of 27.88Vdc and Impp of 7.21A
respectively. The algorithm is inefficient as compared to the
proposed DDQN.

The DDQN has benefits such as swift convergence,
rapid settling, and minimal oscillation around the MPP
resulting in high efficiency. In Case Study 2, the results
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underscore the effectiveness of the DDQN MPPT technique
in addressing PV power optimization challenges, attributed to
its dynamic responsiveness, high tracking speed, convergence
capabilities, and confidence-inspiring performance. The
findings suggest that the proposed approach outperforms in
handling dynamic scenarios and excels in ensuring efficient
power extraction from the photovoltaic system under various
conditions.

FIGURE 15. Case study 2 MPPT results with proposed DDQN with start-up
condition.

The effectiveness of the ECG-EDSOGI-PLL based on
HBM control strategy, was assessed under PSC and a linear
load. In Figure 16, the percentage of current THD was
depicted during a linear load. Typically, voltage harmonics
stem from current harmonics induced by source impedance.
Consequently, this paper focuses on measuring % THDI . The
proposed scheme exhibited a low THD of 0.26%, meeting the
standards outlined by IEEE 519. Utilizing a substantial DC
link inductor of 100mH resulted in minimal PV power ripple.
The proposed scheme achieved a settling time of 0.14 seconds
after tracking the GMPP. A system PF close to unity at
0.999 was recorded as shown in Table 8, aligning with the
power quality analysis standards set by IEEE 1459.

TABLE 8. Inverter control strategies compared results.

When examining the ASO control strategy in Figure 17
under linear load, the % current THD content was illustrated.
The algorithm recorded a THD of 2.52%, slightly higher than
the proposed method but still within the bounds of IEEE
519 standards. The ASO’s settling time was 0.34 seconds
after GMPP tracking, with a higher harmonics content
compared to the proposed EM algorithm. The ASO exhibited

a system PF of 0.998, marginally lower than the proposed
scheme. The validation underscores that the proposed ECG,
based on the EDSOGI-PLL inverter control algorithm,
outperforms the ASO in terms of stability and power quality
enhancement. This emphasizes the significance of deploying
the proposed inverter control scheme to effectively mitigate
harmonics and enhance power quality.

FIGURE 16. The THD performance results with ECG-EDSOGI-PLL with
HBM (C2).

FIGURE 17. The THD performance results with ASO algorithm (C2).

C. CASE STUDY 3 - EXPLORING PATTERNED SOLAR
IRRADIANCE VARIATION
In Case Study 3, alterations in weather conditions were
introduced to evaluate the robustness of the recommended
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DDQN MPPT approach in tracking the GMPP. The scenario
also included the introduction of nonlinearity and a reduction
in the DC link inductor. Figure 18 illustrates that the DDQN
method adeptly tracked PV power at 210.11 W within a swift
0.013 seconds. Referencing Table 7, the PV efficiency stood
at 98.57%, with energy losses limited to 1.43%. Employing
the suggested MPPT technique yielded an optimal DC link
Vmpp of 28.77V, PV current of 7.3A and DC link Voltage of
287.7V.

The GEO MPPT algorithm tracked GMPP of 199W
in 0.02 seconds. The algorithm recorded PV voltage and
current of 27.78Vdc and 7.16A respectively. The DC link
voltage is 277.8Vdc and the efficiency of 92.56% as shown
in Table 7. The algorithm demonstrated power losses of
7.44% under changing weather conditions. Analysis of Case
Study 3 reveals that the DDQN MPPT algorithm’s rapid-
tracking capabilities enable it to sustain the desired inverter
voltage even in challenging weather conditions as compared
to GEO. The optimal duty ratio was established at D =

0.57. Notably, the proposed scheme demonstrated the ability
to differentiate between the Local Maximum Power Point
(LMPP) and the true GMPP. Leveraging restart conditions,
the algorithm can identify shaded PV arrays and selectively
perform GMPP tracking on those specific arrays, mitigating
unnecessary power loss. The scheme exhibited swift con-
vergence, minimal settling time, and reduced oscillations
around theMPP. Simulation results indicate that the proposed
DDQN MPPT technique is highly effective under PSC and
excels in addressing PV power optimization challenges. Its
dynamic and fast response, high tracking speed, convergence
capabilities, and confidence ensure efficient performance.
With lower energy losses and increased energy extraction
from bifacial PVmodules, the proposed approach contributes
to a reduced energy payback time.

FIGURE 18. Case study 3 MPPT results with proposed DDQN with start-up
condition.

Figure 19 showcases the percentage of current Total
Harmonic Distortion (% current THD) content for the
proposed ECG-EDSOGI-PLL inverter control strategy under
varying loads and a reduced DC link inductor of 90mH.

The proposed control scheme exhibited a commendable
current THD of 0.40% during dynamic load changes, well
within the stipulated limits of the IEEE 519 standard.
Furthermore, the algorithm demonstrated an impressive
system power factor of 0.999, aligning with the standards
set by IEEE 1459. This indicates a phase alignment
between current and voltage, minimizing power wastage.
Figure 20 visually illustrates the proposed system generating
a flawless sinusoidal current waveform, devoid of harmonic
distortions.

However, a reduction in the DC link inductor resulted
in an increased settling time of 0.27 seconds after tracking
the Global Maximum Power Point (GMPP). Despite this,
the THD content of the algorithm remained satisfactory
when compared to theASO scheme. The ECG-EDSOGI-PLL
strategy’s stability improvement in an AC system surpassed
that of the ASOmethod. This enhancement may be attributed
to the high-frequency voltage source controller switches
employed during inverter operation; a feature not achievable
in the ASO strategy.

FIGURE 19. The THD performance results with ECG-EDSOGI-PLL with
HBM (C3).

Figure 20 illustrates the % current THD content of
the ASO during load variation and a reduced DC link
inductor. The ASO algorithm recorded a high THD of
5.57%, surpassing the IEEE 519 standard limits under
nonlinear load conditions. The settling time for the ASO
was 0.61 seconds after tracking the GMPP, with signifi-
cantly higher harmonics content compared to the proposed
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FIGURE 20. The THD performance results with ASO algorithm (C3).

ECG-EDSOGI-PLL control strategy. Despite a system
power factor of 0.995, slightly lower than the proposed
scheme, it is evident that the proposed ECG-EDSOGI-PLL
algorithm outperforms in enhancing system performance,
improving power controllability, and boosting stability
margins.

D. CASE STUDY 4 - ENHANCING POWER QUALITY IN
LOW IRRADIANCE ENVIRONMENTS
To assess the effectiveness of the proposed DDQN MPPT
algorithm with a decentralized restart condition, alterations
were made to the PSC by varying solar irradiance and module
temperature. In this scenario, the proposed MPPT technique
demonstrated its capability by successfully extracting the
GMPP at 208.97 W, achieving a dynamic tracking speed of
0.014 seconds. The Vmpp recorded is 28.65 V and input side
of the inverter produced a DC link voltage of 286.5 V, along
with a recorded PV current of 7.3A.

Under the influence of the significant variability in
weather conditions, characterized by the presence of multiple
power peaks due to a large PSC, the proposed algorithm
exhibited a PV efficiency of 98.04% and energy losses
limited to 1.96%. Notably, the optimization of the PV
system power was achieved at around D = 0.64. On
the other hand, GEO MPPT algorithm achieved GMPP
of 192W and PV efficiency of 89.30% respectively. The
technique experienced a 10.7% decrease in power output
due to dynamic PSC, indicating a failure to effectively track
the GMPP amidst rapidly changing climatic conditions. The
method recorded the Vmpp and Impp of 27.54Vdc and 6.97A
distinctly.

Figure 21 illustrates the proposed DDQN’s capability
to discern the true GMPP instead of being confined
to the LMPP. The proposed DDQN MPPT technique
proved to be a significant contributor to power quality
enhancement and the reduction of potential substantial
energy losses under rapidly changing weather conditions.
Moreover, the algorithm showcased robust performance
in both the steady-state and transient states of the sys-
tem, reinforcing its effectiveness across diverse operational
scenarios. This substantiates the claim that the proposed
DDQN MPPT technique holds promise for substantial
improvements in power quality and efficiency, particu-
larly in the face of dynamically changing environmental
conditions.

FIGURE 21. Case study 4 MPPT results with proposed DDQN with start-up
condition.

In Figure 22, the percentage current THD for the proposed
ECG-EDSOGI-PLL during nonlinear loads and a reduced
DC link inductor of 70mH is depicted. The proposed
strategy achieved a THD of 2.03% under dynamic load
changes, meeting the criteria set by the IEEE 519 stan-
dard. The algorithm exhibited an impressive system power
factor of 0.998, well within the bounds of the IEEE
1459 standard. However, a reduction in the DC link inductor
resulted in an increased settling time of 0.30 seconds
after tracking the GMPP. Despite this, the THD content
of the algorithm remained satisfactory compared to the
ASO strategy. The proposed system not only enhances the
stability of the utility grid but also minimizes harmonics
content, providing improved controllability and stability for
both active and reactive power in the grid, as outlined
in Appendix A.

Figure 23 illustrates the grid current %THD level of
the ASO during load variations and a reduced DC link
inductor. The ASO algorithm recorded a high THD of
12.83%, surpassing the limits of the IEEE 519 standard. The
increased THD in Figure 23 is primarily due to the ASO
Algorithm, which does not effectively regulate or control the
grid current under load variations and with a reduced DC link
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inductor. The settling time for the ASO was 0.65 seconds
after tracking the GMPP, accompanied by higher harmonics
content compared to the proposed inverter control strategy,
as detailed in Appendix B.

The QRNN recorded the THD of 2.34%, which is also
higher than of the proposed ECG-EDSOGI-PLL as shown
in Figure 24 and Appendix C. However, QRNN performed
better than ASO which demonstrated the highest THD
level. The ASO method also exhibited phase imbalance due
to the low DC link inductor and nonlinear load. With a
system power factor of 0.98, slightly lower than that of the
proposed scheme, it is evident that the proposed inverter
control strategy significantly outperforms the ASO in terms
of stability and improved power quality.

The results underscore the effectiveness of the proposed
ECG-EDSOGI-PLL strategy in ensuring grid stability, har-
monics mitigation, and enhanced control overactive and
reactive power, providing valuable insights for applications in
diverse scenarios as compared to the ASO and QRNN control
strategies.

FIGURE 22. The THD performance results with ECG-EDSOGI-PLL with
HBM (C4).

E. SUMMARY
The comparative evaluation of the proposed ECG-EDSOGI-
PLL inverter control algorithm with the recent ASO and
QRNN from the literature is conducted using the parameters
of contemporary bifacial PV panel technology integrated
into the Simulink file, resulting in satisfactory simulation
outcomes. Table 9 is employed to delineate the distinc-
tions between the three control strategies across various

FIGURE 23. The THD performance results with ASO algorithm (C4).

FIGURE 24. The THD performance results with QRNN algorithm (C4).

characteristics. The findings unequivocally demonstrate the
superiority of the proposed ECG-EDSOGI-PLL scheme over
the ASO and QRNN, particularly in its adherence to IEEE
519 standard limits under both linear and nonlinear load
conditions. The proposed method boasts several advan-
tages, including high performance, cost-effectiveness, ease
of compensatory tuning, double-loop harmonic mitigation,
remarkable accuracy, reduced settling time, and a shorter
energy payback time.

However, caution is advised in selecting the DC link
inductor value, particularly at very low modulation indices.
The ASO, on the other hand, faces challenges in reducing
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TABLE 9. Inverter control strategies compared results.

THD levels and exceeds IEEE 519 standards under transient
states. While the ASO exhibits benefits such as moderate
complexity and good amplitude tracking, it is burdened with
drawbacks such as heightened harmonics and oscillations,
voltage spikes, imbalance, and a prolonged settling time.
The QRNN control strategy performed better as compared
to ASO, demonstrating moderate accuracy, fast grid synchro-
nization and good power quality. These comparative results
underscore the overall superior performance of the proposed
ECG-EDSOGI-PLL inverter control algorithm, offering a
compelling solution for applications where precision, sta-
bility, and compliance with power quality standards are
imperative considerations.

VI. CONCLUSION
The paper introduces a comprehensive and innovative
approach for managing grid-connected fixed tilt bifacial PV
systems. The proposed ECG algorithm, coupled with an
EDSOGI-PLL based on HBM and a DDQNmaximum power
point tracking algorithm, exhibits superior performance
in addressing critical challenges faced by PV systems.
The DDQN MPPT algorithm, with its centralized start-up
condition computation, ensures stable DC voltage levels and
minimizes fluctuations during transient states, significantly
enhancing energy efficiency under PSC. Moreover, the ECG-
EDSOGI-PLL inverter control strategy, integrated with a
Sequential Cascaded HBM, successfully mitigates harmon-
ics, attains grid synchronization, and estimates symmetrical
components under unbalanced grid conditions, showcasing
its adaptability and effectiveness.

The presented case studies validate the robustness and
efficacy of the proposed strategies. Through simulations

and analyses, the DDQN MPPT algorithm consistently
achieves swift and accurate tracking of the GMPP
under various conditions, reducing energy losses and
improving power quality as compared to GEO MPPT
algorithm.

The ECG-EDSOGI-PLL control strategy outperforms the
conventional ASOmethod, demonstrating enhanced stability,
lower THD, and adherence to IEEE standards. The thorough
examination of the proposed system’s environmental impact
reveals a significant reduction in CO2 emissions and attests
to the system’s potential for sustainable energy production.
Overall, this research contributes valuable insights and
practical solutions to the field of grid-connected bifacial PV
systems, emphasizing the proposed algorithms’ prowess in
addressing challenges and optimizing the performance of
renewable energy systems.

In brief, the principal result of this research can be
summarized as follows:

• The energy contribution to the grid from the
inverter output amounted to 2085 kWh/kWp/year and
4171 kWh/year.

• The DDQN algorithm achieved an average PV effi-
ciency of 98% under dynamic PSC, establishing it as a
dependable and effective solution for maintaining high
efficiency in fluctuating environmental conditions.

• Simulation results of ECG-EDSOGI-PLL confirm
adherence to IEEE 519 Standards, with THD below 3%
and power factor approximately equal to 1.

• Additionally, the meticulous calculation of 2.61 metric
tons of CO2 production serves as a quantifiable measure
of the direct emissions associated with the energy
system, highlighting its environmental impact.

Exploring a diverse range of research avenues remains
essential, given the limitations inherent in any single study,
as is common in most research endeavors. Subsequent
investigations could shift their emphasis towards alternative
machine learning methodologies, encompassing techniques
like dimensionality reduction (DR), generalized discriminant
analysis (GDA), and principal component analysis (PCA).

APPENDIX A
3 PHASE GRID VOLTAGES AND CURRENTS AFTER
ECG-EDSOGI-PLL COMPENSATOR
See Fig. 25.

APPENDIX B
3 PHASE GRID VOLTAGES AND CURRENTS AFTER ASO
COMPENSATOR
See Fig. 26.

APPENDIX C
3 PHASE GRID VOLTAGES AND CURRENTS AFTER Q-RNN
COMPENSATOR
See Fig. 27.
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FIGURE 25. 3 Phase Voltage and current with ECG-EDSOGI-PLL.

FIGURE 26. 3 Phase Voltage and current without control strategy.
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FIGURE 27. 3 Phase Voltage and current with Q-RNN.
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