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ABSTRACT In the rapidly evolving landscape of wireless communication systems, the forthcoming
sixth-generation technology aims to achieve remarkable milestones, including ultra-high data rates and
improved Spectrum Efficiency (SE), Energy Efficiency (EE), and quality of service. However, a key
challenge lies in the transmission at Terahertz frequencies, which entails significant signal loss, resulting in
reduced signal-to-interference and noise ratio margins (0). Increased transmit power can ameliorate 0 and
SE, thereby sacrificing EE. Consequently, it necessitates strategic Resource Allocation (RA) to uphold an
optimal trade-off amid SE, EE and0. In this paper, we propose a series of RA strategic algorithms harnessing
the Transfer Learning, Growth-Share (GS) matrix, Game Theory (GT), and service priorities to tailor the
aforementioned trade-off. This endeavour renders the network more intelligent, self-sufficient, and resilient.
Furthermore, we have seamlessly integrated Device-to-Device communication scenarios into our proposed
algorithms, enhancing SE and network capacity. The proposed integration aims to strengthen overall system
performance and accommodate the evolving demands of future wireless networks. Our primary contribution
lies in the development of the GS-GT-based Optimal PathFinder (GS-GTOPF) algorithm to identify optimal
paths based on SE using Deep Neural Networks. Thereafter, we formulate an enhanced version of it by
integrating service priorities (GS-GTOPF-SP). This refinement has been further advanced by reducing the
Computational Time (CT), resulting in GS-GTOPF-SP-rCT. Further improvement is achieved by introducing
the angle criterion (GS-GTOPF-SP-rCT-θ). Extensive simulations demonstrate that angle criterion integrated
algorithm, showcases a remarkable 76.12% reduction in CT while maintaining an accuracy surpassing 95%
compared to GS-GTOPF. Moreover, prioritizing high-priority services leads to a significant enhancement
of 12.97% and 62.95% in SE, 16.14% and 81.97% in EE, and 12.27% and 25.95% in 0 when compared to
medium and low-priority services.

INDEX TERMS Terahertz (THz) communication, transferred learning (TL), energy efficiency (EE),
spectrum efficiency (SE), signal to interference and noise ratio-margin (0), residual battery indicator (RBI).

The associate editor coordinating the review of this manuscript and

approving it for publication was Hayder Al-Hraishawi .

74024

 2024 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.

For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 12, 2024

https://orcid.org/0000-0001-9822-8852
https://orcid.org/0000-0002-3259-817X
https://orcid.org/0000-0002-8466-3316
https://orcid.org/0000-0001-5148-6643
https://orcid.org/0000-0002-0977-9984


V. Pathak et al.: DL Based Energy, Spectrum, and SINR-Margin Tradeoff

I. INTRODUCTION
The continuous progression of wireless communication
technology’s advanced applications and use cases has led to
a remarkable surge in the user demand for high Bandwidth
(BW) and capacity. This trend has catalyzed a significant
evolution inwireless technology, transitioning from the estab-
lished fourth-generation (4G) networks to the impending 5G
networks. While 4G is primarily aimed at interconnecting
users, 5G is poised to interconnect things propelled by
advancements in the Internet of Things (IoT).

The ongoing global deployment of 5G wireless networks
promises to redefine how we connect and communicate [1].
Alongside this transformation, the potential impact of Artifi-
cial Intelligence/Machine Learning (AI/ML) in 5G networks
is significant, with projections envisioning enhanced adapt-
ability, efficiency, and intelligence. However, the extensive
integration of AI/ML is in a nascent stage which presents an
array of formidable challenges yet to be surmounted. On the
other hand, the 6G wireless networks aspire for a complete
ML/Deep Learning (DL) integration [2], [3], [4], [5], [6].
Consequently, 6G enables dynamic adjustments, resource
optimization, fault prediction, enhanced security, and self-
optimization, promising to revolutionize the networks into
more responsive and intelligent communication infrastruc-
tures. Furthermore, 6G aims to effectuate unprecedented
objectives, such as ultra-high data rates, enriched network
capacity, Spectrum Efficiency (SE), Energy Efficiency
(EE), Quality of Service and Experience (QoSE), system
throughput, connectivity density, ultra-low latency, increased
mobility, and reliability [7].

Further, 6G is poised to revolutionize connectivity, boast-
ing speeds of up to 1 Tbps and an astonishingly low latency
of 0.1 ms. This leap forward in technology will reshape
industries in profound manners. Real-time virtual reality
and augmented reality experiences will become seamless
and immersive, paving the way for advanced gaming and
remote collaboration. Besides, autonomous vehicles will
benefit from high-speed connectivity, ensuring safer and
more efficient driving experiences with instant responses to
changing road conditions [8]. In healthcare, telemedicine will
thrive with the ability to transmit high-definitionmedical data
in real-time, facilitating remote consultations and surgeries.
Smart cities and IoT infrastructures will be powered by
6G, enabling seamless communication between countless
devices and real-time data analysis for optimizing resource
usage and enhancing public safety [9]. Additionally, edge
computing will undergo a boost, bringing computing power
closer to end-users for faster processing of data-intensive
applications like AI, ML, and IoT analytics. In essence,
6G’s unparalleled performance will catalyze innovation and
connectivity across industries, unlocking new levels of
efficiency and possibilities previously unimaginable.

Moreover, these advanced use cases and the evolution
of 6G technology necessitate a reassessment of perfor-
mance metrics to effectively gauge the system’s capabilities.
Initial vision studies for 6G identified fundamental metrics,

TABLE 1. Comprehensive glossary of acronyms and symbols.

including peak- and user-experienced data rates, latency,
reliability, coverage, connection density, SE, EE, and cost-
efficiency. However, as research progresses, area traffic
capacity, security capacity, mobility, and intelligence level
are emerging as additional critical metrics for comprehensive
performance evaluation [10]. Further, industries deeply
engaged in 6G research emphasize specific metrics tailored
to their needs, such as precise indoor and outdoor positioning
accuracy, Quality of Perception and Experience (QoPE), and
stringent reliability standards [11], [12]. As the deployment
of 6G technology draws nearer, the continual introduction
of new metrics is anticipated to be essential in accurately
assessing the system performance and meeting the diverse
requirements of advanced use cases.

As it is evident that in 6G, Terahertz (THz) frequencies
(0.1–10 THz) are being viewed as a potential band for
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FIGURE 1. DL integrated multi-hop communication depicting desired signal and interference on the kth path between source and destination
nodes.

communication; however, operating at THz frequencies
incurs immense path losses, atmospheric absorption, rain
attenuation, scattering, penetration losses, and human block-
age, resulting in a lower Signal-to-Interference and Noise
Ratio (SINR) [7], [13]. As a result, there will occur a trade-off
between SE, EE, and system performance, i.e., to proliferate
EE, SE is sacrificed, and vice versa [14], [15], [16], [17],
[18], [19]. To address this trade-off, within our innovative
framework designed to augment network efficiency, we have
integrated Device-to-Device (D2D) communication, which
accomplishes direct data exchange among proximate mobile
devices. In this scenario, devices within proximity can
establish direct communication, circumventing the traditional
cellular network infrastructure. This approach yields numer-
ous benefits, including lower latency, increased SE, EE, and
augmented network capacity. In our investigation, we have
devised an optimal path finder algorithm modelled for D2D
communication scenarios. This algorithm facilitates efficient
and reliable communication among devices by identifying
the most suitable optimal paths for direct data exchange,
thereby optimizing resource utilization and increasing overall
network performance. As highlighted before, in 6G, on the
one hand, the communication devices will be operated in
an energy-efficient manner to transmit with lower power; on
the other hand, operation at THz frequencies will result in
excessive losses. Hence, it is essential to ensure higher SINR-
margins (0) for the larger reach, consequently leading to
lower EE. Further, to achieve higher SE, spectrum allocation
will be confined, which will reduce the 0. These key aspects
serve as the motivation to propose DL-based methodological
strategies to address the trade-off between SE, EE, and 0.

II. RELATED WORKS
The research community has focused on exploring the
trade-offs between SE, EE, and system performance.
T. S. Rappaport et al. provided a comprehensive survey
on 6G-THz communication, discussing vision, drivers,
technologies, opportunities, challenges, and open research
problems [13]. They also introduced novel propagation
and partition loss models for frequencies above 100 GHz,
addressing signal degradation and adaptive beamforming to
mitigate higher path losses [13]. W. Saad et al. outlined a
futuristic vision for 6G, addressing technologies, challenges,
research opportunities, primary drivers, target performance
parameters, and proposed applications [3]. Their work
presents a roadmap and motivation for innovative research in
6G.

However, many researchers demonstrate the importance of
integrating AI, ML, and DL to automate the performance of
6Gwireless networks, optimize SE, EE, system performance,
SINR, reduce latency, and improve reliability and other
performance metrics.

In particular, K. B. Letaief et al. proposed a poten-
tial technological roadmap and AI-enabled optimization
methodologies coalesced with 6G wireless networks [5].
S. Fu et al. conferred AI-assisted intelligent architecture
and edge computing-based joint Resource Allocation (RA)
algorithm attaining superior performance and demonstrating
reduced Computational Time (CT) and BW consump-
tion [2]. T. Huang et al. presented a survey on unaccus-
tomed architectural changes amalgamated with green 6G
networks, AI-based enhanced networking protocols, and
potential technologies forging seamless communication [22].
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TABLE 2. A comparative summary of most related research work under consideration.

M. Chen et al. presented a survey on modern conglomerate
wireless networks, advanced learning systems equipping
superior computing capacity, and rapid and profoundly
intelligent learning algorithms based on flexible input
mechanisms [23]. The study aims to enable researchers to
develop further wireless networks based on Artificial Neural
Networks (ANN).

Furthermore, the authors in [23], [24], [25], [26], [27],
[28], [29], [30], [31], [32], [33], [34], [35], and [36]
emphasized the importance of EE in 6G wireless com-
munication, demonstrating the reduced energy cost and
carbon footprint. Moreover, the authors in [23], [24], [25],
[26], [27], [28], [29], [30], [31], [32], [33], [34], [35],
and [36] illustrated green energy efficiency and Energy
Harvesting (EH) frameworks, optimization methodologies
and RA, routing protocols, and a Game Theory (GT)
approach. In particular, P. Annamalai et al. introduced a RA
algorithm accomplishing increased SE in 5G and beyond
cellular networks [24]. S. K. M. M. Mowla et al. examined
the novel energy-efficient model for 5G heterogeneous green
networks exhibiting 48% power saving compared to the
existingmodels [25]. J. Shi et al. proposed hybrid radio access
optimization algorithms by blending the Non-Orthogonal
Multiple Access and Orthogonal Frequency Division Mul-
tiplexing (OFDM), thereby enhancing the EE for the
next-generation wireless systems [26]. D. Zhai et al. unveiled
the energy-efficient RA employing OFDM for the D2D
users and sparse code multiple access for cellular users in
co-existing cellular networks [27]. F. Fang et al. formulated
a non-convex RA problem for the joint optimization of
subchannel and Power Allocation (PA) considering the
co-channel and cross-tier interference, improving EE [28].

Considering dynamic spectrum sharing environments,
K. Hamedani et al. introduced a novel energy-efficient
spectrum sensing method employing advanced Recurrent
Neural Networks (RNNs) for Multiple Inputs, Multiple
Outputs (MIMO)-OFDM systems [29]. Y. Guo et al. demon-
strated reduced complexity threshold-based pair switching
methods for energy transfer in largescale SWIPT-enabled
cellular networks [30]. J. Wu et al. offered a study of
EH-aided latency and energy-efficient methods for wire-
less communication [31]. P. Yan et al. investigated the
energy-aware relay selection method optimizing the trade-off
between security and reliability by employing the EH

cooperative and Cognitive Radio (CR) access systems [32].
M. Feng et al. investigated a problem of the Base Station
(BS) on-off considering MIMO-heterogeneous networks,
maximizing the EE employing the GT and equilibrium
approaches [33]. X. Ge et al. proposed the algorithm based
on the interference and EE models employing the leading
field GT and the Nash equilibriumHamilton-Jacobi–Bellman
and Fokhar-Planck-Kolmogorov equations improving the
EE and outage probability [20]. A. Shahid et al. proposed a
self-organized optimization framework for allocating power
levels and sub-channels by utilizing a non-cooperative
game to maximize the EE and demonstrate higher perfor-
mance [34].

Furthermore, AI/ML/DL integration is essential for
enhanced EE in 6G wireless communication. In particular,
B. Mao et al. offered an exhaustive survey enwrapping AI
models to accomplish green communication for 6G [21].
P. Goswami et al. presented an AI-enabled energy-efficient
routing protocol for the intelligent transport system [21].
Y. M. A. Qureshi et al. inferred the Reinforcement Learning
(RL)-based contextual unimodal multi-arm bandits dynamic
RA independent of any Channel State Information (CSI),
improving the EH and EE [35]. I. Al Qerm et al. presented the
energy-efficient conditional traffic offloading employing RL
considering the traffic load onmacro and a small BS such that
the power consumption is minimized, preserving congestion
and interference in control [36]. N. Hu et al. proposed
an energy-efficient network computing paradigm for 6G,
integrating network functions into a general computing
platform instead of delegating computing tasks to network
devices [37].
Alongside EE, optimizing SE is equally vital to preserve

adequate QoS by imparting high-quality spectrum and
granting fair user access to the network resources. However,
traditionally, to improve EE, we sacrifice SE and vice versa;
therefore, there is a trade-off between SE and EE. To identify
the optimal trade-off between SE and EE, the authors in [7],
[14], [15], [16], [37], [38], [39], [40], [41], and [42] focused
on jointly optimizing SE and EE. In particular, O. Aydin et al.
presented the optimization problem considering the trade-off
between SE and EE and derived a pattern-optimized solution
under the constraints of service level agreement [15].
A. He et al. introduced a flexible spatial dynamic power
control scheme mitigating cellular-D2D interference to
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optimize the SE and EE simultaneously [16]. In ultra-dense
networks, C. Yang et al. conferred a trade-off study between
SE and EE with a Nash bargaining-based cooperative GT
approach accomplishing the maximal EE at a sub-optimal
SE equilibrium employing the closed-form approximation.
The authors engaged the mean-field method to characterize
and mitigate the complex interference influence, attaining
30% of fairness and trade-off improvement compared to the
conventional approach [38]. Q. V. Pham et al. investigated
an optimization algorithm for RA, maintaining the trade-off
between EE and SE in the presence of interference in 5G
wireless networks [39]. C. He et al. present the ML-based
energy-efficient PA by practicing the clustering method in
a distributed antenna system, maximizing the SE and EE
considering the interference [40]. M. Yan et al. presented the
federated cooperation and augmentation for PA in decentral-
ized wireless networks, demonstrating increased robustness,
accurate PA, and remarkable convergence compared to
the other benchmark algorithms [41]. M. Alnakhli et al.
presented the optimization algorithm considering the injected
traffic patterns D2D communication networks enhance the
SE and EE through the optimized RA employing u-matrix
theory [17]. H. Ngo et al. considered a cell-free MIMO
downlink derived a closed-form expression for the SE, and
designed an optimal PA algorithm to improve EE [42].
M. Sengly et al. studied the joint optimization of EH and SE in
wireless D2D networks by applying a Deep Neural Network
(DNN) learning algorithm [14]. M. Rahman et al. consid-
ered a subsidy-based spectrum-sharing market to facilitate
co-primary spectrum sharing where providers are explicitly
incentivized to share spectrum resources and introduced a
game-theoretic model to regulate free-riding [43]. Moreover,
Friedrich et al. conducted a measurement study using an
indoor mesh testbed to analyze the multi-hop behaviour
of the IEEE 802.11n standard with MIMO. The authors
examined the throughput behaviour and its relationship with
path length, maximum aggregate size, and channel bonding
options for the IEEE 802.11n standard [44]. The study
concluded that throughput decreases exponentially as the path
length increases.

From the aforementioned detailed survey of recent related
studies alongside most related research work under con-
sideration, as illustrated in Table 2, it can be inferred that
there is no existing study which has considered the hybrid
approach of DNN, Transfer Learning (TL), GT, and Growth
Share (GS) matrix-based integration for SE, EE, and 0

trade-off optimized RA, considering the Service Priorities
(SP) in 6G wireless communication networks. Therefore,
we are motivated to propose a DL-based RA methodology
for 6G wireless networks, which addresses the SE, EE, and
0 trade-offs.

A. KEY CONTRIBUTION
This article proposes a DL-based RA methodology for
6G wireless networks, aiming to achieve optimal trade-off
amid SE, EE, and 0. To acclimatize the aforementioned

trade-off, we propose novel RA strategies based on the 0,
such as aggressive, defensive, andmoderate for THz in the 6G
wireless communication networks. Moreover, we incorporate
a D2D communication scenario into our proposed model to
enhance overall network efficiency in terms of SE, EE, and0.
It’s evident as edge computing offloads AI algorithms to base
stations, leveraging D2D communication to facilitate direct
data exchange between nearby devices, bypassing the need
for transmission through base stations. This approach reduces
interference, maximizes spectrum utilization, and enhances
0 as D2D communication enables shorter transmission
distances, resulting in stronger signal strengths and lower
interference compared to traditional cellular transmissions.
Furthermore, complete integration of the DL and TLmodel is
exploited to optimize network efficiency, ensuring seamless
blending of the mixed input DNN and TL in the proposed
algorithms. The key contributions of this paper are outlined
below:

1) Firstly, we propose an innovative algorithm which is
GS matrix-GT-based Optimal PathFinder
(GS-GTOPF), which integrates DNN and TL to
proliferate EE and SE by leveraging Residual Battery
Indicators (RBIs) and 0 values. The primary objective
of this algorithm is to optimize the pathfinding process
in D2Dwireless networks, effectively balancing energy
consumption and spectral utilization for improved
performance.

2) We further enhance network performance by introduc-
ing a second algorithm, GS-GTOPF-SP, which extends
the capabilities of GS-GTOPF by incorporating service
priority-based node and path selection. This augmenta-
tion prioritizes high data rate services to reduce waiting
times and optimize overall network efficiency.

3) Furthermore, we introduced a third algorithm,
GS-GTOPF-SP-rCT, which builds upon GS-GTOPF-
SP by integrating optimization techniques from [45].
This novel algorithm is modelled to refine GS-
GTOPF-SP by identifying solutions with reduced CT,
thus improving efficiency in network optimization
processes.

4) Finally, we introduced a fourth algorithm, an extension
of the third iteration, denoted as GS-GTOPF-SP-
rCT-θ . This novel algorithm incorporates the angle
criterion, significantly reducing CT, albeit with a minor
compromise in accuracy.

To the best of the authors’ knowledge, there exists no
study which considers the hybrid approach of DNN, TL, GT,
and GS matrix-based integration for SE, EE, and 0 trade-off
optimized RA, considering service priorities in 6G wireless
communication. The current study is the first to propose novel
optimization RA strategies to identify the optimal trade-off
amid SE, EE, and 0, simultaneously employing DNN, GT,
GS, and service priorities.

The rest of the article is organized as follows. Section II
comprises all the existing related research under consider-
ation. Section III comprehends the details of the proposed
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system model. Section IV provides an extensive analysis
of the proposed model. Section V details the simulation
environment and provides a detailed analysis of the results.
Lastly, Section VI concludes the overall study of the proposed
article. Moreover, we have defined the most frequently
used acronyms and symbols, along with their interpretations,
throughout the paper, as illustrated in Table 1.
Notations: Matrices are represented by bold uppercase

letters (e.g., H), while bold lowercase letters denote vectors
(e.g., α). Scalars are denoted in normal font (e.g., β). For any
general matrixH,HH , rank(H), andHi,j denote its conjugate
transpose, rank, and (i, j)th element, respectively. I and 0
signify an identity matrix and an all-zero matrix, respectively,
with appropriate dimensions unless specified otherwise. Sets
are denoted by calligraphic letters, e.g., Ki denotes the ith

element of the setK. |K| denotes the total number of elements
in the set. Cx×y denotes the space of x × y complex-valued
matrices. The notation CN (µ, σ 2) indicates a circularly
symmetric complex Gaussian distribution, ∼ stands for
‘‘distributed as’’, and | stands for ‘‘given that’’.

III. SYSTEM MODEL
This section presents the comprehensive system model
considering an EH deployment, Power Transmission (PT),
Path-Loss (PL) channel model, DL, and TL solution for
the 6G and beyond communication networks. The commu-
nication system comprises Mobile User (MU) nodes with
wireless power transfer and energy harvesting capabilities,
using beamforming transceivers for MIMO configurations.
Communication occurs via direct or D2D links through
intermediate nodes, considering path loss and Rayleigh
fading in the THz range. Fig. 1 illustrates a typical multi-
hop D2D communication scenario for the k th path from the
source node to the destination node. It demonstrates the
intended signal transmitted by the nodes along the path,
as well as the interference experienced by the receiving
nodes along the same path. Consequently, an optimal
pathfinder algorithm ensures communication constraints with
SINR-governed path selection. BW-sharing guarantees equal
distribution; however, routing optimization faces challenges
due to non-isotonic and non-monotonic metrics addressed
by proposed efficient algorithms. EE considers power
consumption and transmitted powers optimized using GS
matrices. The setup optimizes SE and energy consumption
while considering path loss, interference, and noise. Further
details can be found in subsequent subsections.

A. EH, NODE DEPLOYMENT, AND PT MODEL
Each node is equipped with a RBI, on which the DL model,
illustrated in Fig. 2, commissions the node’s engagement in
establishing the communication. Eq. (1)-(3) describes the
EH, deployment, and PT models where βn ∼ N (µ =
0.5, σ 2

= 0.1) is Gaussian distribution with mentioned
parameter, representing nodes’ RBI levels and δRBI (n) is a
binary variable that controls the participation of the nth node
in the communication [46], [47]. Eq. (2) assigns the nth node

to participate in establishing the communication if βn ≥ 0.3
(µ− 2σ ), else the node is configured for EH and is given by

R = {βn, n = {1, 2, . . . ,N }} (1)

δRBI (n) =

{
0 (EH mode) βn < 0.3
1 (Active mode) βn ≥ 0.3

(2)

When the node configured in EH includes βn ≥ 0.3, the
permission is granted for communication, demonstrating a
satisfactory 0. However, the node’s battery level indicators
indicate the status of a battery in terms of residual energy and
time elapsed to drain or charge it. Moreover, to determine
reach till which energy savings can be achieved without
squandering it, the author in [46], [47] executed a real-world
experiment on 4000 mobile users for four weeks and
attempted to analyze the users’ routine behaviour for battery
consumption. Consequently, the experiment concluded that
the most common battery consumption behaviour emerges
when the battery level is above 30% (0.3). However, it is
observed at 65% and 74%, respectively, around midnight
and early morning, exhibiting a bell-shaped curve. Therefore,
adopting an identical concept for a passive battery in
wireless communication networks, however, RBI values are
drawn from the Gaussian distribution. Now let the scenario
specifically be in the THz communication range; these
passive nodes need to be active for transmission, which
acquires a battery level of ≥0.3 else remains in harvesting
mode.

pn =

{
31.76 dBm (Maximum Tx power) : βn ≥ 0.5
12 dBm (Curtailed Tx power) : 0.3 ≤ βn < 0.5

(3)

ν =
Complete spectrum− Occupied spectrum

Complete spectrum
(4)

Eq. (3) formulates the PT model under the constraint that
if δRBI (n) = 1, the node is deployed in establishing
the communication. Participating nodes transmit curtailed
powers entrenched from GT, described in the subsequent
sections. pn indicates the transmitted power at nth node, up to
31.76 dBm (βn ≥ 0.5) and limited to 12 dBm (0.3 ≤ βn <
0.5) [46], [47]. Moreover, Eq. (4) indicates the Normalized
Spectrum Availability (NSA), denoted as ν, as shown above.

B. PL MODEL
In this subsection, we describe the PLmodel considering THz
frequencies [13], which is shown by Eq. (5), as employed
in the current study. The proposed DL model configures
the paths with transitional nodes satisfying the βn ≥

0.3, compensating the end-to-end PL accomplishing an
acceptable 0 (aggressive, defensive, or moderate). Eq. (6)
represents the Free Space Path Loss (FSPL), whereas Eq. (7)
represents the total attenuation α[dB] experienced by the
signal as a consequence of atmospheric absorption and
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penetration losses as shown below [13].

PL(f , d)[dB] = FSPL(f , d)[dB]+ α[dB]+ Np[dB]

+ χshd [dB] (5)

FSPL(f , d)[dB] = 20 log10

[
4π fd
c

]
(6)

α[dB] = η(dB/m)·d(m)+5(dB/cm)·ξ (cm) (7)

Here, PL(f , d)[dB], f , d , and c, indicate the composite PL,
THz frequency, the distance between source and destination,
and velocity of light in the vacuum, respectively. Np[dB]
specifies the noise penalty imposed by the Gaussian noise
with distribution N (0, σ 2), with zero mean and standard
deviation of σ . χshd [dB] indicates the penalty accounted for
the human shadowing effect, η(dB/m) implies the atmo-
spheric attenuation coefficient when the carrier frequency
is in the range of 100 GHz to 10 THz, d(m) denotes the
distance between source and destination,5(dB/cm) indicates
the thickness attenuation coefficient of the partition material,
and ξ (cm) indicates the thickness of the partition material.

C. COMMUNICATION SYSTEM AND CHANNEL MODEL
The communication system comprisesN MUnodes endowed
with wireless power transfer and EH capability. Each MU
node is implemented with M beamforming transceivers,
enabling various MIMO configurations. Any source-
destination (s, d) pair is permitted to establish a direct or D2D
communication via intermediate nodes. We highlight here
that the communication scenario and parameters considered
in the current study are general. As a result, data exchange
between the end devices is facilitated through a novel optimal
pathfinder algorithm for RA, accompanying all pertinent
communication constraints, which are discussed in detail in
the subsequent subsections. Next, we detail the considered
scenario and the related parameters.

The communication channel is established by intriguing a
THz frequency considering the antecedent PL formulated in
Eq. (5) and Rayleigh fading.

SINRkn =
pkn−1|h(n−1),n|

2∑
i∈N\{n−1,n} pi|hi,n|

2 + σ 2 ∀n ∈ k,∀k ∈ K

(8)

Moreover, Eq. (8) computes the SINR of the nth node on the
k th path amid any (s, d) pair, with set K containing possible
paths for any (s, d) pair, pkn−1 is the power transmitted
by the (n − 1)th to nth node, |h(n−1),n|2 is the magnitude
of signal attenuation from the (n − 1)th to the nth node,∑

i∈N\{n−1,n} pi|hi,n|
2 evinces interference incurred at the nth

originated from the rest nodes, and σ 2 indicates the Additive
White Gaussian Noise (AWGN) power.

γ kn = (SINRkn)− (min-SINRkn) (9)

γ kn =
[pkn−1 − p

min
n ]|h(n−1),n|2∑

i∈N\{n−1,n} pi|hi,n|
2 + σ 2 ∀n ∈ k,∀k ∈ K (10)

Further, Eq. (9)-(10) enumerate γ k
n, measuring additional

received SINRkn over the minimum threshold (min-SINRkn)
on k th path and nth node, where pminn is minimum power
required at the nth receiving node accomplishing minimum
min-SINRk , considered as a threshold for error-free detection.
For a given path k , lk denotes the vector of nodes on the
k th path, and |lk | intermediate links, amid any (s, d) pair,
considering the equal BW sharing constraint [48], Eq. 12
discovers the optimal path with maximized SEk as shown
below,

SEk =
{
log2(1+minn∈lk (SINR

k
n))

|lk |

}
(11)

SEoptk = max
k∈K

[SEk ] (12)

The authors in [48] and [49] conferred that the Bellman-
Ford’s or Dijkstra’s shortest path algorithms cannot be
employed to solve Eq. 12 because the routingmetric is neither
isotonic nor monotonic. Consequently, Eq. 12 is solved by
an exhaustive search method exploring all possible paths for
a given (s, d) pair, resulting in increased CT. On the other
hand, the exponential rise in CT makes exhaustive search
prohibitive in dense networks. However, the authors in [45]
presented efficient algorithms, obtaining optimal solutions to
Eq. 12 in polynomial-time, which is embedded in our work.

EEk =
SEk∑N

i=1(pkn + pckt )
∀k ∈ K (13)

Furthermore, the Eq. 13 computes the EE for a path k between
(s, d) as indicated by EEk , in bits/joule/hertz. Where pkn is
the transmitted power at the nth intermediate node over k th

path and pckt indicates static power consumed in the circuit
elements during the transmission. The transmitted powers are
determined using the GS-matrix [50], as presented above.

D. PROBLEM FORMULATION AND ITS SOLUTION
In the aforementioned scenario, we have formulated an
optimization problem, which is a weighted summation of
SE and EE considering the weight parameters denoted as
λSE and λEE , respectively. Moreover, the channel matrix
H holds the channel gains from each node to every other
node. Our objective is to jointly maximize SE and EE,
accounting for constraints that ensure the attainment of
desired 0. Here, SINRth signifies the difference between
lower and upper SINR thresholds, [(SINR)th-1− (SINR)th-2],
as stipulated by the constraint articulated in Eq.14. Whereas
the (β)th and νth are the threshold battery level indicator and
available threshold frequency check, determining themoment
at which a node engages in transmission. Subsequently, the
optimization problem is formulated and solved accordingly,
elucidated herein below.

.Y (H) = max
k∈K

[λSE SEk + λEE EEk ] ∀k ∈ K
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s.t. =



λSE , λEE > 0
βn ≥ (β)th
ν ≥ νth

γ kn ≥ (SINR)th
(SINR)th ∈ [(SINR)th-1 − (SINR)th-2]

(14)

Substituting the value of SE and EE from Eq. 11 and 13
into Eq. 14 gives

Y (H) = max
k∈K

[
λSE

(
log2(1+minn∈Lk (SINR

k
n))

|lk |

)

+ λEE

(
SEk∑N

i=1(Pkn + Pckt )

)]
∀n ∈ k,∀k ∈ K

s.t. of Eq.14 (15)

Applying the Lagrangian multiplier method which yields the
following equation as mentioned below.

Lg(H, ψ, ω, f , λ1, λ2, λ3) = Y (H)+ λ1[(β)th(ψ,ω)

− βn(ψ,ω)]+ λ2[νth − ν(f )]+ λ3[(γ kn (H))th
− γ kn (H)] (16)

here Lg is a Lagrangian function and λ1, λ2, λ3 are the
Lagrangian multipliers. From Eq. 16, the gradient will be
calculated as follows.

1(H,ψ,ω,f ,λ1,λ2,λ3)Lg(H, ψ, ω, f , λ1, λ2, λ3)

=

(
∂Lg
∂H

,
∂Lg
∂ψ

,
∂Lg
∂ω

,
∂Lg
∂f

,
∂Lg
∂λ1

,
∂Lg
∂λ2

,
∂Lg
λ3

)
(17)

here, Y (H) is an optimization problem which is a function
of channel matrix H, βn of battery is a function of ψ
and ω, where ψ is hours of the day and ω is battery
percentage which is a Gaussian distributed behaviour of a
battery enabled node having a life-time of limited span.
ν(f ) is a function of available frequency f . Furthermore,
Eq. 15 is an optimization problem that infers to finding the
best path between the source and the destination by solving
the optimal solution of it, which acquires a limited number
of constraints, such as βn(ψ,ω), ν(f ) and γ kn (H). Further,
to find the optimal solution to the above-stated optimization
problem, the gradient of the Lagrangian is evaluated as
follows.

1(H,ψ,ω,f ,λ1,λ2,λ3)Lg(H, ψ, ω, f , λ1, λ2, λ3) = 0 (18)
∂Lg
∂H
= 0 (19)

⇒
∂[Y (H)+ λ3{(γ kn (H)th)− (γ kn (H))}]

∂H
(20)

∂Lg
∂ψ
= 0⇒

∂[λ1{βth(ψ,ω)− βn(ψ,ω)}]
∂ψ

(21)

∂Lg
∂ω
= 0⇒

∂[λ1{βth(ψ,ω)− βn(ψ,ω)}]
∂ω

(22)

∂Lg
∂f
= 0⇒

∂[λ2{νth − ν(f )}]
∂f

(23)

∂Lg
∂λ1
= 0⇒ [βth(ψ,ω)− βn(ψ,ω)] (24)

∂Lg
∂λ2
= 0⇒ [νth − ν(f )] (25)

∂Lg
∂λ3
= 0⇒ [(γ kn (H)th)− (γ kn (H))] (26)

Consequently, by solving Eq. 19-26, we achieve the optimal
trade-off between SE, EE, and 0. We implemented a DNN
model to optimize SE while ensuring a minimum EE.
Additionally, we created a dataset by solving Eq. 15, which
jointly optimizes SE and EE. Subsequently, through the
multiple iterations, the data generated is fed to the DL model,
which we have analyzed in the subsequent sections.

E. DNN MODEL
Fig. 2 renders the multi-input DNN model consisting of four
distinct input branches. The data sample input to the DNN
is combined from the input parameters, such as RBI vector
(N × 1), channel matrix (N × N), (s, d) pair (2 × 1), and
ν (1 × 1), which is used to compute the SE and identify
an efficient path (Yn × 1) for each (s, d) pair. Each input
branch contains a ‘F’ Fully Connected (FC) hidden layers in
the Neural Network (NN). At the input of each branch, batch
normalization is performed; each branch produces a vector;
the output of all branches except the channel matrix branch
are vectors. Furthermore, the channel matrix branch’s output
is flattened into a vector {(N × N) × 1} when interlacing
with FC hidden layers of the NN. Each branch learns from the
respective input parameter and contributes to predicting the
optimal path, and the information acquired by all branches is
combined in the concatenated layer. The concatenated layer
consolidates the learned information from each branch, which
is transferred to FC hidden layers to further learn from the
collective knowledge and discover the optimal path. The
output vector (Yn × 1) facilitates the optimal path between
a given (s, d) pair, ensuring the trade-off between SE, EE,
and 0.

The presented model employs the Adam optimizer and
backpropagation, Rectified Linear Unit (ReLU), configuring
a learning rate of 0.001, and evaluated training loss in
Mean Square Error (MSE). Here, An indicates the number of
neurons in the hidden layer of the RBI input branch is 30,
and the shape of the hidden layer in channel matrix input
N × Cn is 30 × 80. Moreover, the second branch of the
DNNmodel is intended to learn the channel matrix. However,
the initial stage of the N×N channel matrix is subject to
batch normalization. The output of this stage will also be
30 × 30 input samples fed to a 2-D dense hidden layer
with N=30 rows and N=80 columns, respectively, which
consequently acts as the general matrix multiplication of a
30 × 30 input. Therefore, the output of this dense layer will
be a 30×80 matrix. Furthermore, the depth of input layers in
the (s, d) and NSA input branches are Sn and Dn, which are
10 and 20, respectively. Each input branch is F layers broad,
where F is 3. The final FC layers are Tn neurons deep and F ′
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FIGURE 2. An illustration of a multi-input DNN model incorporating mixed data inputs and providing path output.

layers broad where Tn is 100, and F ′ is 3. The output layer
has ′Y ′n, i.e., 6 neurons.

F. TL MODEL
TL is a sub-branch of DL in which the NN learns from
the source (x) domain amid the pre-training phase, executes
the Fine-Tuning (FT), and administers the knowledge to the
target (y) domain [51]. As illustrated in Fig. 3, during the RA
in the (x) domain, the respective DL agent is trained, and
the (x) domain’s learning is transferred to the (y) domain.

The (y) domain’s DL agent adopts the transferred state
and fine-tunes by performing backpropagation employing
the current dataset to perform focused learning, identify
the maximized reward, and improve RA’s accuracy and
efficiency [52]. P(π ) represents the probability distribution
function associated with (x) domains π = {π1, π2, . . . , πn}

when training the DL agents and learning is transferred to the
(y) domain.

Dx = {πx ,P(πx)},T x = {yx , f x(·)} (27)
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FIGURE 3. Correlation-based TL decision-making architecture.

Here, Eq. 27 represents the (x) domain Dx from where the
training experiences are obtained through the TL model T x .
The imported pre-trainedmodel T x from the (x) domainDx is
applied to the (y) domain Dy to perform the RA as defined in
Eq. 28. f y(·) is a function that employs additional NN layers to
perform FT on the received model of the T x as shown below,

Dy = {πy,P(πy)},T y = {yy, f y(·)} (28)

Though TL curtails CT significantly, commemorating the
high similarity between the source (x) and target (y) domains
is critical.When theMUdensity, ν, β,0 amidst the (x) and (y)
domains are comparable, and the weighted correlation factor
is exorbitant, employing the TL, the (x) domain’s training
experience is imported to the (y) domain via TL.

Dx ̸= Dy, T x ̸= T y (29)

Moreover, the Eq. 29 restricts the source domain Dx and
target domain Dy to be distinct when transferring the learned
model T x and applying it as T y in the target domain for RA
as shown above.

σx,y =
a · Ix + b · νx + c · βavgx + d · γ

avg
x

a · Iy + b · νy + c · βavgy + d · γ
avg
m,y

(30)

σx,y


≥ 0.9 (direction adoption)
[0.4, 0.9) (FT)
≤ 0.3 (TrdL)

(31)

Furthermore, Eq. 30 and 31 presents the weighted correlation
factor σxy and adoption criteria as shown above. If the
weighted correlation factor is inferior and the parameters
between (x) and (y) domains are not comparable, TL fails
to predict the accurate outcome. Therefore, TL is ideal
when the correlation factor is high. When the correlation
factor is low, Traditional Learning (TrdL) commences the
learning process from scratch. On the contrary, the (x) and
(y) domains are profoundly similar, i.e., σxy≥0.9, and the
training experience is directly adopted. When σxy∈[0.4, 0.9),
the proposed methodology adopts the transferred model from
the source domain and performs the FT [53]. If σxy≤0.3,

as the correlation factor is deficient, TrdL is performed.
Here, σx,y indicates the correlation factor between source
(x) and target (y) domains. Ix , νx , βavgx , γ avgx -m, denote MU
density, NSA, average nodes’ RBIs and 0 in the (x) domain
respectively while Iy, νy, βavgy and γ avgy -m denote the same in
the (y) domain. a, b, c, d indicate the weight factors [53].

IV. PROPOSED DL-BASED ENERGY, SPECTRUM, AND
SINR-MARGINS TRADE-OFF ENABLED STRATEGIES FOR
RESOURCE ALLOCATION
The precedent inquisitions evidence a trade-off between EE
and SE in wireless communication; to proliferate EE, SE is
sacrificed, and vice versa [14], [15], [16], [17], [18]. On the
one hand, the communication devices are prophesied to
function in an energy-efficient mode and transmit curtailed
power; on the other hand, in 6G, THz frequencies incur
excessive PLs [13]. Consequently, high-power beamforming
is essential, accomplishing improved 0 and exorbitant reach
at the expense of a lower EE. Furthermore, retrieved SE
inflicts confined spectrum allocation, which is affected by
impairments, further diminishing the 0. Moreover, optimal
relay selection considering the RBI values and spectrum
defragmentation is essential in the RA, simultaneously
enhancing the EE, SE, and 0. Therefore, to perpetuate the
trade-off between SE, EE, and 0 in the following sub-
sections, the proposed DL-based methodological strategies
are detailed.

A. DL-BASED GS-GT-BASED OPTIMAL PATHFINDER
(GS-GTOPF)
Fig. 4(a) illustrates a transmission scenario from MU A
to C, encompassing a primary path A-B-C and secondary
paths A-D-C and A-E-C. This depiction considers various
parameters such as RBI levels, transmitted powers, 0, and
NSA. Operating at THz frequencies incurs substantial PL,
necessitating higher transmitted power. However, the limited
battery life of MUs constrains the feasibility of increased
power transmission due to increased energy consumption,
thereby reducing EE. Furthermore, the congestion levels
in the accessible spectrum differ between paths ABC and
ADC, with ABC exhibiting lower congestion and higher
SE, making it the preferred choice for primary transmission.
Tomitigate impairments, a desired0 level, typically 1-2 dB is
sought, compelling MU-A to transmit at higher power levels,
thereby compromising EE. This highlights the inherent
trade-off between 0 and EE in the transmission process.
Moreover, spectrum sensing techniques are employed to
identify suitable spectrum, thereby reducing interference
and improving 0, particularly evident in paths ABC
and AEC.

However, to prevent spectrum fragmentation, we circum-
scribe a congested spectrum but a few disengaged slots (e.g.,
path ADC), which can be assigned for the imminent service
request if the 0 is adequate. In such instances, we migrate
services to path ADC and configure the superfluous resources
into sleep mode. Fig. 4(b) exhibits the GS matrix [50]
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FIGURE 4. (a) RA for various spectrum scenarios (b) GS matrix depicting RA strategies.

TABLE 3. GS-GT oriented intelligent relay selection, maintaining the optimal trade-off between EE, SE, and SINR-margin (≥1: defensive, ∈[0,1]:
aggressive, ≤0.5: very aggressive).

employed by the GT to determine the optimal relay while
adjusting the adequate trade-off between EE, SE, and 0.
Applying the GT and GS jointly, as rendered in Fig. 4(b)
and Table 3, considering the RBIs, NSAs, and 0, an optimal
path is chosen. A path comprised of relays with βn≥0.5 and
ν ≥0.5 demonstrates higher EE, SE, and defensive 0≥1.
The higher RBI enables MU to transmit higher power and
extends the transmission reach. Also, a higher NSA indicates
that fewer MUs operate that spectrum, resulting in reduced
interference and enriched SE and 0.

In addition, the effective distribution of the traffic over an
unused spectrum improves spectrum utilization. Thus, the
DL agent conjectures to deploy such a relay in the path
with higher preference. βn ≥ 0.5 and ν < 0.5 represent
that NSA is low and the spectrum is occupied, allocating
additional channels which increase the interference. Whereas
when βn ∈[0.3, 0.5] and ν ≥ 0.5, we obtain the enriched
SE and moderate EE with an aggressive 0 ∈[0, 1], as the
transmitted power is limited as a consequence of limited RBI.
Furthermore, ν < 0.5 indicates the spectrum is congested,
and allocating additional channels increases inter-channel
interference and diminishes the 0. For βn∈[0.3, 0.5] and
ν < 0.5, as a consequence of lower RBI, 0 is aggressive;
moreover, the spectrum is also crowded; consequently, such
relays are deployed only when the other alternatives are
unavailable. Similarly, when βn < 0.3, these relays are

eliminated from the selection game and configured in EH
mode. For instance, the GS matrix enables multiple relays
for a position; the DL agent bargains in the relay selection,
enduring the tradeoff between EE, SE, and 0.

The detailed pseudocode of the DL-based GSmatrix-based
GT approach is summarised subsequently in the pseudocode
table (Algorithm-1) with the following notations. ζi = 0, 1,
and 2 indicate the service status of ith nodes, such as idle,
transmitting (Tx), and receiving (Rx), respectively. BWi and
BWT indicates the BW allocated to the ith transmitting node
and the total BW respectively.M and ϵo indicate the number
of training samples and training epochs, respectively. A, I,
(ETx , ERx), U , and K represent the sets containing active
nodes, active nodes available for fresh communication, busy
(Tx, Rx) nodes, all nodes and all the possible paths from s to
d , respectively. z represents the total number of paths in K, t
and q are counters.

Moreover, to generate the dataset, we conducted an
exhaustive search between a (s, d) pair however restricted
the maximum path length to 4. This decision was based on
the observation that paths longer than 4 exhibited reduced
throughput. Even when we relaxed the path length limit to 8,
the dataset rarely included an optimal path longer than 4.
Therefore, we limited the path length to 4, as conducting an
exhaustive search for longer path lengths was deemed futile
and redundant [44].
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Algorithm 1 DL-Based GS-GTOPF
1: Initialize: Z = {ζ1, ζ2, . . . , ζn}. R = {βn, n =
{1, 2, . . .N }. BW = {BW1,BW2, . . . ,BWn} | BWi ̸=

0if ζi = 1. A = I = ETx = ERx = ∅. U =
{1, 2, . . . ,N }. t = q = 0.

2: Inputs: (s, d) | (s, d) ∈ U
3: Repeat until: t = M
4: X ← U− ((s, d)) ▷ Node numbers except (s, d).
5: A← (A ∪ Xn) | βn ≥ 0.3,Xn ∈ X ▷ Active nodes.
6: ETx ← (ETx ∪ Xn) | ζn = 1,Xn ∈ X ▷ Transmitting

nodes.
7: ERx ← (ERx ∪ Xn) | ζn = 2,Xn ∈ X ▷ Receiving

nodes.
8: ν =

BWT−
∑N

n=1 BWn
BWT

and compute channel matrix |H|.
9: I ← A− (ETx ∪ ERx) ▷ The active nodes available

for new transmissions.
10: PN ← {p1, . . . , pn} | pi ̸= 0, ∀i ∈ I ▷ pi is the

allocated power using Eq. 3
11: K← P(I ∪ (s, d)) | 2 ≤ length(Ki) ≤ 4, 1 ≤ i ≤ z
▷ Generating all paths for (s, d) limiting path length to
4.

12: K← {K1, . . . ,Kz} | Ki ⊂ {I ∪ (S,D), 1 ≤ i ≤ z
13: Compute SEandEE ▷ Use Eq. 11. and Eq. 12.
14: y = Ki | SEi = max(SE), EEi ≥ 0.7 × max(EE),

Ki ∈ K ▷ y stores the optimal path.
15: Fip = {RBI, |H|,NSA, (s, d)} ▷ Creating an input

data point.
16: Sample point = (Fip, y).
17: Update: βavgx ← avg(R), length(Ix) ← length(I)

+ 2, νavgx ← ν, t = t + 1.
18: Training: Repeat until: q = ϵo ▷ Train the model

represented by Fig. 2.
19: Train model with samples (am, ym)Mm=1.
20: Deployment:While model is active do in parallel
21: For every input (̂s, d̂) produce output ŷ.
22: Compute βavgy , length(Iy), νavgy and σx,y [Eq. 30].
23: if σx,y ∈ [0.4, 0.9) then Perform TL by Re-training

the last three layers of themodel with the new data points.
24: Update: βavgx = β

avg
y , length(Ix) = length(Iy) νx = νy.

B. SERVICE PRIORITY BASED GS-GTOPF (GS-GTOPF-SP)
The present algorithm introduces the service priorities, such
as high (Q1), medium (Q2), and low (Q3), in the objective of
GS-GTOPF. Eq. 32a(a-f) presents the conditions for selecting
the optimal path, with ρgx | x ∈ [a, b] set when one
of the conditions for service deployment g is met. Here,
λ
g
s,d indicates service requests between any (s, d) pair with

priority g, where, g = 1, 2, and 3 indicate Q1, Q2,
and Q3 services respectively. Q1 services are characterized
as large BW and low latency, necessitating high QoSEs.
Therefore, Q1 services are configured over the paths with
nodes demonstrating Kβi ≥ 0.7 and ν ≥ 0.7, maximizing
the transmit power, reducing retransmissions and delay, and
accomplishing defensive γ iavg ≥ 1.5 as shown in [Eq. 32a]

below. Here Kβi and γ iavg denote the average RBI levels and
the average SINR-margins of all the nodes in the path i in
set K.

λ
g
s,d = λ

1
s,d then ρ1x = ρ

1
a

| Kβi ∈ [0.7, 1], ν ≥ 0.7, γ iavg ≥ 1.5,

EEi ≈ SEi ≈ High (32a)

Alternatively, Q1 services are also configured over the paths
with Kβi ≥ 0.7 and 0.5 ≤ ν < 0.7, incurring a minor
interference accomplishing the reduced delay and γ kavg ∈
[1, 1.5) as illustrated beneath in [Eq. 32b],

λ
g
s,d = λ

1
s,d then ρ1x = ρ

1
b

| Kβi ∈ [0.7, 1], ν ∈ [0.5, 0.7), γ iavg ∈ [1, 1.5),

EEi ≈ High,SEi ≈ medium (32b)

On the other hand, Q2 services solicit lesser BWand are delay
insensitive; thus, Q2 services are configured on paths with
Kβi ∈ [0.5, 0.7) and ν ∈ [0.5, 0.7) therefore, the transmit
powers are lower, resulting in increased retransmissions and
larger delay avowing aggressive γ kavg ∈ [0.5, 1) as shown in
[Eq. 32c],

λ
g
s,d = λ

2
s,d then ρ2x = ρ

2
a

| Kβi ∈ [0.5, 0.7), ν ∈ [0.5, 0.7), γ iavg ∈ [0.5, 1),

EEi ≈ Medium,SEi ≈ High (32c)

Furthermore, if the ν ∈ [0.5, 0.7) is unavailable, Q2 services
are also configured with ν < 0.5 with very aggressive γ kavg <
0.5 as given in [Eq. 32d],

λ
g
s,d = λ

2
s,d then ρ2x = ρ

2
b

| Kβi ∈ [0.5, 0.7), ν < 0.5, γ iavg < 0.5,

EEi ≈ Medium,SEi ≈ Low (32d)

Finally, Q3 services requisition the least BW and are delay
insensitive. Thus, they are configured over the paths with
nodes demonstrating Kβi ∈ [0.3, 0.5) and ν ≥ 0.5 and/or
ν < 0.5, transmitting lesser powers.

λ
g
s,d = λ

3
s,d then ρ3x = ρ

3
a

| Kβi ∈ [0.3, 0.5), ν ≥ 0.5, γ iavg < 0.5,

EEi ≈ Low,SEi ≈ High (32e)

This results in more retransmissions, incurring increased
delay. This aggressive behavior is demonstrated by γ kavg <
0.5, as shown below in subsequent equations [Eq. 32e] and
[Eq. 32f ] respectively,

λ
g
s,d = λ

3
s,d then ρ3x = ρ

3
b

| Kβi ∈ [0.3, 0.5), ν < 0.5, γ iavg < 0.5,

EEi ≈ Low,SEi ≈ Medium (32f)

If adequate resources are unavailable, services are scheduled
in a waiting queue; however, a threshold timeout, τth,
is configured.
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C. GS-GTOPF-SP WITH REDUCED CT (GS-GTOPF-SP-RCT)
For a given (s, d) pair, an exhaustive search for an optimal
path solving Eq. 12 is not feasible as the total number of
paths grows exponentially with N . Furthermore, Eq. 12 is
neither isotonic nor monotonic and cannot be solved using
Dijkstra, and Bellman-Ford algorithms [48]. However, the
authors in [49] presented a novelmethod, deriving the optimal
solutions in polynomial time, employing an iterative usage
of the shortest path with complexity O(N 4). The hop-count
|Ki| for any path ith path Ki (in an N -node network) can only
take the values 1, 2, . . ., N − 1. Therefore, Eq. 12 is solved
by searching over all possible values of |Ki|. It is an implicit
property of the Bellman-Ford algorithm [45] that, at its hth

iteration, it identifies the optimal path between (s, d) among
paths of at most h hops. Assuming,wi,j represents thewidth of
the link between the ith and jth node aswi,j = log2(1+SINRkn)
and whi be the width of the widest path from the source node
s to any other node i such that the path has at most h hops.

ifmin(wh−1i ,wi,j) > whi then whi = min(wh−1i ,wi,j)
(33)

The above-mentioned Eq. 33 denotes the modified
Bellman-Ford condition used to find the widest path. |K̂h

j |

is the hop-count of the widest path from s to node j such that
the path has at most h hops. predhj , which is the predecessor
of node j on the widest path from source node, s such that the
path has at most h hops. The present algorithm incorporates
the GS-GT-based bargaining conditions in selecting the nodes
and integrates the method described in [45] to identify the
best path. The hybrid GS-GT-based approach reduces the
number of nodes considered during the best path discovery,
substantially reducing complexity to O(N 3). The detail of
the present algorithm is explained through the pseudocode in
Algorithm 3.

D. GS-GTOPF-SP-RCT WITH ANGLE CRITERIA
(GS-GTOPF-SP-RCT-θ)
GS-GTOPF-SP-rCT incorporated theGS-GT-based approach
for finding the shortest path between any (s, d) pair in an
optimal polynomial time. However, with the increased MU
density, the CT of the GS-GTOPF-SP-rCT is increased,
and efficiency decreases. GS-GTOPF-SP-rCT-θ implements
a novel method leveraging the increased MU density by
employing the angle-based shortest pathfinding method to
reduce the CT and improve efficiency. GS-GTOPF-SP-rCT-
θ forms a cone with an apex threshold angle, θth and considers
the reduced number of nodes when finding the optimal paths;
furthermore, nodes not complyingwith theGS-GT conditions
are eliminated. AsMU density increases, more nodes eligible
for transmission will lie within the cone between the S andD,
thereby increasing the probability of finding an optimal
path at a reduced CT. Furthermore, the shortest path with
high-power pencil beamforming at a small angle increases 0.
Fig. 5(a) demonstrate the cell with lower node density while
Fig. 5(b) and Fig. 5(c) show the cell with higher node density.
It is observed from Fig. 5(c) that increased MU density of

Algorithm 2 GS-GTOPF-SP
1: Initialize: Same as DL-based GS matrix-based GT

algorithm. τ (timeout counter) = 0
2: Inputs: λgs,d , (s, d) | s,d ∈ U

3: Kβ ← {Kβ1 ,K
β

2 , . . . ,K
β
z } | Kβi =

∑
∀j∈Ki βj

length(Ki)
, Ki ∈ K,

1 ≤ i ≤ z
4: if λgs,d == λ

1
s,d then

5: if ∃ Ki | Kβi ≥ 0.7, ν ≥ 0.7 and γ iavg ≥ 1.5 then
6: SE ← {SE1, SE2, . . . , SEz} where ∀ SEi | Kβi ≥

0.7
7: Deploy on path Ki | SEi = max(SE),Kβi ≥ 0.7,
ν ≥ 0.7 and γ iavg ≥ 1.5

8: else if ∃ Ki | Kβi ≥ 0.7, ν ∈ [0.5, 0.7) and γi ∈
[1, 1.5) then

9: SE ← {SE1, SE2, . . . , SEz} where ∀ SEi | Kβi ≥
0.7

10: Deploy on path Ki | SEi = max(SE),Ki ≥ 0.7,
ν ∈ [0.5, 0.7) and γi ∈ [1, 1.5)

11: else if τ > τth then Drop service request and timeout
of the algorithm

12: τ = τ + 1; Wait and go back to step 3
13: else if λgs,d == λ

2
s,d then

14: if ∃ Ki | Kβi ∈ [0.5, 0.7), ν ∈ [0.5, 0.7) and γi ∈
[0.5, 1) then

15: SE ← {SE1, SE2, . . . , SEz} where ∀ SEi | Kβi ∈
[0.5, 0.7)

16: Deploy on pathKi | Kβi ∈ [0.5, 0.7), ν ∈ [0.5, 0.7)
and γi ∈ [0.5, 1)

17: else if ∃ Ki | Kβi ∈ [0.5, 0.7), ν < 0.5 and γ k < 0.5
then

18: SE ← {SE1, SE2, . . . , SEz} where ∀ SEi | Kβi ∈
[0.5, 0.7)

19: Deploy on path Ki | Kβi ∈ [0.5, 0.7), ν ≤ 0.5 and
γi < 0.5

20: else if τ > τth then Drop service request and timeout
of the algorithm

21: τ = τ + 1; Wait and go back to step 3
22: else λgs,d == λ3s,d then repeat the process from point

no.13 for specified conditions.
23: τ = τ + 1; Wait and go back to step 3

N = 30 and reduced θth = 60 significantly reduces the
number while maintaining an optimal trade-off between SE,
EE, and 0, maintaining CT lower when finding the best path.

V. SIMULATIONS AND RESULTS
A. SIMULATION ENVIRONMENT
The present section exhibits the comprehensive simulation
results of the proposed strategies. The simulation studies
employed Matlab 2021a and the Jupiter notebook with a
Python interface with TensorFlow libraries, a system with
Intel i7 octa-core CPU, 4Gb NVIDIA Quadro Q1000 GPU,
and 64 Gb RAM. The simulation parameters employed
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Algorithm 3 GS-GTOPF-SP-rCT
1: Initialize: Same initialisation as GS-GTOPF algorithm.

Let whs = ∞, for h = 0, 1, . . . ,N − 1 and w0
i = 0,

∀ i ̸= s. Let |K̂h
s | = 0 for h = 0, 1, . . . ,N − 1 and

|K̂0
i | = ∞ ∀ i ̸= s.

2: Inputs: (S,D) | S,D ∈ U
3: Follow steps 4-10 as indicated in the GS-GTOPF

algorithm.
4: for h = 1, 2, . . . ,N − 1 do
5: ∀ i ∈ Ndowhi = wh−1i
6: ∀ (i, j) ∈ N do
7: if min(wh−1i ,wi,j) > whi thenw

h
i = min(wh−1i ,wi,j);

|K̂h
j | = |K̂

h−1
j | + 1; predhj = i

8: Compute Ĵh =
W h
d

|K̂h
d |
▷ For a path with h hops, Ĵh is the

optimal SE.
9: Return the path with largest Ĵh.

FIGURE 5. Node density to illustrate the effectiveness of
GS-GTOPF-SP-rCT-θ .

during the investigation are epitomized in Table 4. Fig. 5(d)
illustrates a pilot network scenario with randomly generated
MU nodes within a radius of 75m. As per the PT and
EH models explained in Section II, only the nodes with
βn ≥ 0.3 can participate in establishing the communication.
Whereas nodes (βn ≤ 0.3) are configured in the EH mode
and join after the EH cycle or during the scarcity. For
the presented case in Fig. 5(d), (S = 7, D = 11) is
designated a target (s, d) pair for initiating the transmission.
For simplicity, we explain one path; however, the dynamic
situation is simulated considering themultipath transmissions
simultaneously. Furthermore, to study the behavior of SE,
EE, and 0, we configure the Single Input Single Output

Algorithm 4 GS-GTOPF-SP-rCT-θ
1: Initialize: Same initialisation as GS-GTOPF-SP-rCT

algorithm.
2: Inputs: (s, d) | s, d ∈ U
3: Follow steps 4-10 as indicated in the GS-GTOPF

algorithm.
4: Let D = {d⃗s,1, d⃗s,2, . . . , d⃗s,z} ▷ D is a set of vectors

from source to every other node in I.
5: T = ∅ ▷ T is a set of all the angles between the vector
d⃗s,d and d⃗s,i, ∀ 1 ≤ i ≤ z.

6: T ← T ∪ θi | θi = d⃗s,d ·d⃗s,i
|d⃗s,d ||d⃗s,i|

≤ θth ∀ 1 ≤ i ≤ z.

7: I ′ = ∅ ▷ I ′ contains the set of the reduced number of
nodes considering the angle condition.

8: I ′← I ′ ∪ Ii | |θi| ≥ θth or |d⃗s,i| ≤ dth.
9: Follow steps 4-9 as indicated in GS-GTOPF-SP-rCT.

TABLE 4. Key parameters for network simulation [13], [54], [55], [56].

(SISO), 4×4, 16×16, and 32×32 MIMO. As demonstrated
in Fig. 2, a multi-input DNN architecture is employed to
ascertain the resource-efficient path between each (s, d) pair
in the network. DNN model receives the channel matrix,
RBIs of the participating nodes, NSAs of the participating
links, and (s, d) pairs branching in four separate streams.
The outputs of these branches are concatenated and further
processed to identify the resource-efficient path. The base
model is constructed for N = 30 nodes in the cell. The model
trains over 150,000 samples for 2,500 epochs within 52,800
seconds, considering batches of 64 and is then tested for over
30,000 samples.

B. RESULTS AND DISCUSSION
Fig. 6 presents the average SE and EE performance for the
increased number of intermediate nodes in the transmission
path for a given (s, d) pair. The SE and EE values are
averaged across all the available paths for any (s, d) pair,
e.g., SE and EE are computed by averaging across all
the paths with one intermediate node. Fig. 6 depicts that
average SE emerges preeminent when considering the paths
comprised of one intermediate node leveraging the spectrum
fragmentation, whereas average EE is superlative for paths
with no intermediate nodes. As a result, the path with
one intermediate node is recommended for applications
prioritizing SE with modest EE sacrifice. Conversely, the
direct path is recommended for EE, incurring a minor
drop in SE. Therefore the optimal trade-off between SE
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and EE is preserved. In case when neither the two-hop
path nor the direct path between a (s, d) pair is available,
a path with a higher number of intermediate nodes is
recommended, sacrificing SE and EE in exchange for the
reduced service waiting period. However, delay-insensitive
services are scheduled in a queue until an efficient path
evolves. Furthermore, THz frequencies incur larger PLs,
degrading the signal strength and 0. Therefore, determining a
path with an optimal number of intermediate nodes over any
(s, d) pair maintains the trade-off between SE, EE, and 0.
Fig. 6 demonstrates SE and EE for SISO and MIMO with
4× 4, 16× 16, and 32× 32 degrees, respectively. We noted
a substantial improvement in SE and EE employing MIMO
with an increased degree than SISO. Considering a path with
one intermediate node between any (s, d) pair, the average
SE is observed to be −31.91, 2.40, 5.70, and 7.34 dB, and
EE comes out to−35.23,−0.91, 2.38, and 4.01 dB for SISO,
4× 4, 16× 16, and 32× 32 MIMO, respectively.
Fig. 7(a) and 7(b) demonstrate the normalized 0 and

BER according to the intermediate nodes for any (s, d) pair,
respectively. As exhibited in Fig. 7(a), the direct path (SISO)
demonstrates an 0 of 0.396 dB, and paths with one and
two intermediate nodes exhibit enhanced 0 of 0.45 and
0.46 dB, respectively. The intermediate nodes regenerate
the signal, ameliorating the 0. However, the paths with
three or more intermediate nodes reveal lower advancement
in 0. Furthermore, to improve the 0, massive MIMO is
employed. As depicted in Fig. 7(a), 0 employing 4 × 4,
16× 16, and 32× 32 MIMO for paths with one intermediate
node displays 0.92, 1.34, and 1.75 dB, respectively. In the
present investigation, numerous paths as per the intermediate
nodes for any (s, d) pair are determined, and the average 0
values are computed. For example, for any (s, d) pair with
one intermediate node employing 16 × 16 MIMO, if five
alternate paths are determined, the 0 are averaged across
them, and the path with the largest 0 above the average is
commissioned. As illustrated in Fig. 7(b), considering the
32×32MIMO configuration, BER for the paths with one and
two intermediate nodes are 0.15×10−3 and 0.17×10−3 Bits
Per Second (bps), respectively, which is much lesser than the
direct path leading to the higher BER of 0.99×10−3 bps. As a
result of the intermediate node acting as a regenerator, the
SINR performance is improved substantially, lowering BER.

Furthermore, as shown in Fig. 6, commissioning paths
with one intermediate node improves SE by leveraging
spectrum fragmentation, whereas, beyond two intermediate
nodes, SE decays. On the contrary, EE is the maximum for
direct paths, whereas employing the paths with increased
intermediate nodes engages more transmission equipment,
squandering higher power costs. Therefore, obtaining the
optimal tradeoff between SE, EE, and 0 is essential. From
Fig. 6, 7(a), and 7(b), for 32 × 32 MIMO, commissioning
the paths with one node demonstrates maximal SE of
7.34 dB, EE of 4.01 dB, 0 of 1.75 dB, and BER of 0.15 ×
10−3 bps. Similarly, commemorating the paths with two
intermediate nodes employing 32× 32 MIMO demonstrates

SE of 5.65 dB, EE of 0.46 dB, 0 of 1.88 dB, and BER
of 0.17 × 10−3 bps. Consequently, modest sacrifice in EE
results in significant improvements in SE,0, and BER. Direct
transmission achieves maximum EE; however, SE (bps/Hz)
is lower by 17.37% and 0 lower by 12.97% from their
respective peaks. At one intermediate node, maximum SE
is achieved; however, EE (bits/J/Hz) is lower by 17.28%
and 0 lower by 3.39% from their respective peaks. When
maximum 0 is reached, the SE (bps/Hz) is lower by 82.08%,
and EE (bits/J/Hz) is lower by 97.20% from their respective
peaks. As shown in Fig. 6, considering the paths with
one intermediate node, MIMO with 4 × 4, 16 × 16, and
32× 32 configurations demonstrate 34.31dB, 37.618dB, and
39.253 dB higher SE than SISO, respectively; furthermore,
34.32 dB, 37.618 dB, and 39.253 dB higher EE than SISO,
respectively. Moreover, the aforementioned tradeoff is also
valid when energy is the bottleneck. To accomplish amended
EE, as presented in Fig. 6, 7(a), and 7(b), for 32 × 32
MIMO, commissioning the direct paths demonstratemaximal
EE of 6.78 dB, SE of 6.82 dB, 0 of 0.80 dB, and BER
of 0.99× 10−3 bps.

Table 5 compares the CT in training, testing, and accuracy
for TrdL and TL approaches (the entity with 0 is the initial
reference point for the comparison). Fig. 7(c) and 7(d)
demonstrate CT and accuracy according to MU density for
TrdL and TL with (w) and without (w/o) FT. To investigate
TL’s behavior, a pre-trained model with N = 30 is
employed. We also performed the TrdL, considering N of
10, 15, 20, and 25 nodes. The accuracy and CT to train
and test the TrdL model are computed as a reference for
the TL approaches. TL without FT (TLw/oFT) approach
adopts the transferred model, i.e., N = 30, and inspects
the accuracy of the base model’s predictions on the target
domain’s new data inputs. On the other hand, as shown
in Fig. 2, TL with FT (TLwFT) performs FT on the
last three FC layers of the received model. Fig. 7(d) and
Table 5 infer that TLwFT demonstrates superior accuracy
compared with TLw/oFT and TrdL approaches. Furthermore,
Fig. 7(c) and Table 5 infer that TrdL incurs increased
CT compared with TL approaches, whereas TLwFT incurs
increased CT compared with TLw/oFT but accomplishes
the highest accuracy. However, TLw/oFT demonstrates
acceptable accuracy incurring the least CT compared with
TrdL and TLwFT approaches. As summarized in Table 5,
on an average, TLw/oFT incurs 94.19% reduced CT and
18.25% increased accuracy compared to TrdL over all cases
of N . On the other hand, TLwFT incurs 43.18% reduced CT
and 3.71% increased accuracy compared to TrdL. Similarly,
TLw/oFT incurs approximately 89.78% lesser time cost over
TLwFT. Overall, TLwFT provides 26.90% more accuracy
than TLw/oFT, averaged over all cases of N . Therefore, the
TLwFT approach is used whenever there is a change in the
network parameters instead of creating a new model and
re-training it entirely.

Fig. 8(a), 8(b), and Table 6 demonstrate the behaviours
of CT and accuracy for TrdL, TLwFT, and TLw/oFT in
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FIGURE 6. Average SE and EE Vs. number of intermediate nodes.

TABLE 5. CT vs. MU’s density with training samples of 50k and testing samples of 10k.

TABLE 6. CT vs. RBI mean with training samples of 50k and testing samples of 10k.

accordance with average RBI. A pre-trained model with
N = 30 and RBIavg = 0.5 is imported to predict the
optimal path, maintaining the aforementioned tradeoff for
varying RBIavg = 0.4, 0.5, 0.7, and 0.9. TLw/oFT equips
with an enormous reduction in CT and similar accuracy
compared to TrdL, resulting in a suitable replacement of
TrdL. From Table 6, it is inferred that TLw/oFT incurs,
on an average, 95.56% reduced CT at a minor reduction in

accuracy of 0.72% compared to TrdL. On the other hand,
TLwFT furnishes the highest accuracy of all the scenarios
at increased CT compared to TLw/oFT; however, TLwFT
demonstrates substantially reduced CT compared to TrdL.
TLwFT demonstrates, on an average 77.83% reduction in
CT and a 10.14% increase in accuracy compared to TrdL.
In contrast, TLw/oFT incurs, on an average 80.06% reduced
CT, costing a 10.94% reduction in accuracy than TLwFT.
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FIGURE 7. (a): SINR-margin vs. Number of intermediate nodes, (b): BER vs. Number of intermediate nodes, (c): CT with respect to MU’s Density and (d):
Accuracy with respect to MU’s Density.

Hence, TLw/oFT is a substitute for TrdL, whereas TLwFT
is suitable when accuracy is of greater importance.

Fig. 9(a) infers that with the implementation of
GS-GTOPF-SP algorithm, on an average, the Q1 services
incur 76.06% and 3.87% reduced latency compared to Q3
and Q2 services, respectively. As a significant portion of
the resource is reserved for Q1 and Q2 services, these
are expected to suffer lower delays and result in larger
SE, EE, and 0 over Q3. Q1 services are deployed on the
paths configured with the nodes demonstrating higher RBI
values, hence transmitting the larger power (Eq. 3), achieving
the optimal tradeoff between SE, EE, and 0, resulting

in improved performance. On an average, Q1 services
demonstrate 12.97% and 62.55% increased SE (bps/Hz),
16.14% and 81.97% improved EE (bits/J/Hz), 12.27% and
25.95% improved 0 compared to Q2 and Q3 services,
respectively. Q2 services have, on an average, 75.09% lower
time delays, 43.87% greater SE (bps/Hz), 56.67% greater EE
(bits/J/Hz), and 12.17% greater 0 than Q3 services.

As shown in Fig. 9(b), to determine the optimal apex
angle of the cone, the relationship between the apex angle,
the number of nodes (N ), and the probability that the best
path lies entirely inside the cone is analyzed. For the same
apex angle, as the MU density increases, the probability of
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FIGURE 8. (a): CT with respect to RBI mean (b): Accuracy with respect to RBI mean.

the best path residing within the cone also increases. From
Fig. 9(b), notice that the probability saturates around θth =
80°, which is configured as the threshold apex angle for a
cone. At θth = 80°, the probability for N = 80 is greater by
18.07%, 11.37%, 6.55%, 3.61%, and 1.37% than at N = 30,
N = 40, N = 50, N = 60, and N = 70, respectively.
Hence, we deduce that increasing MU density is beneficial
for GS-GTOPF-SP-rCT-θ . In addition, obtaining the optimal
threshold angle also configures the beamforming transmitting
higher power at a specified apex angle, improving the
SE, EE, and 0. To measure the adequacy of GS-GTOPF-
SP-rCT-θ , Fig. 9(c) infers that for N = 50 at θth =
30°, 40°, 50°, and 60°, the probability that none of the nodes
(zero nodes) of the best path lying outside the cone framed
for finding the best path are 0.6298, 0.7584, 0.8476, and
0.9029, respectively. Therefore, as θth increases, GS-GTOPF-
SP-rCT-θ accurately identifies the optimal path. Further, for
θth = 30°, with probabilities 0.2481, 0.0802, 0.0277, and
0.0142; 1, 2, 3, and 4 nodes of the best path lie outside the
cone, respectively. For θth = 40°, the probabilities correspond
to are 0.1803, 0.0422, 0.0136, and 0.0055, respectively. For
θth = 50°, the probabilities correspond to 0.1206, 0.0231,
0.0069, and 0.0018, respectively. Further, for θth = 60°,
the probabilities correspond to 0.0807, 0.013, 0.0029, and
0.0005, respectively. Consequently, from Fig. 9(b) and
Fig. 9(c), we can conclude that, the accuracy of GS-GTOPF-
SP-rCT-θ increases by increasing θth and N . On the other
hand, enlarging θth results in considering an increased number
of nodes inside the cone, consequently accumulating higher
CT in computing the best path for transmission, although
gaining accuracy. With growing MU density, we can reduce
θth and hence CT; therefore, even with an increase in N ,
we only consider a portion of this N present inside the

cone, and there is no decrease in the accuracy of GTOPF-
SP-rCT-θ . Furthermore, the reduced angle assists directional
beamforming with increased transmitted power in a specific
direction, improving the 0. Hence, for θth ∈ [50, 80], is
optimal in finding the best path.

Fig. 9(d) presents the accuracy and CT with respect to
varying MU density, N, and θth for GS-GTOPF-SP-rCT-θ .
Furthermore, Fig. 9(d) compares the CT for GS-GTOPF-SP-
rCT and GS-GTOPF-SP-rCT-θ with respect to varying MU
density N and θth. It is observed that GS-GTOPF-SP-rCT-θ
consumes substantially lower CT compared to GS-GTOPF-
SP-rCT. For a givenN , the CT grows with the threshold angle
as more nodes are eligible for consideration; however, the
total time remains significantly lower than GS-GTOPF-SP-
rCT. Furthermore, GS-GTOPF-SP-rCT suffers an increased
rate of CT when N is significantly more. The rate of increase
is 0.77ms per increase in 10 nodes initially, from N = 30 to
N = 40 and changes to 2.01ms per increase in 10 nodes
for N from 70 to 80, while for GS-GTOPF-SP-rCT-θ , for
increase from N = 70 to N = 80, there is approximately
0.544ms per increase in 10 nodes for θth = 100. On an
average GS-GTOPF-SP-rCT-θ provides 72.77%, 75.13%,
76.52%, 77.29%, 77.57%, and 77.97% curtailment in CT
over GS-GTOPF-SP-rCT for N = 30, 40, 50, 60, 70, and
80 respectively while maintaining an accuracy of ≥ 95% for
the range θth ∈ [40, 100]. Fig. 9(d) also demonstrates that
for any θth as N proliferates, the accuracy of GS-GTOPF-SP-
rCT-θ is also improved. For θth = 60°, 80°, 90°, and 100°,
GS-GTOPF-SP-rCT-θ demonstrates an average accuracy of
95%, 97%, 98%, and 99%. Finally, for an optimal θth,
GS-GTOPF-SP-rCT-θ achieves a more significant reduction
in CT, higher accuracy, and increased 0 assisted by direc-
tional beamforming.
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FIGURE 9. (a) Unit avg. wait time, SE, EE, and SINR-margin of services.
(b) The probability that the best path lies within the angle. (c) Probability
of nodes of the best path outside the cone for N = 50. (d) Accuracy of
GS-GTOPR-SP-rCT-θ and CT of GS-GTOPF-SP-rCT and GS-GTOPR-SP-rCT-θ .

VI. CONCLUSION AND FUTURE SCOPE
The current paper proposes the DL-based RA strategical
algorithms to preserve the optimal trade-off amid EE,
SE, and 0 in 6G wireless networks. Our proposed work
reveals that DL-oriented GS-GT-based RBI aware node
and path selection adjudicate the 0 (aggressive, defensive,

or moderate), ameliorates SE and EE, and curtails spectrum
fragmentation substantially. In addition, incorporated TL
contracts the CT and significantly elevates the prediction
accuracy compared to TrdL. Firstly, the proposedGS-GTOPF
algorithm demonstrates maximized EE by trading-off of
17.37% of SE (bps/Hz) and 12.97% of 0; on the other
hand, maximum SE is accomplished by trading-off EE by
17.28% and 0 by 3.39%. Secondly, the GS-GTOPF-SP
demonstrates that Q1 services accomplish 3.87% and 76.06%
decreased waiting period compared to Q2 and Q3 services,
respectively, while attaining 12.97% and 62.55% increment
in SE, 16.14% and 81.97% in EE, and further 12.27%
and 25.95% in 0, respectively. Besides, the refinement has
been further advanced by reducing the CT, resulting in
the GS-GTOPF-SP-rCT algorithm. Furthermore, we propose
an angle criterion-based GS-GTOPF-SP-rCT-θ algorithm
which leverages the increased MU density and discovers the
optimal paths demonstrating a 76.12% contraction in CT over
GS-GTOFP-SP-rCT accomplishing an accuracy of ≥ 95%.
The successful outcomes of our proposed DL-based RA
strategies open up several avenues for future research. One
potential direction is a further exploration of the proposed
algorithm’s adaptability and scalability in dynamic and
heterogeneous 6G networks. Integrating emerging technolo-
gies such as edge computing and quantum communication
could enhance performance. Finally, extending the scope
of our work to consider security and privacy implications
and include real-world deployment scenarios for validation.
Overall, these findings offer valuable insights for future
research. Ultimately, the authors strongly believe that future
research endeavours will significantly benefit from the
proposals and findings presented in our work.
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