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ABSTRACT The leap forward in research progress in real-time object detection and classification has been
dramatically boosted by including Embedded Artificial Intelligence (EAI) and Deep Learning (DL). Real-
time object detection and classification with deep learning require many resources and computational power,
which makes it more difficult to use deep learning methods on edge devices. This paper proposed a new,
highly efficient Field Programmable Gate Array (FPGA) based real-time object detection and classification
system using You Only Look Once (YOLO) v3 Tiny for edge computing. However, the proposed system
has been instantiated with Advanced Driving Assistance Systems (ADAS) for evaluation. Traffic light
detection and classification are crucial in ADAS to ensure drivers’ safety. The proposed system used a
camera connected to the Kria KV260 FPGA development board to detect and classify the traffic light. Bosch
Small Traffic Light Dataset (BSTLD) has been used to train the YOLO model, and Xilinx Vitis AI has been
used to quantify and compile the YOLO model. The proposed system can detect and classify traffic light
signals from a high-definition (HD) video streaming in 15 frames per second (FPS) with 99% accuracy.
In addition, it consumes only 3.5W power, demonstrating the ability to work on edge devices. The on-road
experimental results represent fast, precise, and reliable detection and classification of traffic lights in the
proposed system. Overall, this paper demonstrates a low-cost and highly efficient FPGA-based system for
real-time object detection and classification.

INDEX TERMS FPGAs, object detection and classification, YOLO, edge computing.

I. INTRODUCTION
Deep Learning has been widely used for object detection
and classification tasks [1] and the most common applica-
tion of object detection and classification is in the domain
of Advanced Driving Assistance Systems. The continual
advancements in Computer Vision (CV) with integrated Arti-
ficial Intelligence (AI) decision-making and control have
brought intelligent driving to the forefront of discussions in
the realm of ADAS [2], [3], [4]. These systems are designed
to assist drivers in their decision-making processes, offer-
ing coordination and notifications during unforeseen events
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while fulfilling the fundamental requirements of autonomous
driving. Given the absence of vehicle-to-infrastructure com-
munication in contemporary transportation systems, the
detection and categorization of traffic lights have gained
significant importance within the ADAS framework [5], [6].

Various techniques have been developed to enhance detec-
tion algorithms based on deep learning technologies, aiming
to create a robust and comprehensive object detector [7].
Convolutional Neural Networks (CNN), rooted in deep learn-
ing, have made significant strides in object recognition and
detection [8]. Ouyang et al. [5] employed CNN for traffic
light detection using NVidia Jetson TX1/TX2, and Zhang
et al. [9] implemented CNN for traffic light classifica-
tion with FPGA. On the other hand, two-stage detectors
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offer superior performance in both localization and recogni-
tion accuracy [9]. However, a significant drawback is their
demand for substantial amounts of annotated data for train-
ing. Another algorithm, the Single Shot MultiBox Detector
(SSD) [10], exhibits relatively poor performance in han-
dling small objects [7]. The most noteworthy algorithm in
this category is the You Only Look Once (YOLO) [11],
which has several versions. Compact iterations of the YOLO
algorithm have been developed to ensure efficient execution
on hardware-constrained devices [8].Wu et al. [12] and Abra-
ham et al. [13] have presented traffic light detection systems
using YOLO. In addition, Fernando et al. [14] and Huy
et al. [15] have also demonstrated traffic light detection and
classification using YOLO. Furthermore, various methods
based on Lightweight [16], PID Controller [17], Salience-
Sensitive Loss [18], vehicular ad-hoc networks [19], support
vector machine [20], and Adaptive Background Suppression
Filter [21] have been reported for traffic light detection and
classification.

Edge computing and object detection are two critical com-
ponents of modern technology, working hand in hand to pro-
vide efficient and real-time solutions in various applications
using DL frameworks. However, DL models require high
computational power and network bandwidth. Accelerating
the DL model (e.g., YOLO) in edge devices can improve the
system performance. Therefore, using field-programmable
gate arrays (FPGAs) in object detection and classification
systems enhances operational security and real-time comput-
ing ability while reducing prices.

FPGAs have proven to maintain safety critical systems
with their remarkable computational ability. FPGAs are expe-
riencing rapid growth in the domain of Artificial Intelligence
(AI) acceleration, driven by their capacity for parallel pro-
cessing and architectural optimizations [22]. FPGA-based
implementations of deep learning models yield higher speed
and accuracy with lower power consumption than software
and image-based systems. To address the limitations associ-
ated with the low flexibility and accuracy of software and
image-based algorithms, as well as the high power con-
sumption of such methods, this paper presents a real-time
and lightweight system for the detection and classification
of traffic lights in autonomous vehicles. The YOLO v3
Tiny algorithm proves its suitability, mainly when deployed
on FPGA boards. However, the newly introduced Xilinx
Kria KV260 FPGA development board demonstrates its out-
standing computational ability to accelerate deep learning
algorithms [23], [24], [25], [26], [27], [28]. The synergistic
pairing of the Xilinx Kria KV260 development board with the
YOLO v3 algorithm is a compelling choice for real-time traf-
fic light detection and classification on resource-constrained
devices. In tandem with the detection and classification of
traffic signals, the system also includes a critical module for
speed control in compliance with the classification results.
The main contributions of this paper are summarized as
follows:,

1. This study presents a new system on the Xilinx Kria
KV260 FPGA board, enhancing real-time object detec-
tion and classification with an optimized YOLO v3
Tiny deep learning model.

2. Instantiate the proposed object detection system to
effectively identify and classify traffic light signals
with precision and accuracy.

3. Evaluate the performance of the proposed system
by comparing with state-of-the-art object detection
system.

II. MOTIVATION AND RELATED WORK
Implementing YOLO-based object detection on FPGA brings
forth both practical and theoretical implications. From a
practical standpoint, it enables real-time processing of object
detection tasks with minimal latency, rendering it suitable
for applications necessitating swift decision-making, such as
autonomous vehicles and surveillance systems. The FPGA’s
customizable hardware architecture facilitates optimized per-
formance and resource efficiency, resulting in reduced power
consumption and cost-effective solutions, particularly bene-
ficial for embedded systems and IoT devices. On a theoretical
level, this implementation underscores the potential synergy
between deep learning algorithms like YOLO and hard-
ware acceleration techniques such as FPGA, thereby laying
the groundwork for further advancements in edge com-
puting, where computational resources are constrained yet
real-time processing is imperative. Furthermore, delving into
the theoretical realm of optimizing deep learning models for
FPGA architectures can drive progress in hardware-software
co-design methodologies, ultimately fostering the develop-
ment of efficient and scalable AI systems across diverse
applications.

Numerous methods have endeavored to develop real-time
object detection systems tailored for edge devices. Neverthe-
less, this section delves into an exploration of contemporary
state-of-the-art object detection methodologies specifically
designed for deployment on edge devices. Table 1 encap-
sulates a comprehensive summary of these object detection
systems, providing a comparative overview of their respective
features and performance metrics.

Several studies have proposed real-time object detection
systems for edge devices utilizing Graphics Processing Unit
(GPU)-based architectures. However, the significant power
consumption associated with GPU-based systems presents a
considerable bottleneck for their practical deployment [6],
[12], [13], [16]. Notably, Abraham et al. [13] achieved the
lowest power consumption among GPU-based traffic light
detection systems. Their study focused on a traffic light detec-
tion system utilizing YOLO architecture and implemented on
a Nvidia Tesla T4 GPU. The research introduces a modified
YOLO model tailored for detecting traffic lights and signs.
This model, based on a modified cross-stage partial YOLO
v4 architecture, processes images captured by a camera sen-
sor, leveraging a dataset comprising 1360 training data and
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TABLE 1. State-of-the-art Object detection system.

340 testing data, encompassing six types of traffic lights and
39 types of traffic signs. The network, implemented using
the Darknet framework, attains a mean average precision of
79.77% at a processing speed of 29 FPS, accompanied by a
power consumption of 70W.

Alternatively, CNN based object detection serves as
another viable approach, characterized by notably low power
consumption and high throughput [9], [29], [30]. However,
a key bottleneck of CNN-based real-time object detection
systems lies in their requirement for low input image sizes,
necessitating substantial computational power for process-
ing larger images. Addressing this challenge, Wang et al.
[29] proposed a highly efficient CNN-based object detection
system. Their work introduces an adaptive CNN edge com-
puting platform tailored for target detection tasks, leveraging
FPGA technology. This research capitalizes on the inherent
pipeline architecture of FPGAs to expedite network compu-
tations, utilizing off-chip memory for storing network models
and thereby obviating the need for resource-intensive tiling
techniques. Moreover, an innovative online reconfigurable
design is introduced, enabling real-time adjustments to net-
work structure and parameters to accommodate diverse target
recognition objectives. Implemented on a Spartan-6 FPGA
platform, the system undergoes evaluation through pedestrian
and vehicle classification tasks, achieving a detection speed
of 16 frames per second (FPS) and a power consumption rate
of 0.79 W, while attaining a classification accuracy of 96%.
However, it is noteworthy that the system’s evaluation was

conducted with very low image sizes, resulting in compara-
tively lower accuracy.

Although YOLO-based object detection on FPGA offers
a multitude of advantages including real-time processing,
tailored optimization for FPGA architecture, low power
consumption, high throughput, low latency, flexibility for
various YOLO models, and resource efficiency, numerous
YOLO-based object detection systems have emerged in
recent years. However, to discern the state-of-the-art among
these systems, several notable implementationswarrant atten-
tion. Heller et al. [31] introduced an object detection system
utilizing deep learning on embedded edge devices, focusing
on maritime object detection with the Xilinx Kria KV260
Vision AI Kit. Their study involved training and evaluat-
ing multiple YOLO neural networks of varying sizes and
architectural specifications, incorporating structured pruning
techniques such as sparsifying to reduce network size while
preserving detection performance. The proposed deploy-
ments showcased promising outcomes, achieving an infer-
ence speed of 90 FPS with only a marginal 2.4% degradation
in mean average precision for high-definition input images.
Nonetheless, while exhibiting enhanced throughput and effi-
ciency, the accuracy of this method necessitates further
refinement.

Corcoran et al. [32] proposed a streaming architec-
ture toolflow to accelerate YOLO models on FPGA
devices, employing a deeply pipelined on-chip design for
YOLO accelerators. These accelerators, generated using an
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automated toolflow, incorporate novel hardware components
supporting YOLO operations in a dataflow manner, along
with off-chip memory buffering to mitigate on-chip memory
limitations. Their approach achieves a throughput of 69 FPS
for input images of 416 × 416, consuming 15.4W power.
However, power consumption of this study remains relatively
high, and accuracy metrics are not provided, posing potential
limitations.

Nguyen et al. [33] present an FPGA-based design
for YOLOv4 network tailored for flying-object detection,
addressing challenges of limited floating-point resources
while aiming to maintain accuracy, real-time performance,
and energy efficiency. They curated a suitable dataset of
flying objects for network implementation, training, and fine-
tuning, adapting YOLO networks for FPGA deployment.
Evaluating on the ZCU104 FPGA kit, they achieved 125FPS
for HD input images, consuming 26.4W power. However,
high throughput is accompanied by elevated power con-
sumption and potentially compromised accuracy, suggesting
potential bottlenecks.

Valadanzoj et al. [34] introduced a high-speed YOLO
hardware accelerator tailored for self-driving automotive
applications on FPGA. Their approach involved utilizing
8-bit and 5-bit fixed-point formats for data and weights to
conserve resources and memory. To address accuracy con-
cerns, a Genetic Algorithm was employed to optimize the
decimal point positions across different network layers. Fur-
thermore, a technique enabling simultaneous multiplications
with distinct operands using a single DSP block was pre-
sented, enhancing network execution speed. Evaluation on
the Xilinx Zynq ZC706 FPGA platform yielded a through-
put of 55 FPS with 79% accuracy for a given input image,
consuming 13.6W of power. Nonetheless, similar to previous
studies, the high throughput was accompanied by elevated
power consumption and compromised accuracy, potentially
posing a limitation.

Besides of these large NN based architecture, several
alternative methods have been reported for real-time object
detection, including lightweight approaches [16] and com-
binations of Blob, Histogram of Oriented Gradients (HOG),
and Support Vector Machine (SVM) [20]. However, the
performance of these methods still requires improvement
compared to other state-of-the-art object detection systems.

The majority of prior research has predominantly focused
on throughput and accuracy metrics, often neglecting the
critical aspects of power consumption and cost, which are
pivotal considerations for edge computing systems. More-
over, some studies have utilized highly expensive FPGA
boards, limiting their practical applicability, particularly for
large-scale systems or ADAS. Unfortunately, current state-
of-the-art object detection systems still require improvement
across all performance metrics, including throughput, accu-
racy, power consumption, and cost-effectiveness. To address
these constraints, this paper introduces a novel object detec-
tion system for FPGA utilizing YOLO. Leveraging a $250

FPGA board (Xilinx Kria KV-260) with minimal power con-
sumption, the proposed system aims tomaintain accuracy and
throughput while operating within cost constraints. However,
achieving a trade-off among these performance evaluation
metrics with a low-cost FPGA board presents significant
challenges. The Kria KV-260, being a newly launched FPGA
board with limited memory and computational power, may
pose a bottleneck for deploying large neural network models.
Thus, the proposed system optimizes the YOLO model to
fit within the FPGA board’s constraints. Additionally, eval-
uating the proposed system through on-road tests and using
street photos and videos is a crucial aspect of this study,
providing real-world validation of its effectiveness.

III. IMPLEMENTATION
The initiation of the study’s implementation process
commences with the establishment of the host machine
environment and the FPGA development board. This imple-
mentation procedure encompasses multiple sequential stages,
encompassing environment configuration, dataset prepara-
tion, model training, model conversion, and deployment of
the trained model into the FPGA board, all aimed at creating
a robust and dependable object detection and classification
system. The overall architecture of the proposed system is
illustrated in Figure 1.

A. DATASET
The dataset has been prepared according to the YOLO format
to train a YOLOmodel in the darknet framework. The images
from the collected dataset were annotated with the bounding
boxes surrounding the traffic lights that must be detected. The
annotations consist of the traffic light class and coordinates
of the center on the X-axis, coordinates of the center on
the Y-axis, height, and width. A class name was allocated
to every annotation according to the traffic light class (Red,
Green, Yellow, Left Green, Right Green, Left Red, Right Red,
and No Light). The pixel values of bounding box coordinates
(x, y, width, height) were transformed to normalized values
between 0 and 1 relative to the dimensions of the traffic light
image to improve the model’s convergence and robustness.
However, to train the YOLO model, a corresponding text file
has been generated for each traffic light image in the BSTLD
dataset. The information about the traffic light in the text file
maintains a predefined sequence so that during the training,
the darknet framework can extract the information correctly
and train the YOLO model with accurate data.

The Bosch Small Traffic Light Dataset (BSTLD) [42]
contains a total of 13,427 camera photos, each with a size
of 1280 × 720 pixels. Additionally, the collection includes
around 24,000 annotated traffic light signals. The images
in the training set depict a variety of obstacles that may be
encountered when driving in urban environments. However,
5094 images from the BSTLD images were used for training
purposes in this study, and among those images, 1019 images
were split to make a test set.
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FIGURE 1. Overall architecture of the proposed system.

B. MODEL PREPARATION AND FPGA DEPLOYMENT
1) MODEL TRAINING THROUGH DARKNET
Darknet framework serves the dual purpose of training neu-
ral networks and subsequently processing images or video
frames using deep neural networks. However, to train the
YOLO model, this study considers the darknet framework
due to its real-time object detection architecture. Darknet
mainly employs 53 convolutional layers in 3×3 and 1×1 con-
volutional filters to extract features and reduce output [43].
Besides, It makes predictions by utilizing max pooling.
YOLO framework comes with a configuration file that needs
to bemodified according to the project-specific requirements.
These configurations play a crucial role in determining the
detection capabilities of the model. YOLOv3 configuration
files have been changed for traffic light detection and classi-
fication, including the number of classes, anchor boxes, and
other hyperparameters. Initially, both the batch and subdivi-
sions were set to one. To train efficiently, the batch was set to
64, and the subdivisionwas set to 8 by considering the volume
of images in the BSTLD and the capacity of the host machine.

The proposed YOLOv3 Tiny model utilizes 3×3 convolu-
tion layers with a stride size of 1 to extract features through a
feedforward structure. The initial convolution layer takes as
input an image of size 416× 416, and each convolution layer
incorporates a padding size of 1. Furthermore, it employs
Max pooling layers to down sample data within the convolu-
tion layers. Bounding box predictions aremade at two distinct
feature map scales and combined with an up sampled 13 × 13
feature map. YOLOv3 Tiny detects 3 boxes per grid cell
with 5 bounding boxes. Since this study considers 8 traffic
light classes, the number of filters within the convolutional
layer has been set to 39 in the configuration file. The YOLO

model was trained with weights from a pre-trained model
from the darknet tomaximize efficiency. This step is followed
by fine-tuning the YOLOv3 Tiny network with the dataset by
running the dataset through the neural network andmodifying
the parameters to minimize the loss. Table 2 represents the
optimizedYOLOv3Tinymodel architecture for the proposed
system.

2) GENERATION OF FROZEN GRAPH
Freezing the graph is a process that combines the architec-
ture of the model and weights into a single file called a
frozen graph. The darknet binary weights were converted into
the TensorFlow variables. The yolov3 Tiny architecture has
been built in TensorFlow with the proper configuration file
and the appropriate weight file generated from the Darknet
framework.

The architectural framework of the model has been repli-
cated with input and output nodes along with other associated
parameters. TensorFlow has built the YOLO model and gen-
erated the frozen graph with the neural network layers, the
determination of activation functions, and the configuration
of input-output functions in this process by using the config-
uration and weights files. In addition, the frozen graph has
been optimized by the TensorFlow API. The procedure for
generating a frozen graph illustrated in Fig. 2.

3) QUANTIZATION
Vitis-AI quantizer provides a function to convert the 32-bit
floating-point weights and activations to decrease compu-
tational complexity and maintain prediction accuracy. The
frozen graph has been investigated by the Vitis-AI to find out
the number of input and output nodes of the trained YOLO
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TABLE 2. Modified YOLO architecture of the proposed system.

model and their names. To calibrate the trained YOLOmodel
before quantization, 250 random images have been selected
from the test set. However, the model has been quantized
into INT8 fixed point formats that require less memory band-
width, improving power efficiency and computing speed.

FIGURE 2. Frozen graph generation process.

4) MODEL COMPILATION
The Vitis-AI compiler has been used to compile the quan-
tized model into the Kria KV260 FPGA board using Xilinx
DPUCZDX8G. The compilation process has been performed
using the Xilinx Intermediate Representation (XIR) based
compiler of Vitis-AI. Initially, the quantized model was used
as the input for the compiler, and then the compiler trans-
formed the model into the XIR graph. The graph was broken
into different subgraphs by the compiler, and optimization
was applied to the subgraphs. Besides the compiler generated
the instruction stream and attached it to the DPU sub-
graph. However, the instructions and required information for
Vitis-AI Runtime (VART) has serialized to compile themodel
into ‘.xmodel’ format. Fig. 3 illustrates the interconnection
between theDPU and the processor of the Kria KV260, with a

32-bit memory-mapped AXI interface employed to establish
the links between the processor and the DPU. In the compi-
lation process, the proper fingerprint of the DPU architecture
has been specified to make the compiled model compatible
with the DPU. The compiled model has been deployed to the
Kria KV260 FPGA board to detect and classify the traffic
lights.

IV. EXPERIMENTAL EVALUATION AND DISCUSSION
The evaluation of the proposed system commenced with
a comprehensive software analysis. This preliminary phase
involved rigorous testing and validation of the system’s
algorithms and functionalities in TensorFlow. Once the soft-
ware results met the predefined criteria and demonstrated
satisfactory performance, the proposed system has been
transitioned to hardware deployment for further evaluation.
The hardware assessment phase involved implementing the
system on the target FPGA platform and subjecting it to
real-world testing scenarios. This stage aimed to validate
the system’s performance under actual hardware constraints
and operational conditions, ensuring its effectiveness and
reliability in practical applications. By adopting a systematic
approach that encompasses both software analysis and hard-
ware evaluation, the proposed system can undergo thorough
validation across various dimensions, thereby instilling con-
fidence in its capabilities and suitability for deployment in
real-world scenarios.
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FIGURE 3. Interconnection between Xilinx DPU and the Kria KV260 processor.

FIGURE 4. Loss vs. Iteration graph of the trained YOLO model.

A. EXPERIMENTAL SETUP
The YOLO model preparation, training, and FPGA deploy-
ment are carried out by a Linux host machine with Intel(R)
Core (TM) i7-9750H, 2.66GHZ, and 16GB of RAM. The
simulation environment is implemented using the Darknet
framework and Xilinx Vitis-AI. One environment is for
training the model, and another is for the model conversion
according to the requirements of the development board. For
the hardware evaluation phase, the Xilinx KV-260 FPGA
board was utilized. This board features the Xilinx Zynq
UltraScale+ MPSoC, which integrates a quad-core ARM
Cortex-A53 processor alongside a programmable FPGA fab-
ric. Additionally, the board offers a diverse array of interfaces
and peripherals tailored for camera and display connectivity,
facilitating seamless integration into object detection sys-
tems. Leveraging the computational capabilities of the ARM
processor and the flexibility of the FPGA fabric, the Xilinx

KV-260 FPGA board serves as an ideal hardware platform for
implementing and evaluating the proposed object detection
system. Its versatile architecture and robust feature set enable
comprehensive hardware assessment, ensuring the system’s
performance and functionality align with the intended objec-
tives and requirements.

B. SOFTWARE EVALUATION
The training process extended to approximately 50,200 iter-
ations. Initially, the loss exceeded 700%, signifying a high
error rate. Subsequently, as the training progressed, the

loss exhibited a rapid decline. Until around 1,000 itera-
tions, there was a notable fluctuation in the loss. However,
after approximately 1,500 iterations, the loss experienced a
significant reduction, and the fluctuation rate decreased sub-
stantially compared to the earlier stages of training. Notably,
the generated weight file at the 50,000th iteration has been
utilized for traffic light detection and classification, designat-
ing this segment as the region of interest in the graph. The
loss and iteration graph, as presented in Fig. 4, showcases
this specific region, demonstrating that the loss stabilizes at
approximately 1%.

The accuracy versus iteration graph is represented in Fig. 4.
At the outset of the training process, the accuracy was
notably low. However, with an increase in the number of
iterations, accuracy improved considerably, particularly up
to around 1,000 iterations. After approximately 1,500 iter-
ations, the accuracy exhibited minimal fluctuation. Fig. 5
highlights the region of interest with the model’s accuracy.
However, it stabilizes at an very high level of accuracy of
approximately 99%.

This study has investigated the efficacy of training and
optimizing a YOLO v3 Tiny model for real-time traffic
light detection and classification. With an outstanding 99%
overall accuracy achieved during model training, the model
showcases remarkable proficiency in accurately identifying
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TABLE 3. Comparison of the proposed system with different FPGA based object detection system.

FIGURE 5. Accuracy vs. Iteration graph of the trained YOLO model.

objects amidst complex backgrounds. An essential step in
this process was the successful conversion of darknet weights
into TensorFlow format, enabling the application of quan-
tization and compilation techniques. This conversion not
only optimized system memory utilization but also preserved
accuracy. Notably, the model’s loss remained at approxi-
mately 1%within the region of interest, particularly at 50,000
iterations, underscoring its suitability for efficient operational
deployment.

C. HARDWARE EVALUATION
The YOLO model underwent rigorous testing and evalu-
ation on the Kria KV260 FPGA board. Impressively, the
proposed system yielded highly satisfactory results. During
an on-road experiment conducted on the streets of Siegen,
Germany, the system demonstrated real-time capabilities by
successfully detecting and classifying traffic lights from a
high-definition video stream. In addition to evaluating the
system using the BSTLD test images, this study also sub-
jected the system to testing using 30 on-road experimental
images with a resolution of 720 × 1280. Furthermore, five
videos with HD resolution has been utilized, each with a
duration of 2 minutes and a frame rate of 60 fps, resulting
in a total of 7200 frames captured from street environments.
These real-world on-road experiment images and videos pro-

vide valuable insights into the system’s performance under
varying environmental conditions and dynamic scenarios,
further validating its effectiveness and reliability in practical
deployment scenarios. During the experiment, the system
exhibited an impressive processing time of 1.996 seconds
to detect and classify 30 images, achieving a commendable
speed of 15 FPS. Fig. 6 visually portrays the outcomes of traf-
fic light detection and classification by the proposed system.
To further assess the accuracy of annotation, segmentation,
and object detection, the average Intersection over Union
(IOU) has been calculated for various regions. Notably, the
proposed model attained an average IOU of 36%, signifying
its robust performance in these critical aspects.

D. CMPARISON WITH OTHER RELATED WORKS
In order to evaluate the performance discrepancy between
the architecture delineated in this study and other heteroge-
neous architectures, a comparative analysis was undertaken
by comparing the outcomes of the proposed system with
those of analogous works documented in recent literature.
This assessment aimed at appraising the efficacy of the
system architecture elucidated in this research endeavor.
Table 3 encapsulates the outcomes of various FPGA-based
object detection systems alongside the proposed system. The
findings distinctly illustrate that the CNN-based approach
exhibits heightened efficiency owing to the diminutive size
of the test images. Corcoran et al. [32] and Valadanzoj
et al. [34] denote elevated throughput albeit accompanied
by increased power consumption and accuracy. Conversely,
Heller et al. [31] and Valadanzoj et al. [34] showcase a
harmonized trade-off among throughput, power consump-
tion, and efficiency. For an equitable comparison, the pro-
posed system is compared with the work of Heller et al.
[31], given the congruent utilization of FPGA boards and
test image sizes in the experimentation. Fig. 7 delineates the
performance evaluation of our system with the top notched
state-of-the-art systems. Remarkably, the performance of the
proposed system evinces a better performance across all eval-
uation metrics, manifesting a 24% enhancement in accuracy,
56% reduction in power consumption, and 55% augmenta-
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FIGURE 6. Detection and classification results of the proposed system.

FIGURE 7. Performance evaluation of the proposed system.

tion in efficiency. Overall, the proposed system demonstrates
satisfactory performance compared to other systems. The
robustness and reliability of the YOLOv3 Tiny model in
real-time scenarios are underscored by its deployment on
the Kria KV260 and efficient utilization of the Xilinx DPU.
However, isolated misdetections were encountered during the
testing phase, albeit their incidence was minimal relative to
the total number of objects tested.

V. CONCLUSION
An FPGA-based general YOLO model, tailored for object
detection and classification in edge computing devices, has
been introduced. This model has been carefully optimized
to meet the stringent requirements of edge systems, encom-
passing limitations in hardware resources, the need for
high accuracy, and real-time processing speed. In light of
the system’s inherent resource constraints and its overall
performance, it is justifiable to conclude that both the model
and the entire system have demonstrated their efficiency,
reliability, and speed, particularly within the domain of
Advanced Driver Assistance Systems (ADAS) and edge
computing.

One noteworthy feature of the developed system is its
versatility. It possesses the capability to detect not only traf-
fic lights but also a wide range of other object types. This
flexibility arises from the system’s adaptability through the
training of the YOLO model with suitable datasets. Con-
sequently, ample room remains for further exploration and
enhancement of the YOLO model. Architectural modifica-
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tions and optimization efforts can be undertaken to achieve
improved performance.

Additionally, it is worth considering the integration of a
fault tolerance mechanism within the system to handle unex-
pected issues and ensure robustness. A valuable avenue for
future work is the assessment of system reliability through
long-term operation, observing its behavior and patterns
across various real-world scenarios. Such investigations will
contribute to the continuous development and refinement of
the system’s performance and reliability.
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