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ABSTRACT Underwater photography is challenged by optical distortions caused by water absorption
and scattering phenomena. These distortions manifest as color aberrations, image blurring, and reduced
contrast in underwater scenes. To address these issues, this paper proposes a novel underwater image
enhancement model, called DIRBW-Net, leveraging an improved inverted residual network. In order to
minimize the interference of the Batch Normalization (BN) layer on color information, newly designed
Double-layer Inverted Residual Blocks (DIRBs) are introduced, which omit the BN layer and extract deep
feature information from the input images. Subsequently, each input image is fused with the intermediate
feature map using skip connections to ensure consistency between local and global image information, thus
effectively enhancing the image quality. In the concluding phase, effects of diverse activation functions are
studied, opting for the h-swish activation function to further boost the overall model performance. DIRBW-
Net is evaluated on a public dataset, with comparisons drawn against existing representative models. The
experiments showcase a notable success in enhancing the underwater image quality when using the proposed
model.

INDEX TERMS Underwater image enhancement, convolutional neural network (CNN), residual network,
deep learning.

I. INTRODUCTION
During the process of image generation, factors such as
lighting, motion, occlusion, and exposure inevitably affect
the image quality, leading to degradation. Underwater
images are particularly affected by uneven lighting, low
visibility, refraction, and scattering of light, as well as
the existence of small particles and suspended matter,
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resulting in color deviations, color artifacts, and blurred
details. Marine surveying, underwater biology, underwater
cultural heritage preservation, and ship maintenance tasks
all require high-quality images as to be performed well.
However, the aforementioned issues significantly affect
the accuracy and reliability of underwater visual tasks
and pose enormous challenges to underwater operations.
Therefore, research, development, and application of tech-
niques for enhancing underwater images are particularly
important.
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Underwater image enhancement techniques are primarily
designed to elevate image quality through the meticulous
adjustment of various image attributes. Enhancement meth-
ods of a traditional nature can be categorized into two
main groups: (1) employing non-physical models; and (2)
based on physical models. Common methods for non-
physical models include histogram equalization [1], wavelet
transform [2], white balance [3], etc. These methods mainly
adjust the distribution of pixel values in the images to achieve
a uniform distribution and enhance the visual fidelity of
images. However, given the existence of factors such as detail
blurring and color distortion in underwater images, relying
solely on a single enhancement method proves inadequate.
Consequently, several fusion methods have been developed
to address this limitation. For instance, Jia et al. [4] transform
the image color space into a hue-saturation-intensity (HSI)
space and apply a wavelet transform to distinguish the low-
and high-frequency bands of the luminance channel. The low-
frequency band undergoes adjustment through Retinex, while
the high-frequency band is fine-tuned using multi-channel
filtering techniques to enhance images. However, during the
image conversion process, there may be a loss of image
information and color distortion. Sanila et al. [5] transform
images into a Lab color model and apply white balance
to adjust the brightness component, compensating for other
components and eliminating unwanted color casts, generating
blurred images using a Gaussian filter, and then utilize the
images obtained through white balance for unsharp masking
to ensure edge enhancement. Additionally, these authors
incorporate contrast-limited adaptive histogram equalization
to achieve contrast enhancement. While non-physical models
can generate improved images with enhanced visual quality,
they often neglect the intrinsic characteristics of underwater
physical imaging. As a consequence, this oversight can result
in color deviations and other related issues.

The methods for underwater image enhancement, employ-
ing physical models, aim to mathematically model the image
degradation process and estimate parameters to invert and
obtain clear images. Existing models include scattering
models [6], color balance models [7], degradationmodels [8],
etc. For instance, Chen et al. [9] employ a dark channel
prior (DCP) algorithm for super-pixel processing. The DCP
algorithm leverages frequency domain information from
underwater images, examining color variations and frequency
shifts in adjacent regions within the scene. By estimating
transmittance and applying it for color correction, the
algorithm achieves good image enhancement. Liu et al.
[10] preprocess underwater images using color channel
transmission. They estimate the transmission rate based on
the pixel distribution along the curve, simulate the under-
water light attenuation process, and incorporate saturation
adjustment on the three-color channels to achieve color
enhancement while preserving edge details. This type of
method relies on mathematical modeling of the underwater
imaging process and requires the addition of certain prior

knowledge, which has limitations for different underwater
scenes. Simultaneously, the parameter estimation introduces
heightened computational complexity to the algorithm,
potentially causing deviation in later estimation and poor
enhancement effects.

The rise of deep learning has opened up a new develop-
mental avenue for image processing and computer vision
applications. When addressing image enhancement, tradi-
tional methods frequently depend on strong assumptions or
predefined conditions, while deep learning methods resolve
the issue by learning the intrinsic distribution characteristics
of the data. For complex underwater scenes, traditional
enhancement methods neglect the underwater mapping
relationship, concentrating solely on color improvement.
Conversely, deep learning methods not only extract relevant
features from the original images by means of artificial
neural networks but also acquire knowledge of the dis-
tinctive mapping patterns unique to underwater imagery.
This addresses the limitations of traditional underwater
enhancement methods.

Based on the neural network type, underwater enhance-
ment networks in deep learning can be categorized into two
groups: convolutional neural networks (CNNs) and genera-
tive adversarial networks (GANs). Li et al. [11] proposed a
network model rooted in the priori of underwater scenes, that
integrates the underlying principles of underwater imaging,
encompassing the physical aspects and optical characteristics
of underwater scenes. By synthesizing degraded datasets
from various scenes, a CNN was trained to effectively
reconstruct clear images. Wang et al. [12] proposed achieving
underwater image enhancement through the fusion of two
different color spaces, performing fundamental enhancement
operations on pixel blocks within the red-green-blue (RGB)
color space. Furthermore, global adjustment blocks are
integrated in the hue-saturation-value (HSV) color space
to finetune the saturation and brightness of underwater
images. Both operations are combined within a unified
CNN architecture. Islam et al. [13] introduced a method
that incorporates underwater scene priors and trains on a
synthesized dataset to better adapt the generator to the
specific characteristics exhibited by underwater images. This
serves as the fundamental groundwork for subsequent adver-
sarial training, enabling the learning of distinctive features
and textures inherent in underwater images. However, this
approach presents challenges such as high model complexity
and extended training times. Lin et al. [14] primarily adjusted
a GAN network to enhance visual perception by adding a
U-Net structure to the discriminator and employing dilated
convolution in the generator. This model effectively removes
color artifacts and generates high-quality underwater images.

While numerous methods for underwater image enhance-
ment have been proposed, they still encounter challenges.
Traditional methods rely on prior knowledge, limiting
their applicability. Conversely, deep learning based methods
yield varying effects in different environments, leading to
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instability in specific situations. In addition, some deep
learning models have complex structures and demand a
substantial number of parameters for training, restricting
deployment on devices with limited computing resources.

Addressing the aforementioned challenges, this paper
proposes a novel underwater image enhancement model
grounded on inversion residual principles. The model refines
the original Inverted Residual Block (IRB) to mitigate
the BN layer interference on image color information and
eliminate redundant BN layers. The traditional residual block
is improved by designing two layers to deal with the problem
of gradient disappearance. The distinctive advantage of this
method lies in its detailed supplementation of depth feature
information during extraction, contributing to enhanced
model performance. The network model initially acquires
shallow feature information through standard convolution
operations, followed by the extraction of deep feature infor-
mation via a double-inversion residual process. Ultimately,
the deep feature information is globally integrated with the
input image through skip connections, yielding an ultimate
enhancement map.

Evaluation, performed on the Underwater Image Enhance-
ment Benchmark (EUVP) dataset, demonstrates that, in com-
parison with other underwater image enhancement models,
the proposed model adeptly eliminates the blue-green
background in the visual output and effectively addresses
issues such as color deviation, low contrast, and blurring.
Simultaneously, there is a noteworthy enhancement in
objective evaluation indices. Additionally, the effectiveness
of various components, utilized by the proposed model,
is confirmed through ablation study experiments.

The rest of the paper is organized as follows. Section II
describes the proposed model. Section III presents the exper-
imentally obtained performance evaluation results along with
their analysis. Finally, section IV concludes the paper.

II. PROPOSED DIRBW-Net MODEL
To address color cast issues arising from uneven illumination
in underwater photography, this paper introduces a novel
underwater image enhancement model built upon the inverted
residual network framework. To streamline computational
complexity, the network omits the up-down sampling step,
conducting all operations directly on the feature map. The
proposed model, illustrated in Fig. 1, consists of three main
components, namely a shallow feature extraction module,
a Double-layer Inverted Residual Block (DIRB), and a
feature fusion module, described in detail in the next
subsections.

FIGURE 1. The overall structure of the proposed model.

A. SHALLOW FEATURE EXTRACTION MODULE
Comprised of a 3× 3 standard convolution and an activation
layer employing the ReLU function, this module extracts
shallow information from the input RGB images and
generates the requisite feature map for subsequent deep
feature extraction, as follows:

I0 = Conv3×3(x) (1)

where x denotes the input underwater degraded image,
Conv3×3 denotes a standard convolution operation with a
kernel size of 3 × 3, and I0 denotes the outcome obtained
from the input image after passing through the shallow feature
extraction module.

During the enhancement process, each input degraded
image undergoes preprocessing, resizing it to a 256 × 256
3-channel image. This modification not only reduces com-
putational costs but also ensures consistency of the feature
extraction map in terms of shape and spatial characteristics.
Following the convolution operation, the output feature
map is transformed into 32 channels, serving as input for
subsequent deep feature extraction. The image size remains
constant throughout the entire feature extraction process.

B. DOUBLE-LAYER INVERTED RESIDUAL BLOCK
Generally, the accuracy of a neural network model can
be enhanced by stacking multiple convolutional layers or
by adding extra nodes. However, as the number of nodes
and layers increases, issues like gradient disappearance
or gradient explosion may arise in the propagation of
gradient information, leading to a significant decline in the
model performance. Therefore, He et al. [15] introduced
a method known as residual learning. By introducing skip
connections, information can be rapidly propagated in the
deep network, allowing the network to learn the previous
feature information for creating a residual mapping. This
approachmitigates the issue of vanishing gradients associated
with information propagation.

The Inverted Residual Block (IRB) [16] is a variation of
the residual network commonly applied in image processing
tasks. It usually converts low-resolution images into high-
resolution images and has a good ability to restore lost detail
information and improve clarity. Moreover, it can recognize
the category of pixels in the images, which helps capture
local and global features. The computational complexity and
parameter count are reduced while still maintaining good
accuracy. However, in image enhancement tasks, the primary
role of the BN layer is to normalize the color distribution,
typically resulting in input data with zero mean and unit
variance. This leads to a shift in the color distribution of
the input images. Additionally, the BN layer can alter the
contrast of the input images, disrupting the original contrast
information and impacting the visual perception of the
images. Considering this appealing phenomenon, we propose
a novel block, called DIRB, shown in Fig. 2.

DIRB is composed of two branches. The upper branch
extracts deep features from the input feature map through
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FIGURE 2. The newly designed double-layer inverted residual block
(DIRB), utilized by the proposed model.

a 3 × 3 convolution. The lower branch includes a 3 × 3
depthwise separable convolution and two 1×1 convolutions.
The h-swish function [17] is used as an activation function
between the two convolutions. Firstly, the extracted feature
map is input into the 1 × 1 convolutional layer to expand
the channel information so as to increase the depth of
the feature map and help extract high-dimensional features.
Then, the extended feature map undergoes filtering through a
3 × 3 depthwise separable convolution, extracting intricate
features for deep learning. Subsequently, the feature map
undergoes adjustment through a 1×1 convolution to align its
final output channel count with that of the input, completing
the linear mapping of the feature map. This process ensures
the size and depth of the feature map both align with the
input. Finally, residual learning is performed by adding the
feature maps of the upper branch and the feature maps of the
lower branch by means of a skip connection. This way, more
detailed features of the images can be obtained. Compared
to IRB, DIRB eliminates redundant BN layers, and while
the upper branch’s feature extraction increases the network’s
computational complexity, it prevents the occurrence of
vanishing gradients.

In the proposed model, the deep feature extraction is
performed by means of three DIRBs, as follows:

F3 = h3DIRB
(
h2DIRB

(
h1DIRB (I0)

))
(2)

where hnDIRB (n = {1, 2, 3}) denotes the n-th DIRB function
and F3 denotes the feature map of the third output. The DIRB
feature extraction is performed as follows:

hnDIRB = fcom(fdep(fexp(h
n−1
DIRB))) + Conv3×3(h

n−1
DIRB) (3)

h1DIRB = fcom(fdep(fexp(I0))) + Conv3×3(I0) (4)

where fcom (·) denotes the feature compression, fdep (·)
denotes the depthwise separable convolution operation, and
fexp (·) denotes the feature expansion.

C. FEATURE FUSION MODULE
To augment the model’s capability in handling the degra-
dation of underwater image characteristics, a global feature
fusion module is incorporated into it. This module merges the
feature maps from each DIRBwith the input image using skip
connections. This approach facilitates the fusion of global
and local information, effectively enhancing the quality of
the images andmitigating the issue of gradient disappearance.
It is essential to emphasize that this feature fusion operation is

not constrained by the number of channels in the feature map.
The output yn of the n-th concatenation operation is obtained
as follows:

yn = S(hnDIRB, x) (5)

where S(·) denotes the concatenation operation. As this
operation is performed only on the channel dimension,
the image size does not change. After the last feature
fusion, an enhanced image is generated using a 3 × 3
convolutional layer, which ensures that the output has the
correct number of channels, while smoothing the gradually
refined deep feature information and retaining the appropriate
feature information.

D. ACTIVATION FUNCTIONS
The lack of a loss function causes a multi-layer neural
network to behave as an equivalent form of a single-layer
linear model, which is unable to handle intricate non-linear
relationships. To enhance the network’s expressive capability
and adaptability, introducing an activation function into it
becomes imperative. As one of the key components of
neural networks, activation functions can introduce non-
linear characteristics so that the network can better capture
and represent non-linear data patterns. This further extends
the representation power of neural networks, enabling them
to learn and represent more complex functional relationships.
Commonly used activation functions include ReLU [18],
Leaky ReLU [19], Sigmoid [20], and GELU [21], depicted
in Fig. 3.

FIGURE 3. Four popular activation functions.

ReLU is a widely utilized activation function. Various
modifications of it exist, one of which is ReLU6 [22]. This
function restricts the part of the input value greater than 6 to
the constant value of 6, which helps suppress the gradient
explosion problem, while the output in the negative number
region is set to 0, as follows:

ReLU6 (x) =


0, x ≤ 0
x, 0 < x < 6
6, x ≥ 6

(6)
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As could be inferred from (6), when the input is negative,
the neurons in this region are in a deactivated state, which
causes the model to fail in learning the feature information of
this region. This reduces the expressive power of the network,
affecting negatively the model. In order to prevent the issue
of dead neurons, the proposed model employs the h-swish
activation function, as follows:

h_swish (x) =
x ∗ ReLU6 (x + 3)

6
(7)

As shown in Fig. 4, compared to ReLU6, h-swish
introduces nonlinearity in the negative region, which makes
the curve of activation function smoother. At the same time,
h-swish has a certain value in the negative region, which helps
alleviate the problem of neurons death.

FIGURE 4. ReLU6 and h-swish activation functions.

E. LOSS FUNCTIONS
The proposed model utilizes the mean square error (MSE)
loss function [23] to assess the disparity between the
enhanced images and the original images. Additionally, the
MSE loss is sensitive to brightness, which helps retain
the consistency of the overall brightness or brightness
distribution information. The MSE loss is calculated as
follows:

LMSE =
1
N

N∑
i=1

(xi − ti)2 (8)

where N denotes the number of input images, xi denotes the
i-th original input image, and ti denotes the i-th enhanced
output image.

In the experiments, theMSE loss is combined with the con-
tent loss [13] that extracts high-level semantic information
through a VGG-16 network pre-trained on ImageNet [24].
This content loss function preserves the semantic content
of images and generates high-dimensional visual perception
images, allowing the generated images to acquire realistic
detail information with enhanced quality and realism. The

content loss is calculated as follows, [13]:

Lcontent =
1

CjHjWj

∥∥φj(ŷ) − φj(y)
∥∥2
2 (9)

where j represents the feature map of shape Cj × Hj ×

Wj extracted by convolution at the j-th layer of the pre-
trained VGG-16 network, ŷ denotes an enhanced output
image, y denotes the original input image, and φj(ŷ) and φj(y)
denote the pixel values of the corresponding image features,
respectively.

Combining these two loss functions in a linear fashion,
as shown below, allows enhancing the robustness of the
proposed model:

L = λ1∗LMSE + λ2∗Lcontent (10)

where λ1 and λ2 denote the weight of the MSE loss and
content loss, with values set to 5 and 0.01, respectively, based
on a large number of experiments.

III. EXPERIMENTAL RESULTS AND ANALYSIS
The proposed model was implemented by means of the Ten-
sorFlow deep learning framework using a 14-core Intel(R)
Xeon(R) CPU E5-2680v4@2.40GHz processor. The compu-
tation acceleration was performed by an NVIDIA GeForce
RTX 3090 (24GB) GPU. During the model training process,
the ADAM optimizer was used for parameter optimization,
the learning rate was set to 0.0001, the batch size was set to 1,
and the number of training epochs was set to 30.

The EUVP dataset [25] was used in the experiments,
as it contains color images featuring various underwater
sediments, organisms, seaweed, and corals, within a variety
of underwater environments. In addition, this dataset provides
both high-quality and low-quality images in a pairwise
manner. From these, 256 × 256 underwater images with
diverse color tones were selected for use in the experiments.
1500 pairs of these images were randomly selected for model
training and another 515 pairs of images were used for model
testing.

The performance of the proposed model was evaluated in
comparison to three traditional image enhancement models
(Underwater Dark Channel Prior (UDCP) [26], Histogram
Equalization (HE) [27], Underwater Image Enhancement
using LIME and ACP (ULAP) [28]), and four deep learning
enhancement models (UWCNN [11], UDnet [29], Water-
Net [25], FUnIE-GAN [13]).

A. SUBJECTIVE EFFECT ANALYSIS
Sample subjective effect results, obtained in the conducted
experiments, are illustrated in Fig. 5. As can be seen, the
UDCP model preserves the complete texture information
of the images by utilizing the minimum value to estimate
pixel brightness. However, the presence of atmospheric light
leads to neglecting or slight enhancement of dark areas,
which makes some image regions excessively dark. The
HE model enhances image contrast by remapping pixels to
improve brightness, but an excessive high contrast may lead
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FIGURE 5. Sample subjective effect comparison of different models.

to overexposure. Images output by the ULAP model exhibit
a deeper blue-green background than the original images in
certain regions. The UWCNN model effectively removes the
blue and green background, but the enhanced images exhibit
color distortion and noticeable dark areas. The UDnet model
successfully eliminates the blue and green background, yet
the white patch overall brightens the enhanced image and
introduces color distortion. The Water-Net model efficiently
eliminates the blue tone and reinstates a favorable color
effect. However, for color shift improvement under the
blue-green background, the red channel tends to be overcom-
pensated, resulting in blurred image details. The FUnIE-GAN
model achieves comprehensive color correction, effectively
removing the blue and green backgrounds. However, certain
areas in the enhanced images may exhibit excessive darkness,
leading to a loss of some image details. In comparison to these
models, the proposed DIRBW-Net model excels not only
in effectively eliminating the blue or green background in
underwater images, yielding natural and clear enhancements,
but also restores the true color distribution for various
underwater image types. This improves image contrast and
brightness, resulting in the production of high-quality images.

B. OBJECTIVE EFFECT ANALYSIS
For a thorough model performance evaluation, both objective
evaluation metrics using real image values and metrics
without real image values were selected for use. Within
the first group, the Peak Signal to Noise Ratio (PSNR)
and the Structural Similarity Index Measure (SSIM) [30]
were utilized, as these offer a quantitative assessment of the
improved image quality with reference to the real images.

PSNR is employed to measure the quality of enhanced
images compared to reference images. It offers a numerical
gauge of the similarity between the two images, signifying
the degree of fidelity in preserving the original image details.
A higher PSNR value signifies lower distortion and higher
image quality. PSNR is calculated as follows:

PSNR = 10∗ lg
(
2552

MSE

)
(11)

where MSE, denoting the mean square error between the
enhanced image and the original image, is calculated as
follows:

MSE =
1

H∗W

∑H

i=1

∑W

j=1
(X (i, j) − Y (i, j))2 (12)

where W and H denote the numbers of pixels in the images,
counted horizontally and vertically, respectively.

SSIM is utilized to assess the similarity between enhanced
images and original images, by taking into account their
structural information. It produces a value between 0 and 1,
where a value closer to 1 signifies less distortion, higher
preservation of image information, and greater similarity in
terms of structure. SSIM is calculated as follows:

SSIM =

(
2µxµy + C1

) (
2σxy + C2

)(
µ2
x + µ2

y + C1

) (
σ 2
x + σ 2

y + C2

) (13)

where µx and µy denote the mean brightness of images x and
y, respectively, σxy denotes the covariance of x and y, σ 2

x and
σ 2
y denote the standard deviations of x and y, respectively, and
C1 and C2 are constants with the values of (255 × 0.01)2 and
(255 × 0.03)2, respectively.

The Underwater Color Image Quality Evaluation (UCIQE)
[31] is a non-reference evaluation metric designed specif-
ically for underwater images. It measures the saturation,
color richness, and contrast of enhanced underwater images.
A higher UCIQE value signifies better quality of the
underwater image in terms of color reproduction. UCIQE is
calculated as follows:

UCIQE = c1∗σc + c2∗conl + c3∗µs (14)

where σc denotes the standard deviation of chroma, con1
denotes the contrast of brightness, andµs denotes the average
saturation value. Basically, the UCIQE score is calculated
using a linear combination of these factors, with weights
given by c1, c2, and c3. Specifically, in the experiments, these
weights were set to the following values: c1 = 0.4680, c2 =

0.2745, and c3 = 0.2576.

TABLE 1. Performance comparison of different models, based on EUVP
dataset.
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The obtained averaged results of the model performance
comparison, performed on EUVP dataset, are shown in
Table 1 (the best results are highlighted in bold). As can be
seen, the proposed model is superior to all other compared
models, based on PSNR and SSIM, surpassing the second-
ranked model by 1.17 dB and 0.018, respectively. Only in
terms of UCIQE, the proposed model does not perform so
well. Here, the traditional enhancement models achieved the
highest results, which is attributed to UCIQE values being
derived from the calculation of three indicators (i.e., the
image color, brightness, and saturation). Traditional enhance-
ment models directly adjust image pixel values, leading
to quadrants with high color indicators due to excessive
enhancement of pixel values and color differences. Higher
color values contribute to improved UCIQE values, enabling
traditional enhancement models to achieve higher UCIQE.
Compared to the deep learning models, the proposed model
ranks second (after FUnIE-GAN), according to UCIQE.
However, FUnIE-GAN, like other deep learning models,
does not address factors such as color deviation, resulting
from excessive enhancement. Although FUnIE-GAN scores
higher on UCIQE, its visual enhancement outcomes are still
suboptimal. Concerning the number of model parameters,
the proposed model exhibits the lowest parameter count
compared to the deep learning models. This characteristic is
advantageous for model deployment on devices with limited
computing resources, affirming the efficacy of the proposed
model in this respect.

C. QUANTITATIVE COMPARATIVE ANALYSIS OF
ACTIVATION FUNCTIONS
In deep learning networks, different activation functions
exhibit distinct effects, playing a critical role in both
the model’s performance and training process. Among the
numerous effects, the activation function notably impacts
the model training speed. Specifically, the Sigmoid function
could easily lead to a gradient disappearance problem,
causing the model training to become slow or even stagnated,
while the ReLU function has better properties for gradient
propagation and can accelerate the model training process.
In addition, the activation function has a profound impact
in several other aspects, including the model convergence
and expressiveness, and the gradient stability. Therefore, it is
particularly important to choose an appropriate activation
function. By experimenting with various activation functions,
we sought to identify the most suitable one for the proposed
model as to optimize its performance. As depicted in Table 2,
different activation functions have varying impacts on the
quality of generated images. Among these functions, the
proposed model exhibits the most substantial performance
improvement with images generated under the h-swish
function.

D. ABLATION STUDY
In order to assess the individual components contribution
to the overall performance of the proposed model, ablation

FIGURE 6. Qualitative results of ablation study experiments: (a) original
images; (b) images, enhanced without using DIRBs; (c) images, enhanced
without using skip connections; (d) images, enhanced without using
content loss; (e) images, enhanced by the proposed DIRBW-Net model.

TABLE 2. Quantitative comparison of different activation functions,
performed on EUVP dataset.

TABLE 3. Ablation study results.

study experiments were conducted. w.r.t. three main com-
ponents – DIRBs, skip connections, and content loss. The
subjective comparison results obtained are shown in Fig. 6.
From the visual perspective, the generated enhanced images
can effectively eliminate the blue-green background even
when using the original inverted residual block, or when
the skip connections or perceptual content loss are absent.
However, under the blue background, the enhanced images
will have different degrees of color cast. Table 3 displays the
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average results of the conducted ablation study experiments,
with the best result for each objective evaluation metric
highlighted in bold. As can be observed, the use of all three
components allows to achieve the best PSNR and SSIM
values, while maintaining structural recognition between the
enhanced image and the corresponding original image. The
replacement of the original IRBs with DIRBs is not tolerated
by the third metric only, i.e., UCIQE.

FIGURE 7. Sample image feature point matching test visualization results.

TABLE 4. Sample image feature point matching test results.

E. APPLICATION ANALYSIS
Underwater image enhancement is the key to image prepro-
cessing to provide high-quality image input for subsequent
high-level vision tasks such as classification tasks. Image
feature point matching is a widely used technique for
identifying corresponding feature points across different
images, significantly impacting vision tasks. The quantity
of feature points extracted from images plays a crucial
role in influencing the efficacy of advanced vision tasks
like underwater target recognition, classification, tracking,
etc. Therefore, as a final experiment, the Oriented FAST1

and Rotated BRIEF2 (ORB) matching algorithm [32] was
employed to determine the number of feature points between
original images and true reference images, as well as between
the true reference images and enhanced images. The results
of the feature point matching test are illustrated in Fig. 7,
with the corresponding numbers of matched feature points
presented in Table 4. The test results reveal a substantial
increase in the number of feature points in the enhanced
images generated by the proposed model compared to the
original images. This outcome confirms the effectiveness
of the proposed model in enhancing the local features of
underwater images, thereby providing a robust foundation for
subsequent advanced underwater vision tasks.

1FAST: Features from Accelerated Segment Test.
2BRIEF: Binary Robust Independent Elementary Features.

IV. CONCLUSION
To address challenges posed by illumination variations in
the underwater image capturing process, this paper has
proposed a novel network model, named DIRBW-Net, for
underwater image enhancement by utilizing the inversion
residual method. Through the optimization of the inversion
residual structure, the proposed model employs a two-layer
architecture to replace the redundant BN layer, effectively
extracting feature information from the input images using
an up and down branch strategy. This model design not
only preserves more detailed information during the image
enhancement process but also mitigates the issue of gradient
vanishing during model training. The model effectiveness is
ensured through the selection of an appropriate activation
function. By incorporating skip connections, the proposed
model captures global information from the images, thereby
enhancing overall image quality. Comparative evaluations,
performed on the EUVP dataset, using image quality
metrics such as PSNR, SSIM, and UCIQE, affirm that the
proposed DIRBW-Net model surpasses the traditional image
enhancementmodels and deep learning enhancementmodels,
participating in the experiments. Ablation study experiments
further validated the effectiveness of each main component of
the proposed model. It is noteworthy that the dataset utilized
for model training was synthetic, generated by simulating
underwater environments on real photos rather than directly
collecting data from real underwater settings. Future research
will focus on exploring lightweight networks for real
underwater image enhancement tasks and endeavoring to
achieve real-time enhancement of underwater videos.
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