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ABSTRACT Advancements in the agricultural sector are essential because the need for food is rising
as the population of the world is expanding day by day. Traditional agricultural practices are not able to
fulfill these needs. Furthermore, these practices are manual and are not optimized resulting in the wastage
of resources, which is not suitable for resource-constrained agricultural environments. Besides this, the
Internet of Things (IoT) network is playing an important role in the modern farming system. In this paper,
we introduce an innovative IoT-enabled hybrid model for smart agriculture, integrating Machine Learning
(ML) and Artificial Intelligence (AI) algorithms to provide a cost-effective and reliable decision-making
system. Furthermore, we introduce a robust anomaly detection mechanism while applying the capabilities
of Multilayer Perceptron (MLP), Naïve Bayes, and Support Vector Machine (SVM) on the dry beans’
dataset. Hybrid models, combining neural networks with Random Forest and SVM, were also explored
for anomaly detection in the dataset. Furthermore, deep learning models known as MobileNetV2, VGG16,
and InceptionV3 are used for the classification of soil type datasets. The hybrid deep learning models were
also developed, incorporating InceptionV3 with Long Short-Term Memory (LSTM) and VGG16 with fully
connected dense layers. Two types of data sets are used in this study, which are the dry beans dataset (2021)
and soil type Dataset (2024). Both datasets contain images. The ML techniques are applied to these datasets
for anomaly detection. The simulations results show that the classification performance of the MobileNetV2
model, it has an accuracy and recall of 0.97. It shows that the model can correctly identify the soil type
around 97%. On the other hand, the hybrid model combining random forest and neural network achieved an
accuracy of 92%, further validating the effectiveness of our approach. Furthermore, the SVMmodel achieves
an impressive overall accuracy of 0.93. Additionally, this accuracy is further enhanced with the integration
of SVM and neural networks. Similarly, the hybrid model combining inception V3 with the LSTM layer
exhibits a notable accuracy of 0.91, highlighting its efficiency in accurately classifying various instances.
Lastly, the hybrid model employing random forest and neural network architecture achieves a commendable
accuracy of 92%.

INDEX TERMS Bean classification, deep learning, Internet of Things (IoTs), machine learning (ML), soil
classification.

I. INTRODUCTION
The advent of the Internet of Things (IoTs) has revolution-
ized almost every field of life. In an IoT network, each
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object is equipped with sensor nodes, which are deployed
in the environment for monitoring [1]. Furthermore, these
IoT devices are enabled to collect and share data on their
own in remote and dispersed areas. The IoT devices have
profound implications in almost every field of life, e.g., smart
cities, vehicular network systems, wireless sensor networks,

75718

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 12, 2024

https://orcid.org/0000-0001-6772-700X
https://orcid.org/0000-0002-9805-2671
https://orcid.org/0000-0002-3472-8660


M. Aldossary et al.: IoT-Enabled ML Models for Efficient Monitoring of Smart Agriculture

agriculture, healthcare, etc. IoT devices have the potential to
transform ordinary objects into smart devices that not only
operate on their own but also provide an efficient working
symmetry [2]. Many studies discuss that IoT devices can be
integrated with Artificial Intelligence (AI) for the creation of
intelligent systems that can automate the process of decision-
making. This Artificial Intelligence of IoT (AIoT) facilitates
the network to collect and process a large amount of data
without the involvement of any monitoring party [3]. The
nodes in the AIoT network collect real-time data while uti-
lizing the capabilities of IoTs and smart decision-making is
ensured with the AI models, which ultimately reduces human
intervention and leads to an efficient, responsive, and reliable
system [4].
Many solutions are proposed by the authors for agriculture

management and livestock management. The authors in [5]
propose a mechanism to identify paddy leaf images and apply
color and pattern analysis for the detection of deficiencies
in them. Furthermore, the authors in [6] use IoT devices
and cloud computing to aid agricultural forming. However,
these traditional solutions are not efficient and require a huge
amount of resources, high labor costs, and excessive power
consumption [5], [6]. The applications of AIoT are very
dispersed and vast. In recent times, researchers have made
efforts to explore concepts of AIoT in smart agriculture to
solve the aforementioned issues. The capabilities of AIoTs
facilitate the agriculture stakeholders in sensing the data from
fields and the automated decision-making process without
any human involvement, which results in a cost-effective
solution for agriculture and soil management [7]. The AIoT
devices are used in agriculture to monitor and control agri-
culture parameters to enhance the productivity of soil and
the efficacy of the overall process. Precision agriculture is a
novel technique that uses modern information technologies
for the optimization of crop production. The high-resolution
data frommultiple sources is used to utilize cropmanagement
operations for intelligent decision-making. The IoT devices
are used to fill the gap in supply and demand in the agriculture
sector, which ultimately ensures environmental sustainabil-
ity with high crop yield and profitability. Some key areas
need to be investigated in precision agriculture e.g., pest
control, nutrient management, safe store management, and
water management [8], [9], [10].

The integration ofMachine Learning (ML) algorithmswith
IoT devices automates the functionalities of IoT devices,
which are deployed in the agricultural field for monitoring
water storage, nutrient management, and pest control. Fur-
thermore, ML algorithms are used to analyze dispersed and
vast volumes of datasets that are collected by IoT sensor
nodes, which ultimately helps in providing a cost-effective
and efficient solution for agricultural activities. The ML
algorithms outperform all traditional methods and show the
potential to revolutionize agricultural practices. Different
countries in the world are facing severe challenges due to
lack of water and agricultural experts. Also, countries like
Saudi Arabia, Pakistan, India, and Uganda are not able to

optimize their resources in the agricultural industry [13].
These countries rely on monsoon and much of their water is
wasted during irrigation due to a limited portion of cultivated
lands. It is the reason that there is a need to propose an
efficient solution that not only enhances agriculture efficiency
but also opens the doors for new technologies in these coun-
tries [14], [15].

Caring for plant health is widely acknowledged as a
labor-intensive and costly task. The aforementioned dis-
cussion highlights the importance role of AI models and
IoT networks in the agricultural sector. However, the exist-
ing AI models are not able to enhance the efficiency of
agricultural yield while simultaneously achieving network
sustainability [13]. Furthermore, the agricultural sector is
still using traditional practices that are not optimized and
consume a large amount of resources, which is not suitable
for resource-constrained agricultural sector. Lastly, the tra-
ditional AI algorithms used in the agricultural sector suffer
from high dimensionality and variability of visual agricultural
data, which leads to the incorrect prediction of crop yields and
identification of diseases [14], [15].

To address these challenges, we propose an IoT-enabled
hybrid model that integrates ML and AI algorithms in the
agricultural sector. This approach emphasizes the overarch-
ing objectives of maximizing agricultural yields, ensuring
profitability, and promoting environmental sustainability.
These objectives are given as follows:

1. Develop a comprehensive hybrid model integrating ML
and AI to bolster global food security through the clas-
sification of the dry bean dataset, ensuring accuracy and
scalability.

2. Utilize Support Vector Machine (SVM), Multilayer Per-
ceptron (MLP), and Naïve Bayes classifiers to streamline
crop selection and enhance yield, leveraging their individ-
ual strengths to optimize agricultural outcomes.

3. Employ principal component analysis to extract crucial
features and refine hybrid classifiers, mitigating over-
fitting and computational overhead while maximizing
predictive accuracy and efficiency.

4. Investigate the efficacy of ensemble methods in aug-
menting classification accuracy, exploring synergistic
interactions amongMLmodels to uncover novel strategies
for improving agricultural decision-making processes.

The main contributions of this paper are given as follows:

1. Propose the integration of AI and IoT to develop a sophis-
ticated system capable of automating decisions pertaining
to agriculture and soil management, thereby enhancing
operational efficiency and sustainability.

2. Employ MLP, Naïve Bayes, and SVM ML models for
anomaly detection within the dry beans’ dataset, har-
nessing high-resolution data for autonomous and reliable
decision-making. This would optimize various aspects of
crop production, including nutrient management, water
utilization, and pest control.
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3. Explore the efficacy of different deep learning models
such as MobileNetV2, VGG16, and InceptionV3, along-
side hybrid architectures like InceptionV3 and LSTM
Layer, VGG16, and Dense Layer Classifier for soil type
classification. These classifiers effectively address the
challenges associated with accurately classifying soil
types, offering a robust solution to the resource-intensive
and complex task at hand.

The rest of the paper is as organized follows. The
related work is discussed in Section II. The datasets and
pre-processing are presented in Section III. The proposed
models are given in Section IV. The performance of the
proposed system models is evaluated in Section V. The limi-
tations of the proposed work are presented in Section VI. The
paper ends with the conclusion in Section VII.

II. RELATED WORK
Different studies are conducted to propose efficient mecha-
nisms to integrate IoTs and AI with the agricultural sectors to
enhance growth efficiency to increase the output yield. The
authors in [16] propose an Artificial Neural Network (ANN)
enabled scheme for agricultural land. In this scheme, the
IoT devices are deployed in the agricultural field to monitor
temperature, pressure, humidity, and CO2 concentration in
the environment. The IoT devices sense the data from the
environment and then send it to the cloud server. The cloud
server processes the data, removes all redundancies from the
data, and converts it into meaningful information. The ML
algorithms are deployed in the cloud server that classifies the
data for managing conditions for a particular type of plant.

The authors in [17] state that the population in each region
is growing day by day. So, there is a need to modernize the
functionalities of agriculture to fulfill the food demand of
that respective region. The environmental conditions cannot
be completely mitigated but some strategies based upon the
capabilities of ML and artificial intelligence can be adapted
to improve the quality and quantity of crop fields. To solve
these aforementioned issues, the authors propose IoT devices
and ML algorithms enabled for the prediction of crop yield.
The data of current weather and historical crop yield are
combined for the prediction of seasonal crop yields. Different
parameters of weather like rainfall, temperature, soil mois-
ture, etc., are considered for prediction. These parameters are
sensed by IoT devices that are deployed in the agricultural
field for monitoring. After sensing the data, it is sent to the
cloud server for processing. The data is aggregated, and all
the redundancies are removed from that data. In this proposed
model, the perspectives of policymakers and farmers’ context
are considered into the account to propose a more efficient
strategy. The data on weather that is collected by IoT devices
is fed into the ML algorithm for the prediction. A robust
prediction model is used in the network to detect and sense
information from the field with a working prototype of the
proposed system. The authors consider different factors to
evaluate the proposed model. These performance factors are

a comparison of yield predicted, predicted data, accuracy,
mean absolute percentage error, and seasonal yield. The
results show that the proposed model outperforms all existing
schemes with a mean absolute percentage error of 0.339.
Similarly, Yao et al. discuss that the number of agricultural
plants and planted areas is increasing day by day [18].

There are some approaches in which unmanned aircraft are
deployed in the field that use smart sensors for monitoring
crop growth and managing plant diseases. One of the most
fundamental crop plants is the orchid due to its economic
value. However, environmental factors and diseases are two
factors that badly affect the growth of orchid plants. There-
fore, there is a need to adopt a strategy to control the disease
in orchid plants. This can be achieved by an immediate
diagnosis of diseases to effectively find the prevention and
treatment of that disease. Therefore, the authors propose
an edge computing-based deep neural network for detecting
diseases in orchid plants. The functionalities of edge com-
puting are integrated with the IoT and deep neural networks
for the detection of plant disease. Furthermore, deep learn-
ing neural network ensures subsequent dynamic learning.
Three parameters are considered for dynamically adjusting
the deployment of the network. These parameters are the
deep neural network model, the computing capabilities of
edge nodes, and the network’s current state. The regional
feature extraction is performed by the edge nodes. While
on the other hand, all the global features are extracted and
managed by cloud computing. Plant disease recognition with
high precision and accuracy is done with the integration of
deep learning networks, which effectively utilize all available
resources without large network overhead. The first goal of
the system is to mitigate the harmful effects of light. The
lighting conditions are changed, and the direction of illumi-
nation is also changed. Secondly, there may be some noise in
the image collected by IoT devices, particularly, in the case
of poor sampling channels and bad conditions of lightning.
Due to this both training and testing samples of images will
be deviated from their original nature. The second goal of
the system is to mitigate the effects of noise in the data.
Thirdly, it is very complicated to collect a good quality image
in conditions where orchid leaves canmove freely. Therefore,
the authors propose a strong and adaptable deep neural learn-
ing model. Fourthly, the nature and symptoms of the orchid
diseases in different types of orchid plants are very diverse.
Lastly, when three three-dimensional images are converted
into two-dimensional images then some information can be
lost. The most significant issue is that it is very complex
and challenging to use edge computing to extract the data of
three-dimensional while simultaneously addressing the issue
of large data volume and the huge amount of time required
for computation.

Some studies are also conducted to monitor and evaluate
the amount of supplied water to agricultural land while utiliz-
ing the capabilities of ML algorithms and IoT devices [19],
[20]. These studies use IoT devices and intelligent automated
systems for the identification of ground characteristics e.g.,
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moisture content, soil temperature, air pressure, etc. These
characteristics are used to predict the relative humidity in
the environment. Moreover, the water temperature can be
intelligently regulated, and surrounding environmental con-
ditions are adapted while utilizing the capabilities of ML
algorithms and IoT devices. The authors state that there
are a lot of countries in the world that are only relying on
monsoons for agricultural products with a limited scale of
agricultural fields. Around 85% water of in these countries
is used in irrigation and a huge amount of data is lost in irri-
gation due to inefficient and unreliable techniques. Different
IoT-based solutions are provided by authors in [21], [22],
and [23], aiming towards assisting farmers in fulfilling the
gap between demand and supply of agricultural yields while
guaranteeing reasonable profit and environmental preserva-
tion. The authors in [21] state that the agricultural sector
is evolving day by day and becoming more data-centric
and precise. Therefore, advanced technologies like IoT net-
works, ML, and artificial intelligence-based solutions are
being proposed for smart agriculture to enhance crops’
yield and profitability while simultaneously reducing the
amount of irrigation waste. However, the existing solutions
are not efficient and provide a costly automated solution
with a large computational overhead, which is not suitable
for the resource-constrained agricultural sector. Therefore,
Akanksha et al. propose a hybrid ML model that is inte-
grated with an IoT network for the prediction of crop yield.
There are three phases in the proposed model, which are
pre-processing of data, feature extraction from data, and clas-
sification. In the first phase, the data collected from different
sources is pre-processed to remove the unwanted value and
noise from the data. After removing all the errors and outliers
the data is sent to the feature extraction phase. Feature extrac-
tion is performed from the data to identify the most important
and necessary features for crop production. The main benefit
of feature extraction is that it enables the ML algorithm to
train faster. Furthermore, feature extraction is also helpful
in enhancing the accuracy of the model after the selection
of the proper subset and reducing overfitting. After feature
extraction, the classification of soil is done using an adaptive
k nearest neighbor classifier. This classifier is an advanced
version of the k nearest neighbor classifier and enhances the
performance of the previous version. This machine-learning
algorithm is used to achieve good accuracy while utilizing a
small amount of time. There are three tiers of classification
in the proposed model. In the first tier, the soil nutrient data
collected from IoT devices is used to estimate the quality of
soil using an adaptive k nearest neighbor classifier. Then the
score of soil quality along with other parameters associated
with crop yield like temperature and rainfall are used as
an input to an extreme learning machine for the prediction
of crop yield. The authors use PYTHON to implement the
proposed algorithm and evaluate its performance. Soil data,
accuracy, root mean square error, mean square error, and
mean square logarithmic error are some parameters that are
used to evaluate the performance of the proposed model.

Similarly, different studies are conducted to showcase the
efficiency of ML algorithms. These studies provide enough
evidence that the support vector regression and multilayer
perceptron-based techniques outperform all traditional stud-
ies in terms of accuracy, mean square error, precision, recall,
and F1 score [24], [25], [26].

The linear and non-linear agricultural data can be easily
predicted while utilizing the capabilities of these aforemen-
tioned techniques. Some techniques are also proposed to
provide a secure IoT network for monitoring agricultural
fields. The authors in [23] state that it is very important
for network security that only authorized persons should
have access to the data. Therefore, the authors propose a
signature-based authentication mechanism for the agricul-
tural sector in which all the IoT devices are authenticated
based on their credentials. The authentication of nodes is
performed by utilizing the capabilities of digital signatures
and elliptic curve cryptography. Furthermore, the proposed
mechanism considers passwords, mobile devices, and bio-
metrics for avoiding denial-of-service attacks in the network.
The proposed mechanism is also robust against various kinds
of security attacks in the network and provides a secure
and efficient environment for sensing data from agricultural
fields.

III. DATASETS AND PRE-PROCESSING
This study uses two types of data sets, which are the dry beans
dataset (2021) and soil type Dataset (2024). Both datasets
contain images. The ML techniques are applied to these
datasets for anomaly detection.

A. DRY BEAN DATASET (2021)
The dry beans dataset (2021) is publically available; all
the images of this dataset are taken using a high-resolution
camera [27]. This dataset consists of samples that represent
different types of dry beans. These beans are different from
each other based on their sizes, shapes, and textures. In this
section, we consider seven types of dry beans, which are
Sira, Seker, Horoz, Dermason, Cali, Bombay, and Barbunya.
We use a computer vision system to differentiate between the
varieties of dry beans to obtain uniform seed classification.
The dataset includes 13,611 images of 7 different beans. The
anomalies in this dataset can be unusual shapes and sizes of
dry beans that deviate to a large extent from normal dry beans.
First, the dry beans are obtained from a computer vision sys-
tem then segmentation and feature extraction are performed
on this data, and a total of 16 features; 12 dimensions and
4 shape forms, were obtained from the grains.

B. SOIL TYPE DATASET (2024)
The soil type dataset consists of samples of different soil
types. There are different features on the basis on which the
soil samples are distinguished, e.g., color, moisture content,
and soil composition. This dataset contains images, which are
also taken from high-resolution cameras. There are around
144 labeled photos that show the diversity of soils. The
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images were labeled as Alluvial Soil, Clayey Soil, Laterite
Soil, Loamy Soil, Sandy Loam and Sandy Soil. There may be
different anomalies in the dataset e.g., soil samples can have
atypical properties due to pollution in or other environmental
factors.

C. DATASET INSIGHTS OF DRY BEAN DATASET (2021)
The following bar chart shows the distribution of different
classes of beans with the dry beans’ dataset.

FIGURE 1. Frequency of beans in the dataset.

In Fig. 1, it is shown that the frequency of various classes
is different in the dataset. DERMASON is the class, which
has the highest frequency that exceeds 3000 instances. It can
be suggested that DERMASON is the most commonly culti-
vated bean. The class that has the second highest frequency is
SIRA, followed by SEKER. These both classes have frequen-
cies of more than 2000 instances. Furthermore, the frequency
of HOROZ and CALI is moderate, noticing the fact that
the frequency of HOROZ is slightly higher than CALI. The
two classes with the least frequencies are BOMBAY and
BARBUNYA, where the frequency of BOMBAY is the least
among all classes.

FIGURE 2. Bean area distribution in the dry bean dataset.

Here, one most important thing is that all classes are
imbalanced, we utilized the capabilities of the weighted loss
function for class balancing, which ultimately ensures that the
model is not biased towards the most prevalent class. Fig. 2
shows the distribution of areas for each bean in pixel count.
It can be observed that the area of most of the bean’s ranges
from 50,000 pixels and the bean with the highest frequency
is falling in the smaller size range. This indicates that the
beans that are most prevalent have smaller sizes or themethod
which is used for collecting the data of beans is tilted towards
smaller-sized beans. There is an inverse relationship between
the area size of beans and their frequency, which indicates the
larger beans are least common in the dataset.

Fig. 3 shows the distribution of perimeter across each bean
in pixel count. It can be observed that a large volume of
beans lies in the lower perimeter range, particularly between
600 and 800 pixels.

FIGURE 3. Bean perimeter distribution in the dry beans’ dataset.

It means that there are a large number of beans that have
smaller perimeters. When the perimeter of beans increases
beyond 800 pixels, then the frequency of beans decreases.
It indicates that beans with much larger or irregular shapes
are less common. Fig. 4 showcases the heatmap of Pear-
son correlation between features of the dry beans’ dataset.
The heatmap represents the correlation between the fea-
tures of beans having more strong positive correlations
between perimeter and area and the strong negative correla-
tion between area and shapefactor1.

Solidity and extent are two features that show a low cor-
relation with other parameters, which ultimately indicates
that their role is distinctive in classification. This pattern of
correlation helps the feature selection for ML models, which
ultimately helps to avoid redundancy in features and guides
in the selection of kernels for the SVM classifier and feature
engineering for the Naïve Bayes classifier.

D. DATASET INSIGHTS OF SOIL TYPE DATASET (2024)
The bar chart in Fig. 5 shows the distribution of sample
counts among different classes of soil in the soil type dataset.
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FIGURE 4. Pearson correlation coefficients between features of the dry
beans’ dataset.

It can be seen in the figure that the sandy soils have the
highest frequency, which indicates that this soil is commonly
sampled or prevalent soil in the dataset. Furthermore, the
clayey and laterite soils have the second and third highest
frequencies, respectively. On the other hand, loamy soil has
a comparatively low frequency, which shows that this soil is
less common or under-sampled in the given dataset. While
alluvial soil has a moderate frequency, due to which, it can be
indicated that alluvial soil is well sampled. The variation and
disparity in the soil can lead to biases in the model training.
Due to this, the model will perform well with the soil, which
has more samples. To solve this issue, we utilize the weighted
loss function, which ensures all types of soil are equally
sampled and contributing equally to the learning process [28].

FIGURE 5. Frequency of sample counts across different soil classes.

Fig. 6 presents the visual comparison of pixel intensity of
all six types of soils in the dataset. It can be observed from
the fig. that alluvial soil is very famous for its fertility and
is found in river basins. Furthermore, there is multimodal
distribution that indicates complex composition with organic
matter and moisture. It is also shown that the intensity value

of clayey soil is low, and it reflects less light high retention of
moisture, and finer particles.

The soil that has the highest concentration of iron and
aluminum is laterite soil. This soil is recognizable due to its
reddish color and has mid-range intensity. Moreover, it can
also be observed that loamy soil has a balanced texture and
is considered to be ideal soil for agriculture. Loamy soil
has a lower frequency distribution, which shows it has fewer
samples. On the other hand, sandy loam and sandy soil have
larger sizes of particles and lower organic content and they
correspond with dryer conditions and lighter colors.

FIGURE 6. Pixel intensity values for various soil types.

E. DATA PREPROCESSING
In this section, we detect anomalies from the dry beans’
dataset (2021) while utilizing the capabilities of MLP, Naïve
Bayes, and SVM. For pre-processing of data, it is loaded in
the environment, and it ensures alignment of all the features
and labels. After that Z-score normalization is used to nor-
malize the dataset, as given in (1) [29].

Z = (X − µ)/σ (1)

whereµ represents the mean pixel intensity and is set to 0 and
standard deviation is represented by σ and its value is 1 and X
shows the value of the original feature value. Furthermore, the
principal component analysis feature selection technique is
used to identify the most informative features from anomaly
detection. After that, the generalization ofmodels is enhanced
by utilizing data augmentation techniques known as random
flipping and rotation of the bean images. In last, the dataset
was split into testing and training datasets, the models MLP,
Naïve Bayes, and SVM were trained by the training dataset,
and the performance of the model was evaluated using the
testing dataset.

On the other hand, deep learning models, namely
MobileNetV2, VGG16, and InceptionV3 are used to detect
anomalies from soil type Dataset (2024). In the data pre-
processing step, the data of soil type is loaded, and it
is ensured that all modalities are aligned correctly. Then
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uniformity of data is ensured by resizing the images into
standard dimensions and applying skull stripping techniques
that isolate the region of interest. After that, the Z-score
normalization is applied to soil images to reduce contrast
and variations in intensity. The images are flipped randomly
on different planes e.g., horizontally and vertically to get
the multi-view of the soil image data, the probability is set
at 0.5. Furthermore, the noise is removed, and the quality
of images is enhanced by utilizing the capabilities of the
Gaussian blurring technique. In last, the dataset was split
into testing and training datasets, the deep learning models
MobileNetV2, VGG16, and InceptionV3 were trained by
using the training dataset, and the performance of the model
was evaluated using the testing dataset.

IV. PROPOSED IoT ENABLED HYBRID MODELS FOR
SMART AGRICULTURE
In this section, we propose a mechanism in which IoT devices
are deployed in the agricultural field for the monitoring of
different parameters like soil moisture, humidity, tempera-
ture, nutrient level, etc. As shown in Fig. 7, IoT devices are
equipped with different sensors and deployed in the agri-
cultural field while ensuring comprehensive coverage of the
field. It makes a significant advancement in smart agriculture
and facilitates an accurate sensing of these parameters Fur-
thermore, it also provides real-time data, which ultimately
helps in intelligent decision-making very rapidly. The IoT
devices sense the data from the environment and send it to
the cloud servers.

FIGURE 7. IoT enabled network for data sensing.

The cloud server acts as a centralized unit and contains very
high storage and computational capabilities. The cloud server
collects the data from IoT devices and aggregates this data.
All the duplicative values and redundancies are removed from
the data and stored in the cloud server for model training.
The aggregated data on the cloud server is used for the
training of deep and ML models. MLP, Naïve Bayes, and

SVM ML models are trained and used for classifying the
dry bean dataset while considering the shapes, textures, and
sizes of these beans. While on the other hand, MobileNetV2,
VGG16, and InceptionV3 are utilized for the classification
of different soil types. The training of these models is done
to identify patterns and properties in soil images and then
they are used for classification to enhance crop production
and land management. Fig. 8 represents the flow diagram that
illustrates the sequential steps undertaken in this research,
providing a visual overview of the research process.

FIGURE 8. Methodology flow diagram.

A. PROPOSED MODEL FOR CLASSIFICATION OF DRY
BEAN DATASET (2021)
The dry beans dataset was collected in 2021, it represents the
dispersed properties of various bean types. As beans are one
of the most used food crops worldwide; therefore, the study
to increase their yield aligning with the objectives of global
food security and sustainability is very important. There are
different morphological features in the dataset, e.g., area,
shape, and texture that play a significant role in computational
analysis and predictive modeling [30]. The accurate classifi-
cation of bean types is very important to ensure the standard
sizes, textures, and shapes of beans that ultimately provide
consistency in the products. Furthermore, this classification
also helps in the selection of desired properties that ultimately
enhance crop yield, and climate adaptability and provide
efficient strategies for resistance to diseases.

In this section, we utilize SVM, MLP, and Naïve Bayes
ML algorithms for the classification of the dry beans’ dataset.
SVM is anML algorithm that provides efficient classification
for the small size of the population. While MLP classi-
fier is a type of neural network, which efficiently captures
and models complex relationships in high-dimensional data.
In last, Naïve Bayes uses the probabilistic approach and very
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efficient classifier for multi-class classification scenarios.
All the above-mentioned properties of these three classifiers
make them suitable for classifying the dry beans dataset.
We use these three classifiers to achieve precision in the
classification and compare the performances of these clas-
sifiers on the dry beans’ dataset. It not only helps us in
the identification of the most suitable classifier but also in
exploring potential synergies in an ensemble approach.

B. FEATURE SELECTION AND EXTRACTION
It is very important to select the most prominent features
and their extraction for data analysis. It helps in enhanc-
ing the performance and efficiency of predictive models.
As the dataset of dry beans is multi-faceted and presents a
multi-dimensional space it is very crucial to perform feature
selection with this dataset. In this section, we isolate the
most prominent and informative features from the dataset and
reduce dataset redundancy. It is a very critical step to perform
dimensionality reduction and it could result in overfitting and
marginally increase the computational cost of deploying the
model. We utilize Principal Component Analysis (PCA) and
mutual information to remove redundancies from the dataset.
We utilize the properties of the PCA method to transform
original correlated features into linearly uncorrelated vari-
ables, which are called principal components. This method
ensures that the first principal component has as high vari-
ability in the dataset as possible, which results in the reduced
set of variables that contain the most significant information.
These variables are responsible for explaining the variability
in the data maximally [31]. The feature selection process
marginally improves the performance of models. The risk
of overfitting is reduced by reducing the number of input
parameters, which ultimately helps the models to work effi-
ciently without utilizing a large number of resources. Feature
selection method PCA helps enhance the efficiency of the
MLP model, which is a very resource-consuming classifier.
On the other hand, we utilize the properties of feature selec-
tion by reducing the impact of independent assumption for
the Naïve Bayes classifier [32]. For the dry beans’ dataset,
the above-mentioned PCA method of feature selection and
extraction is helpful in the effective classification of beans
by retaining the most prominent information in the features
while simultaneously discarding irrelevant features that are
not helpful in class separation. This method gives us the most
optimized set of features that have intrinsic variances within
bean types while simultaneously enhancing the operational
efficiency of classifiers.

C. PROPOSED MODEL FOR CLASSIFICATION OF SOIL
TYPE DATASET (2024)
In this section, we use deep learning models known as
MobileNetV2, VGG16, and InceptionV3 for the classifica-
tion of the soil type dataset. In the MobileNetV2 classifier,
the edge and mobile devices are used with the integration of
inverted residual and linear bottlenecks that ultimately create

a deep neural network with low computational overhead.
The depth-wise separable convolutions are used in a novel
layer that ultimately reduces the total number of parameters,
which enhances the efficacy of the model [33]. Furthermore,
VGG16 deep learning architecture is also used in this work.
It is a simple and uniform architecture that consists of 16 lay-
ers. This classifier also contains a series of convolutional
layers of 3 × 3 filters and a max-pooling layer. This model
is very efficient in extracting complex features [34]. At last,
inception V3 architecture has asymmetric convolutions and
factorized 7× 7 convolutions, which ultimately enhances the
utilization of computing resources. Furthermore, the most
effective and reliable filer size for each convolution opera-
tion is chosen by hallmark inception modules. For feature
extraction in the MobileNetV2 classifier, we use depth-wise
separable convolution. The standard convolution is factorized
into depth-wise convolution and 1×1 point-wise convolution,
which helps in reducing the overall computational cost and
total parameters and captures the most important features
among them, as given in (2) [35].

Y = Ypointwise = PointwiseConv(DepthwiseConv(X ))

(2)

where, X represents the input tensor with dimensions (H, W,
C). Here, H and W show the height and width of the input
tensor, respectively, and C represents the total number of
channels in the input tensor.

After that, we fine-tune the pre-trained model on a new
data set having a low learning rate before using it for the
classification of the soil type dataset. The weights are updated
with a lower learning rate during fine-tuning, as given in (3).
In this way, we ensure that the model has the generic features
learned from the ImageNet dataset while adapting the most
significant features of the soil images [33].

Wt + 1 = Wt − α·∇L(Wt) (3)

where, Wt and Wt+1 represent the weights of the model at
iteration t and updated weights of the model at iteration t+1,
respectively. ∇L (Wt) is the gradient of loss function L with
weight Wt. The learning rate is represented as α, which is set
to the lower value in fine-tuning.

Secondly, we use stacked convolutional layers for fea-
ture extraction in the VGG16 classifier. There are stacked
3 × 3 convolutional layers and max-pooling layers in the
VGG16 classifier. This structure helps in the extraction of the
hierarchy of features, all the simple and complex patterns are
extracted, which ultimately facilitates the soil type classifica-
tion. Furthermore, we also use a fully connected layer at the
end of the network for feature extraction. It provides a very
distributed and high-level representation of input images.
After that, we use the output of the last convolutional layer
as bottleneck features. These features are then fed to the
VGG16 classifier for training it for the classification of the
soil type dataset. Lastly, we use inception modules for feature
extraction for the InceptionV3 model.
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The convolutions of different sizes are performed by incep-
tion modules due to which the model can capture features at
various scales. In this way, the model can handle different
patterns and textures in the images of soil. Furthermore,
we fine-tune the inceptionV3model by freezing earlier layers
and retaining the latter layers. This helps in extracting the
pre-trained features while simultaneously adapting specific
properties of soil classification.

V. RESULTS AND DISCUSSION
This section includes results that are generated using the
models on both datasets. There are 13,000 images in the dry
beans’ dataset, and we evaluate the performance of MLP,
Naïve Bayes, and SVM classifiers in terms of F1-score,
precision, recall, accuracy, and overall loss. We generate
a confusion matrix, actual classes are given in rows and
columns represent the classes, which are predicted by mod-
els. MLP model efficiently classifies the dry beans dataset.
Table 1 shows the metrics for each class of beans using
the MLP model. It can be observed from the table that the
highest class predicted by the MLP model is 3rd class ‘Cali’
which accurately predicted 418 images. These results are also
visible in the confusion matrix as shown in Fig. 9.

TABLE 1. Classification performance of MLP classifier.

Table 1 shows that the MLP model shows a commendable
classification performance with the dry beans dataset and
achieves an accuracy of 0.88. It is also observed that the
model successfully classifies ‘Horzo’ and ‘Seker’ beans with
an F1-score of 0.95, which shows that this model identifies
beans with minimal errors. However, there are some imbal-
ances in the MLP model between precision and recall for
‘Sira’ and ‘Bombay’ classes. The model has a remarkable
precision of 1 with ‘Bombay’ but it has a very small value of
recall, which is 0.64, which shows that MLP misses a large
number of ‘Bombay’ instances. Similarly, the value of recall
for ‘Sira’ is 0.96 while it has a precision of 0.71, which shows
that the model is misclassifying other beans as ‘Sira’. The
confusion matrix given in Fig. 9 shows the performance of
the MLP model across all seven classes, the main diagonal
represents correctly classified instances. The correct number
of predictions is 418 for class 3, which means that the model
has a very good prediction performance in identifying this
class. While on the other hand, classes 1 and 6 have the
highest number of false negative values. The reason is that
these classes have some similar features with other classes
as similarities between classes 3 and 6 are observed and the

model is confused in identifying 6 and the same is the case
with class 1. Overall, the performance of the MLP model is
very high in the prediction of classes.

FIGURE 9. MLP classifier confusion matrix.

Table 2 represents the performance of the Naïve Bayes
classifier on the dry beans’ dataset. For the ‘Bombay’ class,
the precision and recall of the classifier is 1, which represents
that every instance in this class is correctly identified without
any misclassification. This is due to the reason that the ‘Bom-
bay’ beans class has less complex features. On the other hand,
it is very challenging for the Naïve Bayes classifier to classify
the ‘Barbunya’ class. The accuracy and recall of the Naïve
Bayes classifier for this class are 0.68 and 0.47, respectively.

TABLE 2. Classification performance of naïve bayes.

Furthermore, the F1-score is 0.56, which shows that some
features of this class overlap with other classes, which ulti-
mately leads to misclassification. The Naïve Bayes classifier
shows moderate performance for the classification of ‘Cali’,
‘Dermason’, ‘Horzo’ and ‘Sira’ classes. The F1-score of this
classifier for these classes is ranging from 0.70 to 0.82. the
overall accuracy of the Naïve Bayes classifier is 0.77 with a
loss of 0.30, which shows that the model is efficient in the
classification of the dry beans’ dataset.

Furthermore, the performance of the Naïve Bayes classi-
fier is given in the confusion matrix as shown in Fig. 10.
The result shows that the highest predicted class by this
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model was the 2nd class ‘Bombay’ which accurately pre-
dicted 682 images. It is also observed that class 1 shows no
misclassification, which means that this class has distinctive
features, that are well-captured by the model. The overall
patterns of the confusion matrix indicate that the model can
correctly and efficiently identify certain classes.

FIGURE 10. Naïve Bayes classifier confusion matrix.

Table 3 shows the performance of the SVM classifier for
the dry beans’ dataset. The overall accuracy of this classi-
fier is 0.93. The precision and recall of this classifier for
the ‘Bombay’ class is 1, which shows that there is no mis-
classification in this class. On the other hand, the precision
and recall for ‘Barbunya’, ‘Cali’, ‘Dermason’, ‘Horzo’ and
‘Seker’ classes are very close, which means that SVM is
capable of effectively differentiating the beans with high
degrees of accuracy. The F1-score of the SVM classifier
is consistent across diverse classes of beans, which means
that this classifier made a robust decision boundary for this
particular dataset.

TABLE 3. Classification performance of SVM classifier.

Furthermore, Fig. 11 shows the confusion matrix for the
SVM classifier on the dry beans’ dataset. There is a high
positive rate for most of the classes. The highest predicted
class by this model was the 4th class ‘Dermason’, which
accurately predicted 1009 images.

FIGURE 11. SVM classifier confusion matrix.

Table 4 represents the classification performance of a
hybrid model of random forest and neural network on the dry
beans’ dataset. The results show that the proposed model has
high precision and recall for all classes, which indicates that
the hybrid model has effective learning and generalization
capabilities. The results of this classifier for the ‘Bombay’
class show that it performs exceptionally well for this class,
which shows that this ‘Bombay’ class has very high dis-
tinctive features and they are well captured by the classifier.
Furthermore, the overall accuracy of the model is 0.92, which
shows the effectiveness of the model. However, there is an
improvement needed because the loss function of this classi-
fier is 0.56.

TABLE 4. Classification performance of random forest and neural
network classifier.

Furthermore, Fig. 12 shows the confusion matrix for the
hybrid classifier of random forest and neural network on
the dry beans’ dataset. The highest predicted class by this
model was the 4th class ‘Dermason’ which accurately pre-
dicted 491 images. The results are shown in the confusion
matrix. The overall results show that this hybrid model is
very effective in classifying the dry beans dataset. The reason
is that it leverages the interpretability of the random forest
model and the learning depth of the neural network, which
helps in effectively classifying the complex data of dry beans.
Table 5 shows the performance of the hybrid SVM and
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neural network classifier on the dry beans’ dataset. Themodel
archives an overall accuracy of 0.92, which shows that this
model is capable of identifying unique features of classes.
Furthermore, the precision value is high for ‘Barbunya’ and
‘Bombay classes’ classes. Furthermore, the recall value of the
model for ‘Cali’ and ‘Seker’ classes is high, which shows that
this model is sensitive in the detection of these classes.

FIGURE 12. Random forest and neural network classifier confusion
matrix.

TABLE 5. Classification performance of SVM and neural network
classifier.

Furthermore, the confusion matrix for the hybrid classifier
of random forest and neural network on the dry beans’ dataset
is shown in Fig. 13. The highest predicted class by this
model was also the 4th class ‘Dermason’ which accurately
predicted 485 images. The results are shown in the confusion
matrix. Moreover, classes 3 and 4 show the highest number
of accurate predictions.

The soil type dataset contains 144 images, we evaluate
the performance of the proposed model by considering the
factors of accuracy, loss, and recall. Each model is trained
on 30 Epochs and image classification took a longer time
to train. Table 6 shows the classification performance of the
MobileNetV2 model, which has an accuracy and recall of
0.97. It shows that the model can correctly identify the soil
type around 97%. The high value of recall shows that the

FIGURE 13. SVM and neural network classifier confusion matrix.

model performs well in identifying a high number of positive
cases for each soil. On the other hand, the low loss rate of
0.08 indicates that the model can learn data with minimal
errors, which makes it an efficient and reliable model for soil
classification.

TABLE 6. Classification performance of MobileNetV2 classifier.

FIGURE 14. MobileNetV2 classifier confusion matrix.

The confusion matrix of soil classification with
MobileNetV2 is given in Fig. 14. The results show that the
highest correctly predicted class was the last class, ‘Sandy
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Soil’. The confusion matrix shows the strength of the model
for classifying the soil dataset.

Table 7 shows that the VGG16 model has a high level of
accuracy of 0.95 in classifying the soil type dataset, which
means that the model is capable of correctly identifying 95%
of instances. The value of recall is 0.94 of the VGG16 model,
which shows that the model can correctly identify positive
cases across different soil classes.

TABLE 7. Classification performance of VGG16 classifier.

Furthermore, the confusion matrix of soil classification
with VGG16 is given in Fig. 15. The results show that the
highest correctly predicted class is the 5th class, ‘Sandy
Loam’. The concentration of true positives in the prediction
of ‘Sandy Loam’ is high because it has distinguished features
and VGG16 can identify them effectively.

FIGURE 15. VGG16 classifier confusion matrix.

The classification performance of the InceptionV3 model
is shown in Table 8. The overall accuracy of the model is
0.97, which indicates that the model is capable of correctly
identifying a large majority of soil types. Furthermore, the
recall of 0.95 shows that the model successfully captures 95%
of positive instances in different classes of soil types. The
loss of the model is 0.33, which shows that the model is not
misclassifying a large number of instances.

Fig. 16 shows the confusion matrix for the performance of
the inceptionV3 classifier. Certain types of soil are correctly
identified with the proposed inception V3 model. It can be
observed from the figure that the best-predicted class is also
the 5th class, ‘Sandy Loam’ for this model as well. Table 9
shows the classification performance of the hybrid model

TABLE 8. Classification performance of InceptionV3 classifier.

FIGURE 16. InceptionV3 classifier confusion matrix.

of InceptionV3 with a Long Short-Term Memory (LSTM)
network. The accuracy and recall of that hybrid model is 0.91,
which indicates that the model is capable of identifying a high
percentage of soil types. The reason is that the hybrid model
uses the capabilities of InceptionV3’to to extract complex
features while simultaneously using the strength of LSTM to
process data sequentially.

TABLE 9. Classification performance of InceptionV3 and LSTM classifier.

Furthermore, the confusion matrix of soil classification
with the hybrid model of InceptionV3 and LSTM is given
in Fig. 17. The results show that a high frequency of true
positives is observed with the classification of ‘Sandy Loam’
and ‘Sandy Soil’. Furthermore, the hybridmodel has the same
high score for many classes, which shows the classification
effectiveness of the proposed hybrid model.

Table 10 shows the classification performance of the
hybrid model of VGG16 and Dense layer Classifier. The
results show that the accuracy of the hybrid model is 0.80.
The reason is that the dense layer is augmented by the VGG16
model, and the model is then able to correctly classify 80% of
the soil samples. Furthermore, the recall value of the model is
0.70, whichmeans that the model is capable of capturing 70%
of actual soil types. The reason is that the deep convolution
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FIGURE 17. InceptionV3 and LSTM layer classifier confusion matrix.

layer of the VGG16 model is effective in extracting the most
prominent features in the soil type dataset.

FIGURE 18. VGG16 and dense layer classifier confusion matrix.

TABLE 10. Classification performance of VGG16 and dense layer classifier.

In last, the confusion matrix of soil classification with the
hybrid model of VGG16 and Dense layer is given in Fig. 18.
The results show that a high frequency of true positives is
observed with the classification of ‘Sandy Loam’ and ‘Sandy

Soil’. Furthermore, the correctly predicted class is the 6th
class which is ‘Sandy Soil’. Furthermore, the model has the
same high score for many classes, which shows the classifi-
cation effectiveness of the proposed hybrid model.

The bar chart given shows the comparative analysis of
different ML algorithms for the classification of the dry bean
dataset. It can be observed from Fig. 19 that the accuracy of
the MLP algorithm is 80%, the reason is that this algorithm
can learn very complex patterns, which makes it suitable
for the classification of high dimensional and complex data.
While the Naïve Bayes classifier has low accuracy, the reason
is that this classifier assumes feature independence, which is
not suitable for agricultural data where there is a high correla-
tion between features. The SVM classifier, on the other hand,
has around 91% accuracy because it is a robust model and
effective for linearly separable data. The hybrid model of ran-
dom forest and neural network has an accuracy of 92%. The
reason is that random forest reduces overfitting and neural
networks capture non-linear relationships while utilizing the
properties of deep learning model. In last, a hybrid model of
SVM and neural network also has a high accuracy of around
92%. The reason is that this model is also using the strength
of individual classifiers. The SVM model defines the clear
margin between classes and the neural network effectively
learns the features and performs classification.

FIGURE 19. Comparative analysis of classifier accuracies for dry bean
dataset.

Fig. 20 shows the comparative analysis of different
deep-learning algorithms for the classification of soil-type
datasets. It can be observed from this bar chart that the
accuracy of the MobileNetV2 classifier is 85%, the reason
is that this is a lightweight architecture that detects soil
texture without large computational overhead. Similarly, the
accuracy of the VGG16 model is around 84%, the reason is
that this classifier is robust and effectively extracts features
and nuance of the dataset. On the other hand, the accuracy of
inceptionV3 is lower than the first two models. The reason is
that the multi-scale features are not aligned with the dataset
features.
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FIGURE 20. Comparative analysis of classifier accuracies for soil type
dataset.

Furthermore, the hybrid model of inceptionV3 and LSTM
has a slightly lower accuracy as compared to inceptionV3.
This is due to the factor that the sequential pattern processing
of LSTM does not help classify the dataset. In last, the hybrid
model of VGG16 and the dense layer has the lowest accuracy
among all. This may be due to the reason that there is over-
fitting due to the extra deep learning layer, which ultimately
reduces the generalization of the model.

Fig. 21 shows the training and validation loss for the neural
network over 20 epochs when it is applied to the dry beans
dataset. The line graph shows that the training loss is very
high in the initial stages at epoch 0, which means that the
prediction of the model is not accurate at this stage. As with
the increasing epochs, the loss of training decreases to a
large extent, which indicates that the training of the model
is improving. Around epoch 5, the training loss is reduced
to 0.45. On the other hand, the validation loss also shows the
same behavior as the training loss. It keeps on decreasingwith
the increasing epochs.

FIGURE 21. Validation and training loss of Neural Network.

Fig. 22 shows the training and validation accuracy of the
neural network model when it is trained on the dry beans
dataset over 20 epochs. Initially, the accuracy of training is
very high. At the first epoch, it has a value of 0.86, which
shows that the model can learn a large amount of portion of
patterns in no time. This accuracy keeps on increasing with
the increasing number of epochs; its value is 0.90 at epoch
5. Furthermore, the value of validation accuracy is 0.84 at
the start, which means that its behavior is not consistent as
compared to training data. It can also be observed that it has
dips and upward trends with the passage of epochs.

FIGURE 22. Validation and training accuracy of Neural Network.

Fig. 23 shows the values of training and validation loss
for the hybrid model of random forest and neural network.
The value of training loss decreases significantly from 0.8 to
0.1, which shows that this model has the capabilities of quick
learning and is a strong fit for the training data. Furthermore,
the value of validation loss is 0.65 at the start and it keeps on
increasing after a slight decrease, which shows that the model
can learn training data efficiently.

Similarly, Fig. 24 shows the training and validation accu-
racy of hybrid models of random forest and neural networks
when this model is applied to the dry beans dataset. It can
be observed that the training accuracy increases to a large
extent at epoch 2 and then keeps this behavior throughout,
which means that the model can excellent, fit to the training
data. On the other hand, the validation accuracy ismuch lower
as compared to the training accuracy, which shows that the
model is not able to show generalization to unseen data.

The training and validation losses for the hybrid model
of support vector machine and neural network are shown in
Fig. 25. At the start, the training loss is very high, having a
value of around 0.6. After that, it sharply decreases to a large
extent by the third epoch, which shows that the model can
quickly learn early in the training process. Moreover, it can
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FIGURE 23. Validation and training loss of random forest + neural
network.

FIGURE 24. Validation and training accuracy of random forest + neural
network.

also be observed that both the training and validation losses
decrease and begin to converge at around the 10th epoch.

Fig. 26 shows the training and validation accuracy of
hybrid models of support vector machine and neural net-
work. The accuracy of training starts around 90% and quickly
increases to 92% at the second epoch. On the other hand, the
validation accuracy aligns closely with the training accuracy
and stays above 90%, which shows that the model has the
capability of generalization without substantial overfitting.

VI. LIMITATIONS OF PROPOSED
The proposed model is efficient for the classification of data
with dry beans and soil-type datasets. However, the ability of
the model to generalize to other agricultural datasets or dif-
ferent conditions is not evaluated in this study. Furthermore,
it is very challenging to implement complex hybrid models in

FIGURE 25. Validation and training loss of SVM + neural network.

FIGURE 26. Validation and training accuracy of SVM + neural networks.

real-world agricultural environments such as scalability and
integration with existing farming systems. In last, there is
no security measure in the IoT-enabled framework to tackle
the issues of single point of failure, replay attack, denial of
service attack, and distributed denial of service attack.

VII. CONCLUSION
In this paper, we introduce an effective and robust
IoT-enabled hybrid ML and deep learning model for smart
agriculture, for efficiently classifying the dry beans and
soil-type datasets. By effectively combining traditional ML
algorithms with advanced deep learning techniques, our
models demonstrated significant potential in accurately clas-
sifying dry bean classes and differentiating soil types, with
the best models achieving accuracies up to 97%. Despite
these promising results, we acknowledge the need for fur-
ther optimization to address computational efficiency and
model complexity. Specifically, the hybrid model featuring
the traditional SVM classifier and novel neural network
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achieved an exceptional accuracy of 0.92, showcasing its
efficacy in identifying dry bean classes. Furthermore, in the
case of the soil type dataset, MobileNetV2 outperformed
all other models with an exceptional accuracy of 0.97,
which showed the effectiveness of deep learning in dif-
ferentiating complex soil patterns. Besides this, we also
proposed a novel hybrid technique by combining Incep-
tionV3 with LSTM networks, which yielded an accuracy of
0.91. This underscores the model’s adeptness in handling
sequential and spatially complex data. Lastly, the hybrid
model combining random forest and neural network achieved
an accuracy of 92%, further validating the effectiveness of
our approach. In the future, we will enhance model abilities
by proposing more efficient and reliable data augmenta-
tion techniques. Furthermore, an authentication mechanism
will be proposed for IoTs network for data access control,
which ultimately helps in ensuring the integrity of data in
the network.

ACKNOWLEDGMENT
The authors would like to thank the Deanship of Scientific
Research, Prince Sattam Bin Abdulaziz University, Al-Kharj,
Saudi Arabia, for providing research resources and equip-
ment.

REFERENCES
[1] I. Attri, L. K. Awasthi, and T. P. Sharma, ‘‘Machine learning in agriculture:

A review of crop management applications,’’ Multimedia Tools Appl.,
vol. 83, no. 5, pp. 12875–12915, Jul. 2023.

[2] M. Raj, S. Gupta, V. Chamola, A. Elhence, T. Garg, M. Atiquzzaman, and
D. Niyato, ‘‘A survey on the role of Internet of Things for adopting and
promoting agriculture 4.0,’’ J. Netw. Comput. Appl., vol. 187, Aug. 2021,
Art. no. 103107.

[3] B. B. Sinha and R. Dhanalakshmi, ‘‘Recent advancements and challenges
of Internet of Things in smart agriculture: A survey,’’ Future Gener. Com-
put. Syst., vol. 126, pp. 169–184, Jan. 2022.

[4] R. Akhter and S. A. Sofi, ‘‘Precision agriculture using IoT data ana-
lytics and ML,’’ J. King Saud Univ.-Comput. Inf. Sci., vol. 34, no. 8,
pp. 5602–5618, 2022.

[5] O. Friha, M. A. Ferrag, L. Shu, L. Maglaras, and X. Wang, ‘‘Internet
of Things for the future of smart agriculture: A comprehensive survey
of emerging technologies,’’ IEEE/CAA J. Autom. Sinica, vol. 8, no. 4,
pp. 718–752, Apr. 2021.

[6] B. J. Chelliah, T. P. Latchoumi, and A. Senthilselvi, ‘‘Analysis of
demand forecasting of agriculture using machine learning algorithm,’’
Environ., Develop. Sustainability, vol. 26, no. 1, pp. 1731–1747,
Dec. 2022.

[7] M. F. Guerri, C. Distante, P. Spagnolo, F. Bougourzi, and A. Taleb-Ahmed,
‘‘Deep learning techniques for hyperspectral image analysis in agriculture:
A review,’’ ISPRS Open J. Photogramm. Remote Sens., vol. 12, Apr. 2024,
Art. no. 100062.

[8] R. R. Chaudhary, S. Jain, and S. Gupta, ‘‘A critical review on hybrid
framework for precise farming with application of machine learning (ML)
and Internet of Things (IoT),’’ J. Integr. Sci. Technol., vol. 12, no. 2, p. 730,
2024.

[9] K. Phasinam, T. Kassanuk, and M. Shabaz, ‘‘Applicability of Inter-
net of Things in smart farming,’’ J. Food Qual., vol. 2022, pp. 1–7,
Feb. 2022.

[10] A. D. Boursianis, M. S. Papadopoulou, P. Diamantoulakis,
A. Liopa-Tsakalidi, P. Barouchas, G. Salahas, G. Karagiannidis, S. Wan,
and S. K. Goudos, ‘‘Internet of Things (IoT) and agricultural unmanned
aerial vehicles (UAVs) in smart farming: A comprehensive review,’’
Internet Things, vol. 18, May 2022, Art. no. 100187.

[11] N. Huynh and K.-D. Nguyen, ‘‘Real-time droplet detection for agricul-
tural spraying systems: A deep learning approach,’’ Mach. Learn. Knowl.
Extraction, vol. 6, no. 1, pp. 259–282, Jan. 2024.

[12] J. Rui and S. Danpeng, ‘‘Architecture design of the Internet of Things
based on cloud computing,’’ in Proc. 7th Int. Conf. Measuring Technol.
Mechatronics Autom., Jun. 2015, pp. 206–209.

[13] O. Friha, M. A. Ferrag, L. Shu, L. Maglaras, K.-K.-R. Choo, and
M. Nafaa, ‘‘FELIDS: Federated learning-based intrusion detection system
for agricultural Internet of Things,’’ J. Parallel Distrib. Comput., vol. 165,
pp. 17–31, Jul. 2022.

[14] W. Tao, L. Zhao, G. Wang, and R. Liang, ‘‘Review of the Internet of
Things communication technologies in smart agriculture and challenges,’’
Comput. Electron. Agricult., vol. 189, Oct. 2021, Art. no. 106352.

[15] S. Pasika and S. T. Gandla, ‘‘Smart water quality monitoring system with
cost-effective using IoT,’’Heliyon, vol. 6, no. 7, Jul. 2020, Art. no. e04096.

[16] M. V. Ramesh, K. V. Nibi, A. Kurup, R. Mohan, A. Aiswarya, A. Arsha,
and P. R. Sarang, ‘‘Water quality monitoring and waste management
using IoT,’’ in Proc. IEEE Global Humanitarian Technol. Conf. (GHTC),
Oct. 2017, pp. 1–7.

[17] M. Kuradusenge, E. Hitimana, K. Mtonga, A. Gatera, J. Habiyaremye,
J. Ngabonziza, D. Hanyurwimfura, P. Rukundo, and A. Mukasine,
‘‘SMART-CYPS: An intelligent Internet of Things and ML powered crop
yield prediction system for food security,’’ Res. Square, vol. 1, no. 1,
pp. 1–22, Mar. 2024, doi 10.21203/rs.3.rs-3834903/v1.

[18] Y.-H. Tsai and T.-C. Hsu, ‘‘An effective deep neural network in edge
computing enabled Internet of Things for plant diseases monitoring,’’ in
Proc. IEEE/CVF Winter Conf. Appl. Comput. Vis. Workshops (WACVW),
Jan. 2024, pp. 695–699.

[19] M. R. Machado, T. R. Júnior, M. R. Silva, and J. B. Martins, ‘‘Smart water
management system using the microcontroller ZR16S08 as IoT solution,’’
in Proc. IEEE 10th Latin Amer. Symp. Circuits Syst. (LASCAS), Feb. 2019,
pp. 169–172.

[20] Y. Khan and C. S. See, ‘‘Predicting and analyzing water quality using
machine learning: A comprehensive model,’’ in Proc. IEEE Long Island
Syst., Appl. Technol. Conf. (LISAT), Apr. 2016, pp. 1–6.

[21] A. Gupta and P. Nahar, ‘‘Classification and yield prediction in smart
agriculture system using IoT,’’ J. Ambient Intell. Humanized Comput.,
vol. 14, no. 8, pp. 10235–10244, Aug. 2023.

[22] A. Chauhan and P. Tripathy, ‘‘Internet of Things (IoT) integrated solutions
for environmentally friendly intelligent farming: A systematic review,’’ in
Proc. 3rd Int. Conf. Advance Comput. Innov. Technol. Eng. (ICACITE),
May 2023, pp. 2118–2123.

[23] A. Vangala, A. K. Das, and J. Lee, ‘‘Provably secure signature-based
anonymous user authentication protocol in an Internet of Things-enabled
intelligent precision agricultural environment,’’ Concurrency Comput.,
Pract. Exper., vol. 35, no. 16, p. e6187, Jul. 2023.

[24] C. Dang, Y. Liu, H. Yue, J. Qian, and R. Zhu, ‘‘Autumn crop yield
prediction using data-driven approaches: Support vector machines, random
forest, and deep neural network methods,’’ Can. J. Remote Sens., vol. 47,
no. 2, pp. 162–181, Mar. 2021.

[25] T. Van Klompenburg, A. Kassahun, and C. Catal, ‘‘Crop yield prediction
using ML: A systematic literature review,’’ Comput. Electron. Agricult.,
vol. 177, no. 2020, Oct. 2020, Art. no. 105709.

[26] S. H. Bhojani and N. Bhatt, ‘‘Wheat crop yield prediction using new
activation functions in neural network,’’ Neural Comput. Appl., vol. 32,
no. 17, pp. 13941–13951, Sep. 2020.

[27] Dry Bean Dataset. (2021). Kaggle Repository. [Online]. Available:
https://www.kaggle.com/datasets/sansuthi/dry-bean-dataset/data

[28] M. A. Imron, M. Ali, and B. Prasetyo, ‘‘Improving algorithm accuracy
K-nearest neighbor using Z-score normalization and particle swarm opti-
mization to predict customer churn,’’ J. Soft Comput. Explor., vol. 1, no. 1,
pp. 56–62, 2020.

[29] K. He, X. Zhang, S. Ren, and J. Sun, ‘‘Deep residual learning for image
recognition,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2016, pp. 770–778.

[30] W. E. Finch-Savage, ‘‘Influence of seed quality on crop establishment,
growth, and yield,’’ in Seed Quality. Boca Raton, FL, USA: CRC Press,
2020, pp. 361–384.

[31] F. L. Gewers, G. R. Ferreira, H. F. De Arruda, F. N. Silva, C. H. Comin,
D. R. Amancio, and L. da F. Costa, ‘‘Principal component analysis: A
natural approach to data exploration,’’ ACM Comput. Surv., vol. 54, no. 4,
pp. 1–34, 2021.

VOLUME 12, 2024 75733

http://dx.doi.org/10.21203/rs.3.rs-3834903/v1


M. Aldossary et al.: IoT-Enabled ML Models for Efficient Monitoring of Smart Agriculture

[32] G. H. John and P. Langley, ‘‘Estimating continuous distributions in
Bayesian classifiers,’’ 2013, arXiv:1302.4964.

[33] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen,
‘‘MobileNetV2: Inverted residuals and linear bottlenecks,’’ in
Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., Jun. 2018,
pp. 4510–4520.

[34] K. Simonyan and A. Zisserman, ‘‘Very deep convolutional networks for
large-scale image recognition,’’ 2014, arXiv:1409.1556.

[35] B. Karsh, R. H. Laskar, and R. K. Karsh, ‘‘MIV3Net: Modified inception
V3 network for hand gesture recognition,’’Multimedia Tools Appl., vol. 83,
no. 4, pp. 10587–10613, Jan. 2024.

MOHAMMAD ALDOSSARY received the B.Sc.
degree (Hons.) in computer science from King
Saud University, Riyadh, Saudi Arabia, in 2009,
the M.Sc. degree in computer science from
Southern Polytechnic State University, GA, USA,
in 2013, and the Ph.D. degree in computer science
from the University of Leeds, U.K., in 2019. He is
currently an Associate Professor with the Depart-
ment of Computer Engineering and Information,
Faculty of Engineering College, Prince Sattam Bin

Abdulaziz University (PSAU), Saudi Arabia. His main research interests
include distributed systems, including cloud, fog, and edge computing and
the Internet of Things (IoT) technologies, such as the Internet of Medical
Things (IoMT) and the Industrial Internet of Things (IIoT), artificial intel-
ligence (AI), machine learning (ML), digital twin, metaverse, smart cities,
unmanned aerial vehicles (UAVs), smart agriculture, system architectures,
resource management, and energy efficiency. He holds the honor of being
a Founding Member of the Artificial Intelligence Governance Association
(AIGA), Saudi Arabia; and serves as a Board Member for the Saudi Internet
of Things Association, Saudi Arabia.

HATEM A. ALHARBI received the B.Sc. degree
(Hons.) in computer engineering from Umm Al-
Qura University, Makkah, Saudi Arabia, in 2012,
and the M.Sc. degree (Hons.) in digital com-
munication networks and the Ph.D. degree in
communication networks from the University of
Leeds, Leeds, U.K., in 2015 and 2020, respec-
tively. He is currently an Assistant Professor with
the Computer Engineering Department, School of
Computer Science and Engineering, Taibah Uni-

versity, Saudi Arabia. His research interests include energy efficient fog and
cloud networks and network economics.

CH ANWAR UL HASSAN received the B.S.
degree in software engineering from the National
University of Modern Languages, Islamabad,
Pakistan, in 2015, and the M.S. degree in soft-
ware engineering from COMSATS University,
Islamabad, in 2019. After graduation, heworked as
a Visiting Lecturer at the Federal Urdu University
of Arts, Science and Technology, Islamabad. He
also worked as a Lecturer at the Capital University
of Science and Technology, Islamabad. Currently,

he is a Lecturer at Air University, Islamabad. He is an experienced Software
Engineer, having worked as a Web/App Developer from 2015 to 2017,
where he was involved in the development of various top-notch software
projects, participating in all stages from documentation to deployment.
From 2017 to 2019, he was a Research Assistant with COMSATSUniversity.
His research interests include blockchain, data warehousing, data analysis,
machine learning, data mining, smart grid energy management, software
process improvements, and software costing and estimation.

75734 VOLUME 12, 2024


