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ABSTRACT One of the main goals in any computational system like the cloud is to effectively allocate
resources proficiently for task scheduling. However, the dynamic characteristics of the cloud make it more
prone to faults and failures. The flexible and responsive changes are made to redistribute virtual machines
(VMs) to address these faults and failures for maintaining continuous services. However, it may inadvertently
lead to uneven load distribution. Therefore, thorough attention is required to ensure carefully monitored
load equilibrium following fault tolerance. Addressing all these issues simultaneously with optimized
Quality of Service (QoS) parameters is a good need of time. In this paper, a novel hybrid model: the
Hybrid Fault-tolerant Scheduling and Load balancing Model (HFSLM) has been proposed to optimize the
makespan of the dynamically arriving tasks and efficiently utilize the available VMs. Moreover, the model
also provides solutions for several crucial concerns in cloud systems including VM failure, and VM/task
heterogeneity. In the consequence of a VM failure, the approach offers a Neighbouring VM as a substitute
for the corresponding task to complete its execution. Furthermore, the model is escorted by a load-balancing
algorithm to maintain the equilibrium of load distribution after fault handling for further optimization of
the considered QoS parameters. HFSLM is evaluated by comparing it with FTHRM, MAX-MIN, MIN-
MIN, and OLB on a small task scale over diverse task and machine heterogeneities and with ELISA and
MELISA on an extremely large task scale. The evaluation results show that the recommended HFSLM tops
the compared approaches in all the considered cases and heterogeneities.

INDEX TERMS Cloud computing, task allocation, fault tolerance, resource reservation, load balancing.

I. INTRODUCTION
The field of distributed computing is rapidly advancing tech-
nology which also includes cloud computing. Applications
for cloud computing include data storage, data analytics
as well as IoT applications [1]. The technology of cloud
computing has altered the past ways of distributing ser-
vices by companies. It offers a variety of online services
to registered consumers so they may avoid investing in
computing equipment. Users are only required to utilize
the internet to communicate their demands to the service
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provider for each sort of service rather than install or maintain
their own systems infrastructure. In response to the user’s
requests, the service provider is in charge of administrating
the resources/VMs needed to satisfy customer requests.

Besides, scheduling algorithms are applied by service
providers to effectively schedule incoming requests/tasks
and manage their computational resources. The more effi-
cient these scheduling algorithms/strategies are, the more
efficiently the resources will be allocated by the service
providers. The efficient planning of scheduling ensures the
service providers optimize their revenue by making the
most available resources. However, real-world cloud com-
puting resource performance is hindered by inappropriate
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scheduling and resource allocation issues.Making scheduling
more efficient and properly utilizing cloud resources is the
key aim of the research in cloud computing. A scheduler
should arrange tasks in a way so that task execution time will
be kept to a minimum. This resource management issue is a
significant factor for any distributed system [2].

Additionally, due to the geographical dispersion of the
VMs in the cloud, they may enter and exit the system due
to a variety of potential causes at any moment while task exe-
cutions are being carried out. Moreover, any of the VMs can
fail at any point in time which may result in the interruption
of the corresponding processing of the task [3]. Failure is the
system’s condition when it is unable to achieve the desired
result within the stipulated time. To handle this issue, it is
necessary to assign some alternativeVM to the affected task if
the VM failure happens. This makes the system fault-tolerant
and adaptable to faults [4].

Furthermore, fault-tolerant scheduling may lead to inap-
propriate load distribution because to handle the faults we
need to go for the redistribution of VMs. This difficulty can
be solved by efficiently balancing the task distribution among
the processors. An efficient load-balancing strategywill make
it possible to distribute the incoming load over all VMs
uniformly thereby giving an increasing edge to the average
resource utilization. Since the task scheduler in a dynamic
environment has no precise knowledge of the sizes or differ-
ent arrival times of the task. Therefore, the enhancement of
the cloud environment by implementing efficient scheduling
and load balancing is important to address. In a nutshell,
a model must focus on all discussed issues and accomplish
the performance objectives.

To address these issues, HFSLM is introduced as a hybrid
model that employs task and VM sorting for task scheduling,
a Neighbouring reservation approach for fault tolerance, and
a novel task reallocation strategy for load balancing. The
proposed hybrid model focuses on three issues i.e., effi-
cient scheduling, fault tolerance, and load balancing. The
model initially schedules the arriving tasks and maps them
to the most suitable VM thereby focusing on the optimized
makespan and efficient utilization of VMs. Moreover, the
proposed model adapts the system to respond to the faults by
using the neighboring-based advance reservation technique.
The neighboring-based advance reservation technique is the
technique where the reservation slot is estimated in advance
and the neighboring VM is reserved as an alternative VM
for the affected task to reserve the processing of the task till
completion. In this case, the neighboring VM with the least
history of the load (Ready Time) is preferred to be selected as
an alternative VM. Furthermore, the model also escorts with
a load-balancing strategy to make further optimizations in
various QoS parameters. The proposed model was evaluated
for parameters like makespan and average resource utiliza-
tion by comparing it with FTHRM, MAX-MIN, MIN-MIN,
and OLB on a low task scale (less than 1000 tasks). The
evaluation has been done by adjusting the number of tasks
and VMs, and size of tasks, and the capacity of VMs in four

different heterogeneities given by Braun [5]i.e., low task-low
machine heterogeneity, low task-high machine heterogene-
ity, high task-low machine heterogeneity, and high task-high
machine heterogeneity. Besides, the proposed HFSLM was
compared with ELISA and MELISA on very high task scales
(greater than 10,000 tasks, the high scale is categorised
because the \) and was evaluated using an average makespan,
and the resource utilization was taken into consideration for
minimum, average, and maximum cases. Its effectiveness
is assessed across both small and large task scales through
comparisons with established models like FTHRM, MAX-
MIN, MIN-MIN, OLB, ELISA, and MELISA. The findings
highlight the efficiency of HFSLM, as outlined in a dedicated
section.

The following is a summary of the major contributions.
• First, we set up a task scheduling framework for a
cloud environment. This framework includes compo-
nents such as the Application layer, Middleware, and
Host/VM layer.

• An efficient allocation strategy has been carried out by
sorting the positions of the arriving tasks and avail-
able VMs.

• The scheme for dynamic task allocation has been pre-
sented in the model while concurrently adding and
deleting the restored and faulty VM respectively.

• Afterward, we utilized a novel Neighbouring-based
reservation technique, which involves the reserva-
tion of Neighbouring VMs to be used in case of
faults.

• To sustain optimizations following fault management,
we combine the suggested fault-tolerant scheduling
with a proficient load-balancing approach which is
lacking in most scheduling algorithms.

• Subsequently, we explore a motivating example that
mathematically demonstrates the efficacy of the pro-
posed hybrid model in a practical working environ-
ment. Simultaneously, we frame the fault-tolerant and
load-balancing issue as an optimization problem.

• Moreover, we evaluated the performance of theHFSLM
on small and large task scales to assess its effective-
ness.

• Throughout the evaluations, we compared the model
with similar existing models across four different tasks
and VM heterogeneities given in [5] i.e., HH, HL, LH,
LL task, and machine heterogeneities respectively.

The remainder of the paper is structured as follows:
Section II explains the relevant prior literature in four dif-
ferent categories Resource allocation approaches, Fault tol-
erance approaches, Load balancing approaches, and Hybrid
approaches with the motivation of the work. Section III
discusses the intended work as the proposed model hav-
ing subsections as System model, Problem formulation,
and Computational Complexity of HFSLM. The illustrative
example has been presented in Section V with in-depth math-
ematical calculations and pictorial flow. Section VI of the
paper explains the model’s findings and discussion in two
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task scales and four task and machine heterogeneities, and
section VII brings everything to a close conclusion.

II. RELATED WORK
Efficient resource allocation along with fault tolerance and
load balancing is one among several major objectives in
any distributed/computational environment to ensure effec-
tive resource usage of the system. The level of resource
usage brought on by fault tolerance depends on the allocation
method being used. By utilizing computing resources effi-
ciently, proficient results can be obtained with an effective
strategy [6]. Additionally, the current fault tolerance strate-
gies typically compromise resource availability and system
efficiency in the event of unforeseen breakdowns. The sys-
tem’s effectiveness is also influenced by average resource
utilization and throughput. However, in any dynamic envi-
ronment, the resource behavior renders the system unstable
and fault-prone, which might result in the suspension of
application processing and an imbalanced load. Besides, fault
tolerance inclines to deliver the expected services at the right
time even when systemic problems or errors are revealed.
To achieve this, steps are made to identify and correct errors
and reduce the hazards in the system so that the execution of
the tasks continues till completion [7]. Numerous researchers
have put forward solutions to these issues. However, there is
still room for developing the new and most efficient tech-
niques for better utilization of the available resources after
fault tolerance. A review of the categorical literature has
been done about four main categories. i.e., resource allo-
cation, fault tolerance, load balancing, and hybrid models.
Moreover, several recent task scheduling and resource alloca-
tion techniques, different fault tolerance, and load-balancing
approaches are given in this portion of the paper.

A. RESOURCE ALLOCATION APPROACHES
A multi-object strategy using the enhanced differential evo-
lution algorithm has been developed and proposed in [8].
This technology offers a time and cost model for cloud
computing. However, this model lacks dynamism i.e., vari-
ations in tasks. A vacation queuing model for scheduling
was proposed in [9]but does not demonstrate the efficient
use of resources. The real-time tasks are scheduled using the
newly developed rolling-horizon scheduling paradigm [10].
By allocating resources, the authors have focused on showing
how job scheduling and energy saving are related. This model
again lacks emphasis on resource utilization. Authors in [11]
have utilized the FCFS technique to schedule the tasks. How-
ever, the proposed method needs to consider the elimination
of the jobs. To perform task scheduling, authors in [12]
suggest a heuristic method that combines the MAHP (Mod-
ified Analytic Hierarchy Process, BAR +bandwidth aware
divisible scheduling (BATS) optimization, longest expected
processing time preemption (LEPT), and divide-and-conquer
methods. This method allocates resources by using com-
bined approaches of BAR + BATS methods. Q-learning and

HEFT (Heterogeneous Earliest Finish Time method have
been combined in [13] to create a novel job scheduling
system namely QL-HEFT to shorten makespan. However,
this method has not considered resource utilization. Each
task is sent to the system with the lowest predicted fin-
ishing point time for that task using the MCT (Minimum
Completion Time) algorithm [14] in an arbitrary sequence.
Later, theMIN-MIN allocation algorithmwas proposed in [5]
which initially takes all the unmapped tasks as a separate
set and estimates the group of minimum completion times
for each unexecuted task. The task with an overall minimum
completion time is then chosen and allotted to the subse-
quent machine. The authors also highlighted the MAX-MIN
algorithm which is the same as MIN-MIN. However, to allo-
cate the work to the relevant VM, MAX-MIN chooses the
task having an overall maximum end time from the set
of minimum completion times. Besides, in [15], a three-
step method was proposed to minimize makespan where the
precedence graph is constructed in the first step, which is
then transformed into a two-machine Johnson Sequencing
Problem in the second step, and in the third step, the best
sequence has been determined by utilizing the Dynamic
Heuristic Johnson Sequencing method. In [16], cloud com-
puting platforms like AWS(Amazon Web Service) have
been utilized to present PMW(Periodic Min-Max Algorithm)
which schedules multi-robot fast computation tasks. Recently
in [17], PBFS (Priority Based Fair Scheduling) was proposed
which prioritizes the definite order based on EG-SJF (Earliest
Gap Shortest Job First) for filling schedule gaps. More-
over, the new backfilling strategy termed SG-PBFS (Shortest
Gap-Priority-Based Fair Scheduling) was developed recently
in [18], for attempting to direct the cloud gaps and scheduling
tasks.

B. FAULT TOLERANCE APPROACHES
The fault-proof strategies found in the literature have been
categorized into three broad categories. i.e., Reactive, Proac-
tive, and Resilient approaches. In reactive approaches, the
faults are handled once they occur. The Proactive approaches
offer the process’s pre-planned alternate routes for handling
errors. A proactive technique involves the system being con-
tinuously monitored to assess flaws and fix them before
they manifest. The Resilient approaches differ from proactive
approaches in a way that they use intelligent learning to avoid
faults.

In [19], the task resubmission method was used to han-
dle the faults, and the unsuccessful task was continuously
assigned and re-assigned to the same or different resource.
However, this assigning and re-assigning of the unsuccessful
task causes resource loss. Software rejuvenation technique
is used in [20] to handle faults, the system is rebooted
regularly and each time starts in a fresh state. Resilient
approaches have been used for handling faults. This approach
involves regularly checking the system for errors. As a
result, it qualifies as an adaptive fault tolerance strategy [21].
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A kind of resilient approach was used in [22]. This tech-
nique was recently employed in a cloud environment. In this
technique, the assertions based on the system’s response
are used to manage failures. However, The Checkpointed
League Championship Algorithm (CPLCA) scheduling tech-
nique was suggested in [23]as a fault-tolerance conscious
task scheduling method. This approach offers task migra-
tion and fault tolerance by employing the checkpointing
strategy. Besides, CPLCA lacks any load-balancing strat-
egy. Additionally, authors of [24]addressed the issue of job
scheduling in heterogeneous systems. It was suggested to
use the heuristic algorithm DBSA to solve the NP-hard
issue of the scheduling problem. Later, in [25], the Dynamic
Clustering League Championship algorithm (DCLCA) for
fault-tolerant-based scheduling was suggested to minimize
the early failure of the jobs. Advance reservation technique
was used in [26] for handling faults. This reserves the VM
for the task for a specified amount of slots until the task is
completed.

C. LOAD BALANCING APPROACHES
The difficult research problems include how to distribute
the workload across the VMs and how to shorten and max-
imize the makespan and resource utilization respectively.
To overcome the aforementioned difficulty, several methods
have been developed. In this section, we’ll discuss a few
recent studies on load balancing and scheduling problems in
a cloud context. Infrastructure as a service (IaaS) cloud load
balancing method namely HBLBA (Heuristic Based Load
Balancing Algorithm) has been proposed in [27]. To select
appropriate VMs for allocation and to get the most out of
the available computing resources, an effective method was
designed for organizing the servers depending on the quantity
and size of tasks. Based on clustering and the Bayes the-
orem, the novel heuristic-based load-balancing method was
devised in [28]. These two methods obtained the optimum
clusters of hosts. However, is not focusing much on utiliza-
tion. In a public cloud setting, [29] offered a load-balancing
model based on cloud partitioning and game theory. The
authors in [30] and [31] modified the HEFT algorithm by
including load balancing in HEFT and proposed E-HEFT and
LB-HEFT (Load Balancing-Heterogeneous Earliest Finish
Time) respectively. The PTAL technique was put in [32]
for efficient resource reallocation and load distribution to
achieve better QoS results.Further in [33] the author proposed
WAMLB (Weighted Active Monitoring Load-Balancing in
Cloud Computing) for effective utilization of resources.
However, both PTAL andWAMLB lack the dynamism of the
system concerning both tasks and VMs. Furthermore, it was
noted that there is a good need to enhance the load balancing
model in a dynamic environment for optimal makespan and
efficient utilization of resources. Thewhole expected comple-
tion time while executing a task is considered and OLB was
proposed in [34]. The benefit of OLB is to maintain optimal
load balancing for the system and to keep all hosts as active as

possible, which improves efficiency. OLB suffers from a low
makespan when numerous objectives are considered at once,
making it unsuitable for cloud environments. ELISA [35]
was modified and MELISA [36] was proposed. The litera-
ture shows that these models are most suited to large-scale
systems. Both ELISA and MELISA were considering load
balancing by taking resource heterogeneity and migration
cost into account. Recently, LDRA (Load Distribution Based
Resource Allocation) was established [37] to earn boosted
resource utilization and minimum likely execution time for
distributed task.

D. HYBRID MODELS
In [38] a decision model for central load balancing was
developed that may be used in cloud systems; this approach
automates scheduling and lessens the need for human admin-
istrators. This model, however, falls short in identifying and
handling the faults in the system. Additionally, in the event of
unforeseen failures, the present fault tolerance strategies typi-
cally compromise the reliability and efficiency of the resource
management in the system. However, the cloud environment
is unstable and fault-prone due to the dynamic nature of its
VMs, which might result in the ceasing of the task execution
and imbalanced load. Additionally, even when system prob-
lems or errors are notified, making the system fault-tolerant
tends to deliver the anticipated services at the right time to
prevent any task from premature termination [39]. Schedul-
ing, load balancing algorithms, and fault tolerance strategies
have all been mentioned in a survey that has been put
together in [40]. A similar survey has been obtained from
another study, in which several fault tolerance approaches
are assessed using a variety of QoS metrics, including wait-
ing time, throughput, turnaround time, and network latency.
Additionally, it demonstrates that the aforementioned tech-
niques can help to raise the optimization of the computing
infrastructure [41]. The authors of this study are motivated to
perform more research on fault-tolerant task scheduling and
load balancing because of this state-of-the-art. In [42], the
model namely, FTHRM was proposed where a reservation
was used for fault tolerance. However, the model has charted
the concept of advance reservation but not implemented the
advance reservation. The Proactive and Reactive Fault Toler-
ance Framework (PFTF) in combination with ECB (Elastic
Cloud Balancer) was presented in [43], and they prevent the
cloud scenario in which some nodes are idle or lightly loaded
while others are significantly loaded (overloaded). Proac-
tive Load Balancing Fault Tolerance (PLBFT) was proposed
in [44] where the faults were handled proactively and simul-
taneously the load was balanced. For further enhancements of
the availability, A blend of load balancing and fault-tolerant
approaches has been suggested in [45]. A resilient approach-
based strategy, called FTLB (Fault Tolerant Load Balancing),
was introduced in [46], and it incorporates fault tolerance into
load balancing such that the load balancing algorithm can
manage failures as well.
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• Motivation
The consideration of the dynamic character of the cloud

motivated us to propose the hybrid scheduling model inte-
grated with fault tolerance, and load balancing for cloud
setup. Although there are many scheduling algorithms avail-
able in the literature, the researchers are highly attracted and
conservative towards developing various scheduling, fault
tolerance, and load balancing algorithms. However, it is
observed that there are very few dynamic scheduling algo-
rithms that integrate both fault tolerance and load balancing
models to optimize the QoS parameters. The integration
of load balancing models with fault tolerance is a peak
demand of time. Because the fault tolerance mechanisms
may often reorder the prior scheduling VM assignment to
fit and strong VMs in the occasion of a failure or fault,
leading to uneven VM reassignment. This uneven VM reas-
signment becomes the cause of QoS degradation even if
the prior Scheduling algorithm is highly optimized. Besides,
there are various demanding reasons why the integration
of load balancing is important for optimal overall sys-
tem performance. Some of the mounted demands are listed
below:

• Fault tolerance often necessitates redundant resources
to grip failover circumstances, which can lead to
resource overprovisioning and over-cost. Load balanc-
ing can be helpful in such cases as the integration of
load balancing can dynamically adjust the load over
VMs thereby dropping the requirement of additional
capacities.

• Implementing fault tolerance can introduce the over-
heads associated with it. However, using load balanc-
ing with fault tolerance can reduce operational burdens
and other complexities.

• Various bottlenecks and other congestion can be cre-
ated on healthy VMs in fault-tolerant systems. This can
impact overall system performance. This can be eased
by intelligently distributing load flow across VM post
to fault tolerance.

• Similarly, other factors should be considered in
fault-tolerant systems such as augmented latency,
partial scalability, suboptimal resource utiliza-
tion, etc.

Fault tolerance integrated with load balancing can help orga-
nizations overcome these limitations and create stronger,
more effectual, and mountable distributed systems that
can adapt to the altered loads because of fault tolerance.
Therefore, we converge towards developing the dynamic
scheduling model in this paper which not only handles
faults but also handles the uneven VM reassignments by
integrating effective load balancing constraints post to fault
tolerance.

The scheduling in the proposed model has been done by
initially rearranging both arriving tasks and available VMs.
The newly incoming tasks and freshly installed or deleted
VMs are also taken into consideration while performing
the recommended scheduling. This consideration makes it

the most suitable scheduling for fully dynamic computing
infrastructures. Additionally, the scheduler offers efficient
allocation concerning the user’s needs at selected timeslots
by using a reservation. Reservation is the technique where the
VMs are reserved for the task till it completes its execution
thereby resulting in the assurance of task completion. How-
ever, if the VMs are not reserved, they might fail permanently
or stop working at any time which may result in the termi-
nation or interruption of the corresponding task. Therefore,
the model delivers the system the fault tolerance that it needs
to manage runtime system errors after conducting effective
scheduling. Apart from fault tolerance, the model reallocates
the load to reduce the imbalance caused by fault tolerance.
The evaluations are conducted by assessing the proposed
model with existing similar models such as MAX-MIN,
MIN-MIN, OLB, FTHRM, ELISA, AND MELISA. The
MAX-MIN algorithm was found optimal for resource allo-
cation. The makespan and utilization obtained byMAX-MIN
on low task heterogeneity were also found efficient. However,
for high task heterogeneity,MAX-MINwas not found signifi-
cant. Furthermore, the QoS parameters obtained inMIN-MIN
were not optimized in varying task and machine hetero-
geneities. Apart from this, these are allocation algorithms and
do not support any fault handling or load-balancing proce-
dure. The most recent FTHRM model for fault tolerance was
using advance reservation. However, this model did focus on
uniform load distribution. Moreover, this has not migrated
the tasks from the faulty VM to the reserved VM. For large
sizes, ELISA and MELISA were shown to be the best tests;
however, for small scales, these models were insignificant.
Additionally, these models are load-balancing models and do
not support any fault tolerance mechanism. After analyzing
the related literature, it was determined that themodels imple-
mented so far, particularly the hybrid models, needed to be
improved for better QoS parameters. This is where we were
motivated to propose a neighboring-based reservation tech-
nique for fault tolerance for the real-time cloud. In this paper,
we suggested theHFSLMmodel with effective fault tolerance
and load-balancing strategies for better outcomes. Table 1
shows a comparative analysis of all the considered issues
and parameters between the proposed HFSLM and related
models.

III. THE PROPOSED MODEL
The proposed model is discussed in four subsections. Ini-
tially, the System Model explains the System
architecture of the proposed model. The Problem For-
mulation provides the mathematical explanation for the
proposed HFSLM. The Proposed Algorithm and Pseu-
docode present the HFSLM in a semi-formal form as
an algorithm and pseudocode. Later, in the Motivational
Illustrative Example, the proposed model’s operation is
demonstrated as an example. Furthermore, the following list
contains the notions that were utilized in the illustration and
demonstration.
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TABLE 1. Comparative analysis of existing models and the proposed model.

Notations Used:

A. THE SYSTEM MODEL
This paper considers a heterogeneous system concerning both
tasks and VMs. The group of VMs has varying processing
speeds and so do the sizes of the incoming tasks. The system
architecture of the proposed HFSLM is shown in Figure 1.

There are three basic levels in the HFSLM system architec-
ture, i.e., the Application Layer, Middleware, and Host/VM
Layer. The application layer receives the user’s tasks (incom-
ing), and the Task Sorter sorts them in the ascending order
of their size as they arrive. On the other hand, the VMs
that are accessible are in the Host/VM layer, the VM sorter
sorts the VMs in the ascending order of their speed. The
middleware handles the primary allocation and fault toler-
ance. The middleware is made up of two primary parts: the
VM allocator, which creates the schedule for receiving task
information, and the Failure Handler, which functions when
any VM has a fault. Both parts effectively work together
to schedule incoming tasks and reserve VMs. The different

components in the VM allocator work in coordination and
oversee the incoming task information for selecting the
appropriate VM for accomplishing tasks. The task of iden-
tifying every accessible VM in the VM layer falls within
the purview of the VM Discovery component. Once the
available VMs are discovered, the suitable VM for the task
is selected by the VM selector. After identifying the most
appropriate VM for the task, the VM Producer allocates
the specified VM to the task. Further, the VM Allocator
communicates the schedule generated by it to the AR Mod-
ule and the Load Balancer. In response, the AR Module
activates its components and generates the reservation in
case of faults and breakdowns. The Time Manager com-
ponent of the AR Module forecasts the AR Slot for the
affected task and reserves the suitable VM for the com-
puted AR slot in advance. After calculating AR Slots,
the System Matching verifies if the task and VM are
a good fit for generating reservations, and the Reserva-
tion Producer commits the produced reservation for the
estimated AR Slot in the event of a fault. Additionally,
the load balancer analyzes the generated schedule and plays
the key role in uniformly distributing the load among VMs
by identifying themaximumoverloaded andminimumunder-
loaded VM and reallocating the tasks between them.

B. PROBLEM FORMULATION
Initially, the set of incoming tasks represented by T={t1,t2,. . .
tn} and the set of Virtual Machines signified by V= {v1, v2,. . .
vm} has been taken over the proposed HFSLM. Every task (ti)
is executed on the allocated VM till the execution of the task is
completed. The task is pre-empted, in case the assigned VM
fails or becomes unavailable at any point in time.

The execution of an affected task will start from the begin-
ning on an alternative VM assigned to it. Further, each task
has its parameters like t_id and t_size. However, each VM
has its parameters like V_id, and S. Apart from this, a few
characteristics considered for VMs are:

• The model considers ‘‘m’’ VMs for the mapping of ‘‘n’’
tasks.

• S of VM is taken in MIPS (Million Instructions Per
Second)
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FIGURE 1. The proposed system architecture.

• The available VMs do not apply to other applications.
• Each VM has its RTj associated with it. RTj is the time
experienced to execute the load history on the VM.

The problem modeled here is to generate a fault-tolerant
allocation schedule in a dynamic environment like the cloud
in a way that will optimizemakespan and increase the average
VM utilization. Mathematically, the problem can be viewed
as an effective mapping (M ) (eq 1) between two sets i.e., set T
and set V , which will optimize the given parameters.

M : T ➔ V (1)

The mapping between tasks and VMs graphically can also be
treated as a bipartite graph as shown in Figure 2.

FIGURE 2. Mapping between tasks and VMs.

Pseudocode of the Proposed Work:
1. Sort tasks based on Task_size //task sorting
2. Sort VMs based on Speed (S).//VM sorting
3. Allocate the sorted tasks to the sorted VMs. //task

allocation
4. Allocate the dynamically arriving tasks. //dynamic

allocation
5. Calculate the AR slot for advance reservation.

6. PerformFault tolerance by using the neighbouring-based
reservation algorithm.

7. Perform load balancing or task reallocation. // Load
Balancing Algorithm

8. Calculate the considered parameters and perform the
comparative analysis.

1) TASK MAPPING MODEL
The main difficulties in mapping between T and V are the
dynamism of the system and the limited number of available
VMs. Achieving fault tolerance in such a dynamic system is
a challenging task. This section explains the detailed method-
ology to deal with the modeled problem. Initially, in the first
algorithm, the tasks are allocated to the available VMs. The
allocation process first sorts the incoming tasks and VMs
based on task_size and VM speed respectively. Thereafter
maps the sorted task set to the sorted VM set. After sorting
incoming tasks and VMs, the VM is assigned to the tasks in
the order until the ready time of any one of the available VMs
is zero. Once the ready time of all VMs becomes greater than
zero that means currently all the VMs have some load history.
After this point, the allocation of further arriving tasks will be
done to the VM having the least ready time. Doing this will
again minimize its response time. The proposed allocation
strategy handles the dynamically arriving tasks by employing
a Neighbouring insertion policy. The newly arriving task will
be inserted based on the arriving task size. i.e., the immediate
greater and immediate lesser task (neighboring tasks) than
the arriving task is identified, and the newly arriving task
is allocated to that task’s VM which has less ready time as
shown in Figure 3. This insertion policy of tasks will again
play a critical role in allocating the most suitable VM for the
dynamically arriving task. Similarly, the newly added VMs
are inserted in their correct position by employing the same
insertion policy as shown in Figure 4. This insertion policy of
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incoming tasks and VMs in their respective positions allows
the system to handle tasks and VMs runtime.

Because of the sorting and neighbouring approach, every
task will be allocated to the most suitable VM. The allocation
ofVMs to tasks is done in this order until the ready time of any
one of the available VMs is zero. Once the ready time of all
VMs becomes greater than zero that means currently all the
VMs have some load history. After this point, the allocation
of further arriving tasks will be done to the VM having the
least ready time. Doing this will again minimize its response
time.
Algorithm 1 Task Sorting

def task_sort(incoming_tasks) :

// incoming_tasks is a list of tuples (task_id, task_size)

incoming_tasks.sort(key=lambda x: x[1], reverse=True) // Sort based

on task_size in descending order

return incoming_tasks

VM Sorting:

def vm_sort(available_vms):

// available_vms is a list of tuples (VM_id, VM_Speed)

available_vms.sort(key=lambda x: x[1], reverse=True) # Sort based

on Speed in descending order

return available_vms

Task Mapping:

def task_mapping(incoming_tasks, available_vms):

mapped_tasks = [] // List to store allocated tasks

for task in incoming_tasks:

if task_status[task] == 0:

for vm in available_vms):

if ready_time[vm] == 0:

map_task_to_vm(task, vm) # Map task to VM

mapped_tasks.append(task)

break // Move to the next task

# Map remaining tasks to VMs with the least ready time

for task in incoming_tasks:

if the task is not in mapped_tasks:

min_ready_time = min(sorted_vms,

key=lambda vm: ready_time[vm])

map_task_to_vm(task, min_ready_time)

# Map task to VM with the least ready time

mapped_tasks.append(task)

# Update task status to 1 (mapped)

for the task in mapped_tasks:

task_status[task] = 1

Dynamically arriving Task Mapping:

while (there are upcoming tasks):

upcoming_task = get_next_upcoming_task()

greater_task=find_right_neighbor(upcoming_task)

lesser_task = find left neighbor(upcoming_task)

greater_vm = find_vm(greater_task)

lesser_vm = find_vm(lesser_task)

if (greater_vm.ready_time< lesser_vm.ready_time):

map_task_to_vm(upcoming_task, greater_vm)

else:

map_task_to_vm(upcoming_task, lesser_vm)

FIGURE 3. Allocation of dynamically arriving task.

FIGURE 4. Adding and deleting VMs from the system dynamically.

2) NEIGHBOURING-BASED RESERVATION FOR FAULT
TOLERANCE
After VM allocation, a fault handling algorithm that enables
the proposed work to win fault tolerance if any VM fails or
leaves the system is proposed. This fault handling algorithm
has been developed by employing the technique of advance
reservation of neighboring VMs. The advance reservation is
the technique where the AR time slot is computed or esti-
mated and the VM is reserved for that predicted time slot to
guarantee the task execution till completion. In the beginning,
the TETj for all VMs is taken as zero. It means that currently,
the particular VM has executed no task. Afterward, TETj is
updated after the finishing of each task on the VM.Moreover,
every VM has some load history which is termed as the ready
time of the VM. Initially,RTj is taken as TETj as shown
in eq. (2)

TETj = RTj (2)

After the mapping of ti and vj as per the allocation algorithm
explained above every ti will start its execution on some vj.
This starting time of the execution of ti on vj is termed asESTij

VOLUME 12, 2024 75927



S. U. Mushtaq et al.: Next-Gen Cloud Efficiency

and is calculated as in eq. (3)

ESTij = TETj (3)

After the execution of ti on vj is over, AFTij is determined by
adding the total processing time of ti on vj

{
tp

(
ti, vj

)}
to the

ESTij as shown in eq. (4)

AFTij = ESTij + tp
(
ti, vj

)
(4)

where tp
(
ti, vj

)
is the time taken to process ti by vj and is

calculated as in eq (5)

tp
(
ti, vj

)
=
tsize
s

(5)

Furthermore, TETj is updated after every execution of ti and
will be equal to AFTij as shown in eq. (6)

TETj = AFTij (6)

However, for calculating AR slots, the proposed algorithm
takes Early Start Time and Actual Finish Time as input
parameters and estimates the AR slot as the difference
between ESTij and AFTij.
If the advance reservation strategy is not employed,

the task (tu) may fail to execute on VMf i.e., the failed
VM, or if the VM leaves the system for a certain
time will result in the suffering of the corresponding
task. To handle this situation, p failed VMs are defined
as:

VMf = {Vf : Vf ∈V & o(VMf ) = p}

and q corresponding affected tasks are defined which were
executing on these failed VMs. The set of failed tasks is
defined as:

Tf = {tf : tf ∈T & o(Tf ) = q & q <= n}

Now, these failed tasks need to be reallocated to
some other suitable healthy VMs so that Tf will exe-
cute without any interruption. On reallocating, all the
failed tasks Tf are migrated from Vf to VMj such
that:

VMj∈V & VMj ̸∈Vf

Themodel reserves the neighboring VMof the corresponding
failed task as an alternative VM. Later, the TETj is again
updated as shown in eq. (7):

TETj = TETj + tp(tf VMj) where VMjĒV&&VMj ̸∈Vf (7)

Makespan is taken as the highest or maximum among all TETj
and can be expressed as eq. (8).

Makespan = max(TETj), ∀Vj (8)

Finally, the Average VM utilization of the system is defined
as in eq. (9).

UT =

∑k
1 (TET − tp (tf ϵVf , Vj ϵVf ))

k ∗Makespan
∀Vj

(9)

Algorithm2Neighbouring-BasedReservationAlgorithm for
Fault Tolerance

Initialize_ARM (incoming_tasks, Mapped VMs, task_size, VM_Speed, ESTij ,

AFTij , ARij , Status)

Compute_ARij()

fail_tests ={ tf | tf ∈ T, o(tf) = q and q ≤ n}

for each tf in fail_tests:

while Status(tf) = 1:

if (ti−1 , ti+1 ∈T && RT(ti+1 .VM) < RT(ti−1 .VM)):

Select ti+1 .VM (right neighbor) as alternative VM for tf for

ARij

// Reserve the time slot for the selected task

else if (ti+1 ∈T && ti− 1̸∈T):

Select ti+1 .VM as alternative VM of tf for ARij

// Reserve the time slot for the selected task

else:

Select ti−1 .VM as alternative VM of tf for ARij

// Reserve the time slot for the selected task

Update_ARM (incoming_tasks, Mapped VMs, task_size,

VM_Speed, ESTij , AFTij , ARij , Status(tf) = 1)

// Status(tf) = 1 implies the AR slot is reserved for tf

IV. LOAD BALANCING MODEL
Apart from all this, a load-balancing algorithm is also pro-
posed which escorts the whole system for uniform load
distribution that might be disturbed after fault-handling
throughout the system and further improves the makespan
and utilization. The under and overloaded VMs are identified
by the Load balancing algorithm and the load is shifted
from the overloaded VM to the underloaded VM for uniform
distribution of load among VMs. The VMs having the highest
and lowest makespan are taken as maximum overloaded and
underloaded VMs respectively. Then (e ), the average exe-
cution time of tasks assigned over the maximum overloaded
VM is calculated as in eq (10). The tasks with execution
time less than the eare taken as separate sets (Σ). i.e., 6 =

{ti|E(ti, vj) < e

e =

∑o

i=1

tp(ti, vj) && ti ē O
|O|

(10)

Finally, the load is shifted from an overloaded VM to
the underloaded VM as described in the load balancing
algorithm.

Figure 5 depicts the flowchart of the proposed work.

A. THE PROPOSED HFSLM
The allocation in HFSLM is done in three phases: In the
allocation phase, we perform Task Sorting, VM Sorting, and
Task Allocation. However, for dynamically arriving tasks,
HFSLM provides a distinct algorithm for the allocation.
In the second phase: fault tolerance is achieved by proposing
an innovative fault-tolerant algorithm namely Neighbouring-
based Reservation Algorithm for Fault Tolerance. Follow-
ing fault tolerance, the model addresses the evenly dis-
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tributed load amongVMs by recommending a load-balancing
technique.

HFSLM(O, e)
Call Algorithm 1;

Call Algorithm 2;

6 = {ti | E(ti, vj) < e}

Sort set 6 in descending order of execution time

for each task ti in 6:

shift_task_to_underloaded_VM(ti)

update_makespan()

makespan.overloaded_VM = makespan. overloaded_VM

- execution_time(ti)

makespan.underloaded_VM = makespan.underloaded_VM

+execution_time(ti)

if(makespan.underloaded_VM < makespan. overloaded_VM):

continue // Take another task from 6

else:

rollback (makespan.underloaded_VM, makespan. overloaded_VM)

// To the previous state

ti= ti+1 //take next task from 6

end for

Estimate the QoS parameters Makespan, and UT

// as per Eq.(8) and Eq. (9)

B. COMPUTATIONAL COMPLEXITY OF HFSLM
To compute the complexity of HFSLM, the basic opera-
tions are analyzed as a function of input size. We will
express the complexity of the presented HFSLM in Big
Onotation:
Task Sorting and VM Sorting:
Sorting a list of n tasks concerning task size using Quick-

Sort, the complexity is typically O (n log n)
Task Mapping:

• For n tasks and m VMs, we need to iterate through all
VMs in the worst case for a suitable mapping. i.e.,
O (n * m) iterations

• Operations of each iteration will take constant time.
• Complexity is O (n * m)

Dynamically arriving Task Mapping (for n arriving tasks):

• For identifying neighboring tasks of the arrived task,
the algorithm takes constant time.

• Total number of iterations equals the number of arriv-
ing tasks (n).

• Complexity is O (n)

Neighbouring-based Reservation Algorithm for Fault Toler-
ance:

• For q failed tasks, the algorithm iterates for each failed
task and performs constant time operations.

• The total sum of iterations depends on the number of
failed tasks (q).

• Complexity is O (q)

Similarly, for the load balancing algorithm, if we assume
k tasks in 6 have execution time less than e, the complexity
will be O (k)

FIGURE 5. Flow chart of the Proposed HFSLM.

HFSLM Algorithm Complexity:
The total complexity of the model is taken by adding all

the individual complexities:
O (n log n) + O (n * m) + O (n) + O (q) + O (k)
As we can observe O (n * m) dominates other runtime

operations because it depends on both the number of tasks
and VMs. Therefore, the complexity of the model can be
estimated as O (n * m).

V. ILLUSTRATIVE EXAMPLE
This section demonstrates an explanatory and moti-
vational example where the working of the proposed
reservation-based fault tolerance and load balancing model
has been expressed. An example to illustrate the model has
been taken from the most recent paper where FTHRM [39]
has been proposed and we have related our proposed model
with FTHRM based on the same example.

Nine different independent tasks and three VMs have been
taken to demonstrate the working of the proposed model.
(Note: the proposed model supports run-time dealing with
both tasks and VMs as shown in Figures 3 and 4). But for
simplicity of an example, we are taking the instance of tasks
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TABLE 2. Instance of tasks and VMs.

and VMs as shown in Table 2. The Ready time of each VM
is the previous load on the VM. Now, the allocation of tasks
to the VMs has been done by the proposed strategy where
the tasks and VMs are sorted initially according to increased
task_size and VM_speed respectively as shown in Figure 6.

FIGURE 6. Task allocation concerning the proposed strategy.

The proposed allocation is illustrated in Figure 7. ESTij is
the time when the execution of ti on vj starts and AFTij is
the time when the execution of ti on vj completes. AFT of the
previously executed task on any VM becomes the EST of the
next task on the same VM as shown in Figure 7. Furthermore,
AFTij is computed by adding the execution time (tp(ti, vj)) to
the ESTij. Here, tp(ti, vj) is computed as shown in equation 8.
The TET of each VM is initialized to zero which indicates
that no task has been executed on the particular VM.

However, in this example, each VM has its Ready time
i.e., RT (V1) = 2, RT (V2) = 4, and RT (V3) = 6. Now, the
Ready time of Vj will be assigned to TETj. In other words,
TET(V1) = 2, TET(V2) = 4, TET(V3) = 6.

A. TASK ALLOCATION
After sorting tasks and VMs, VMs are allocated to the tasks
in the sorting order as shown in Figure 6. Initially, t4 is
allocated to VM1 with EST = 2, t5 is allocated to V2 with
EST=4, and t1 is allocated to VM3 with EST = 6. For t4,
EST41 = 2 because Ready time of VM1 is 2, now to compute
AFT41, tp(t4, v1) =

90
10 = 9 will be added to the EST41.

In other words, AFT41 = 2+9 = 11. After the execution of

t4 is over, RT(V1) will be updated to 11 and is the EST of the
next task.

Similarly, for t5, EST52 = 4 because Ready time of VM2
is 4, now to compute AFT52, tp(t5, v2) =

100
12 = 8.3 will be

added to the EST52. In other words, AFT52 = 4+8.3 = 12.3.
After the execution of t5 is over, RT(V2) will be updated to
12.3 and is the EST of the next task.

For, t1, the same thing happens, and RT(V3) will be
updated to 14.5 and is the EST of the next task as illustrated
in Figure 7.

The next task i.e., t6 will be allocated to that VMwhose RT
has been already computed i.e., the VM which is available or
free. If RT has been computed for more than one VM, then
the next task will be allocated to the VM having minimum
ready time. (Note: as the VMs and task are sorted, RT for
all the VMs will also come to be sorted. The same happens
with this example also, there will be some variation in case
little or minimum variation in arriving task size i.e., in low
task heterogeneity cases). Finally, after the allocation of all
tasks is over, we compute the Makespan and Average VM
Utilization.

Since, TET (v1) = 68, TET (v2) = 71.2, TET (v3) = 73..7
as shown in Figure 7.

Now, Makespan is computed as max(TETj), ∀vj
i.e.,max(68, 71.2, 73.7)

Makespan = 73.7

Average VM Utilization(U) is computed as:

sum of all TETs
Total number of VMs X Makespan

U =
68 + 71.2 + 73.7

3X73.7
=

213.1
221.1

= 96.3%

Comparing the Makespan and Average VM Utilization with
FTHRM, theMakespan of FTHRMwas found to be as 80 and
utilization was 84.76% for the same example. The allocation
in FTHRMwas done according to the MCT strategy. In other
words, the proposed allocation used in the model surpasses
the MCT strategy as well on both makespan and average VM
utilization.

B. FAULT-TOLERANCE
As per the algorithmic flow of the model, after allocation,
we are performing fault tolerance of the system using a
neighboring-based advance reservation. Before reservation-
tolerance, we have assumed and illustrated the random fault
tolerance first so that we can compare our neighbouring
reservation fault tolerance with the assumed random fault
tolerance. The implementation results are also compared with
FTHRM in the results section.

1) RANDOM FAULT TOLERANCE
Now, let’s suppose V3 failed at 34.5 as shown in Figure 8.
Now if we randomly assign an alternative VM to the affected
taskwhich here is t3. In Random allocation, we randomly pick
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FIGURE 7. Allocation of tasks concerning the proposed sorting
algorithm-based fault.

any of the VMs and allocate them to t3. Here we are migrating
t3 to VM1 till t3 completes its execution.

Since
So, AFT31 = 68 + 55 = 123.
Hence, TET (v1) = 123, TET (v2) = 71.2, TET (v3) =

73.7− tp(t3, v3) = 73.7−39.2 = 34.5 as shown in Figure 8.
Now, Makespan is computed as max(TETj), ∀vj
i.e.,max(123. 71.2, 34.5)

Makespan = 123

Average VM Utilization(U) is computed as:

sum of all TET
Total number of VMs X Makespan

i.e., U = 123+71.2+34.5
3×123 =

194.2
246 = 78.9%

It is clear because of fault in any of the VMs, the makespan
increases and utilization decreases.

2) PROPOSED NEIGHBOURING BASED RESERVATION
Now, we are going to use a neighboring-based reservation to
provide an alternative VM to the affected task. Neighboring-
based reservation strategy selects the neighboring VM as an
alternative VM for the affected tasks. As we have already
sorted the tasks and VMs, therefore, reserving the neighbor-
ing VM will ensure that the same capacity of an alternative
VM is reserved for the affected task. For using an advance
reservation, we need to estimate the advance reservation slot
represented as an ARij slot i.e., advance reservation slot for ti
on some VMj and we are reserving the neighboring VM for
the same AR slot to ensure task execution till completion of

FIGURE 8. Random fault tolerance without reserving neighboring VMs.

the task. ARij is estimated as the difference between AFTij
and ESTij given in equation (11).

ARIJ = AFTIJ − ESTIJ (11)

Furthermore, all the information regarding tasks and VMs
including AR slots are stored in a Matrix known as ARM as
shown in Table 3.
The illustration of fault tolerance by reserving Neighbour-

ing VMs is given in Figure 9. It is clear from the illustration,
that, unlike random fault tolerance with reservation, VM2
has been selected as an alternative VM because VM2 is the
neighbor of failed VM i.e., VM3. The affected task i.e., t3 has
been migrated to VM2 which will be of the approximately
same capacity as that of VM3. The computational flow is
shown in Figure 9.
Again, let’s suppose V3 failed at 34.5 as shown in Figure 9.

Now, using a Neighbouring-based reservation, we will select
the Neighbouring VM for the affected task.

Here, we are migrating t3 to its neighbouring VM (VM2)
till t3 completes its execution.
Since,tp(t3, v2) =

550
12 = 45.8.

So, AFT32 = 71.2 + 45.8 = 117.
Hence, TET (v1) = 68, TET (v2) = 117, TET (v3) =

73.7− tp(t3, v3) = 73.7−39.2 = 34.5 as shown in Figure 9.
Now, Makespan is computed as max(TETj), ∀vj
i.e.,max(68, 117, 34.5)

Makespan = 117
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TABLE 3. Advance reservation matrix (ARM).

Average VM Utilization(U) is computed as:

sum of all TET
Total number of VMs X Makespan

i.e., U = 68+117
2×117 =

185
234 = 79.5%

It is clear from the illustration that using reservation
makespan and utilization improved. Although, in this exam-
ple, the utilization is found to be increased by only 1%. This
is because we have only three VMs here. Furthermore, the
capacity of VMs varies only by 2MIPS. In real-timewhere we
have a large number of VMs of extremely different capacities,
this strategywill show huge improvements in bothmakespans
as well as utilization.

C. LOAD BALANCING
After performing fault tolerance, the model escorts the
whole system with load balancing for further optimiza-
tion of the makespan and utilization. The load balancing
algorithm focuses on the maximum overloaded and mini-
mum underloaded VM. After identifying the overloaded and
underloaded VM, the load is shifted according to the given
algorithm and depicted in Figure 10. In this example, after
fault tolerance, the overloaded and underloaded VMs are
identified as VM2 and VM1 respectively. Tasks executing on
maximum overloaded VM and minimum underloaded VM
are denoted as sets O and U respectively. Then, the average
execution time (e) of tasks allocated over the maximum
overloaded VM is calculated. The tasks having execution
time less than the average execution time are taken as separate
sets (Σ). I.e., Σ=ti| E(ti, vj) <e
Overloaded and underloaded VMs are VM2 and VM1

respectively.
O:{t5, t2, t7, t3}&& |O| = o, U: {t4, t6, t9}&& |U| = u

e =

∑o

i=1

E (ti, vo)&& ti ē O
|O|

=
E (t5, v2) + E (t2, v2) + E (t7, v2) + E(t3, v2)

4

FIGURE 9. Fault tolerance by reserving neighbouring VMs.

=
8.3 + 21.6 + 37.3 + 45.8)

4
=
113
4

e = 28.5
Σ=t2, t5 E(t5, v2) = 8.3 and E (t2, v2)= 21.6(both are

less than e)
NowΣwill be sorted in descending order of their execution

time.
Σ={t5, t2}
Now the algorithmwill shift the load fromVM2 to VM1 till

the makespan of underloaded VM<makespan of overloaded
VM (see load balancing algorithm). Here, we are migrating
t2 from VM2 to VM1. Now, Makespan is computed as:
max (TET j),∀Vji.e., max (94, 95.4, 34.5)
Makespan = 95.4
Average VM Utilization(U) is computed as:

sum of all TET
Total number of VMs X Makespan

U = 94+95.4
2×95.4 =

189.4
190.8= 99.2%

Since,tp(t2, v1) =
260
10 = 26.

So, AFT21 = 68 + 26 = 94.
Hence,TET (v1) = 94, TET (v2) = TET (v2)− tp(t2, v2) =

117 − 21.6 = 95.4, TET (v3) will be the same i.e., 34.4 as it
is a faulty VM as shown in Figure 10.
Now, Makespan is computed as max(TETj), ∀vj
i.e.,max(94, 95.4, 34.5)

Makespan = 95.4
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FIGURE 10. Load balancing after fault tolerance.

Average VM Utilization(U) is computed as:

sum of all TET
Total number of VMs X Makespan

i.e., U = 94+95.4
2×95.4 =

189.4
190.8 = 99.2%

The above illustration demonstrates the working of the
whole hybrid model. Comparing the proposed model with
FTHRM. FTHRM shows the final utilization as 84.76 on
the other hand proposed model shows the final utilization as
99.2% in the same example. It is because of escorting the
proposed model with load balancing. Furthermore, FTHRM
shows a makespan of 80 but the proposed model shows a
makespan of 95.4. It is because the proposed model has
reserved the neighbouring VMs for the affected tasks and has
also migrated the affected task from the failed VM to the
neighbouring reserved VM. It is clear from the illustration
that after load balancing the makespan and utilization have
been optimized up to 18.8% and 20% respectively than before
load balancing.

VI. RESULTS AND DISCUSSIONS
The findings were evaluated over MSI GF 65 Thin (15-inch,
2021 Model) Machine, having 4 GHz Hexa-core Intel Core
i5 Processor, 816GB 2133 MHz DDR4 RAM, Intel Iris Plus
Graphics 650 1536 MB Graphics, Nvidia Gtx 1660ti (6gb
vram), 512 GB SSD Storage. The used Operating Systemwas
Windows 11.

Python 3.7 is the used programming language and
environment.

The tools included in Python 3.7 are:

• Excel - for producing and managing the CSV that the
Python program uses as input that contains the job sizes
and resource capacities.

• Jupyter Notebook for Python development.
• The used Python Libraries (Library - Version) are:

Numpy - 1.19.2 (used for vector algebra)
Pandas - 1.1.2 (used for manipulating CSV and data

frames, (both loading and storing))
Operator - used for sorting dictionary.
Random - To produce arbitrary or random numbers.
The proposed HFSLM is compared with four different

approaches based on two main parameters i.e., makespan
and average utilization. HFSLM is evaluated by comparing
it with FTHRM [22], OLB [23], MIN-MIN [24], and MAX-
MIN [25] for less than 1000 tasks. Also, compared with
ELISA and MELISA with greater than 10,000 tasks. The
conclusions were observed on varying the number of tasks
and VMs. Furthermore, task and machine heterogeneity are
also varied to analyze the results of the proposed model more
clearly. As mentioned in [5], the range of Expected Time
to Compute (ETC) for ti on vj is variable as heterogeneity
varies from low to high for both the arriving tasks and VMs.
By altering the heterogeneities of the incoming tasks and
VMs, HFSLM is evaluated in this section.

A. VARYING HETEROGENEITY OVER SMALL TASK SCALE
The evaluation has been done by adjusting the number of
tasks and VMs, size of tasks, and capacities of VMs in
four different heterogeneities given by [5] i.e., HH, HL, LH,
LL. For all these four cases the working efficiency of the
proposed model and compared strategies have been analyzed
and depicted graphically in the given figures. In compar-
ison, the tasks have been taken on a small scale varying
from 250 to 1000. On the other hand, the VMs have var-
ied from 16 to 128. Additionally, the input parameters
taken to analyze the considered model are further shown
in Table 4.

TABLE 4. Simulation parameter used in HFSLM.
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FIGURE 11. Makespan for varying tasks and VM (HH).

FIGURE 12. Average resource utilization for varying task and VM (HH).

1) HIGH TASK – HIGH MACHINE HETEROGENEITY (HH)
In high task heterogeneity, the task size ranges from 100 MI
to 3000 MI, and high machine heterogeneity ranges
from 10MIPS to 100MIPS. A few observations regarding the
considered parameters i.e., makespan and average resource
utilization are depicted in Figures 11 and 12. Further details
of the observations are as follows:

• The proposed HFSLM is enhancing the makespan
because of its planned features. For all the ranges of
task number and VM number considered, the model
surpasses other strategies by offering a minimum
makespan. Apart from this, it is seen in Figure 11, that
at large task scale and small VM scale, the makespan

shown is quite large but in that case also, HFSLMoffers
an optimized makespan.

• Furthermore, on comparing average resource uti-
lization, HFSLM beats about 80% of the com-
pared approaches. Additionally, for small-scale tasks,
HFSLM shows better utilization than MAX-MIN and
as the number of tasks and VMs are going towards
extremely large scales, HFSLM and MAX-MIN go
almost equally.

• Out of all the compared approaches, OLB performs
worst in both makespan and utilization. It is prob-
ably because OLB does not follow any plans and
strategies.
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FIGURE 13. Makespan for varying tasks and VM (HL).

FIGURE 14. Average resource utilization for varying task and VM (HL).

2) HIGH TASK – LOW MACHINE HETEROGENEITY (HL)
In high task heterogeneity, the task size ranges from 100 MI
to 3000 MI, and low machine heterogeneity ranges
from 1 MIPS to 10 MIPS. A few observations regarding the
considered parameters i.e., makespan and average resource
utilization are depicted in Figures 13 and 14. Further details
of the observations are as follows:

• The proposed HFSLM is enhancing the makespan
in HL because of its planned features. For all the
ranges of task number and VM number considered, the
model surpasses other strategies by offering aminimum
makespan. Moreover, as depicted in Figure 13, HFSLM

provides an optimized makespan even in the case of
large task numbers and small available VMs. However,
in such cases, MAX-MIN offers the highest makespan.

• On comparing average resource utilization, HFSLM
again efficiently beats about 80% of the compared
approaches in HL also. In HL, the proposed model also
beats MAX-MIN in the case of a small task scale, and
as the task scale goes up, both HFSLM and MAX-MIN
go with almost tie.

• Out of all the compared approaches, OLB provides
the worst makespan. However, in some cases, MAX-
MIN also did not show an optimized makespan.
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FIGURE 15. Makespan for varying tasks and VM (LH).

FIGURE 16. Average resource utilization for varying task and VM (LH).

Additionally, in the case of average resource utiliza-
tion, OLB offers very limited utilization than all the
considered approaches.

3) LOW TASK – HIGH MACHINE HETEROGENEITY (LH)
In low task heterogeneity, the task size ranges from 1 MI
to 100 MI, and high machine heterogeneity ranges
from 10MIPS to 100MIPS. A few observations regarding the
considered parameters i.e., makespan and average resource
utilization are depicted in Figures 15 and 16. Further details
of the observations are as follows:

• In this particular case, the proposed HFSLM cannot
beat MAX-MIN concerning the makespan. As depicted
in Figure 15, the makespan provided by HFSLM
and MAX-MIN provided either equal makespan or
MAX-MIN outperformed HFSLM. However, there are

rare cases where HFSLM showed a little better
makespan than MAX-MIN.

• On comparing average resource utilization, HFSLM
again efficiently beats all the compared approaches
except MAX-MIN. However, the proposed model also
beats MAX-MIN in the case of a small task scale. The
performance of HFSLM in the mid-scale goes down
more than MAX-MIN but as the task scale goes up,
HFSLM shows optimized utilizations.

• Like in the case of HH, out of all the compared
approaches, OLB performs worst in both makespan
and utilization in LH also. The reason for this can again
be the lack of significant strategies in OLB.

4) LOW TASK – LOW MACHINE HETEROGENEITY (LL)
In low task heterogeneity, the task size ranges from 1 MI
to 100 MI, and low machine heterogeneity ranges
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FIGURE 17. Makespan for varying tasks and VM (LL).

FIGURE 18. Average resource utilization for varying task and VM (LL).

from 1 MIPS to 10 MIPS. A few observations regarding the
considered parameters i.e., makespan and average resource
utilization are depicted in Figures 17 and 18. Further details
of the observations are as follows:

• In the case of LL, the proposed HFSLM beats
MAX-MIN concerning the makespan. As depicted in
Figure 17, the makespan provided by HFSLM for small
task scales is more optimal than MAX-MIN. However,
as the task scale goes up, both HFSLM and MAX-MIN
are in a tie.

• On comparing average resource utilization, HFSLM
utilizes the resource efficiently. However, MAX-MIN
and HFSLM behave almost the same in all task
scales.

• As depicted in Figure 17, OLB and MIN-MIN both
show poor makespan for small task scales. Addition-
ally, as the task scales grow, the makespan of MIN-MIN
improves. Furthermore, as depicted in Figure 18, OLB
shows poor resource utilization in all cases.

Observations: The suggested technique outperforms
FTHRM in terms of makespan and utilization, which go from
0.72% to 10.8% and 1.01% to more than 50%, respectively.
When compared to MAX-MIN, HFSLM exhibits makespan
improvements of −3.03% to 8.8% and average resource
utilization gains of −2.15% to 6.7%. While comparing the
suggested approach with MIN-MIN, the model shows an
improvement of 0.6% to 19% in makespan and 1.09% to
more than 45% in utilization. However, OLB was seen
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FIGURE 19. Average makespan on varying heterogeneity.

to perform very weakly among all approaches where the
suggested model shows improvements of more than 50%
in both makespan and utilization than OLB. Furthermore,
it was observed that all the models perform almost equal
optimization in makespan in LH heterogeneity. However,
in that case, also OLB performs weakly among the compared
approaches.

B. VARYING HETEROGENEITY OVER LARGE TASK SCALE
Besides, the suggested model has also been contrasted with
two other popular load-balancing models. i.e., ELISA and
MELISA, and was evaluated based on makespan and average
resource utilization on an extremely large task scale. The
tasks were varied from 10000 to 50000. This is because the
literature shows that these two models are more significant
for large task scales. The average results of the makespan
are depicted in Figure 19. The outcomes confirm that the
makespan of the proposed HFSLM is superior to ELISA and
MELISA. However, as the number of tasks grows beyond
40000 the average makespan of ELISA and MELISA is
optimized. This shows that ELISA and MELISA are more
optimal at a very high task scale.

Comparing average utilization, the three models are com-
pared based on Min, Avg, and Max average resource
utilization. In Figure 20, it can be noted that there is a sig-
nificant variation in the range of VM utilization for ELISA
and MELISA. However, for HFSLM, the range of varia-
tions between minimum, average, and maximum utilization
is almost negligible.

The proposed model was seen to perform optimally in the
case of utilization in all cases of heterogeneity. However,
on makespan, the model could not perform optimally in a few
cases.
Observations: Additionally, Comparing HFSLM with

ELISA and MELISA on a large tasks scale, HFSLM shows
improvements from−0.98% to 23.33% and from−3% to 8%
on makespan respectively. Besides, HFSLM shows 1.42%
and 1.22% improvements in minimum resource utilization as

FIGURE 20. Average resource utilization on varying heterogeneity.

compared to ELISA andMELISA respectively. Onmaximum
resource utilization, the proposed model shows improve-
ments of 39.1% and 48.8% respectively.

VII. CONCLUSION
In the proposed study, a Hybrid Fault-tolerant Schedul-
ing and Load balancing Model is introduced employing
neighboring-based VM to control failure in the cloud system
with high computational demands. HFSLM uses a proficient
task allocation strategy and distributes the arriving tasks
among VMs at the arrival. In case of fault, the model uses
the neighboring VMs of the faulty VM as a substitute and
allocates an alternate VM to the affected task. Moreover, the
proposed model escorts the whole system with an efficient
load-balancing algorithm and maintains load equilibrium
post-to-fault tolerance. After the implementation of themodel
in Python, performance evaluation was carried out by com-
paring HFSLM with FTHRM, MIN-MIN, MAX-MIN, and
OLB on a low task scale by varying the task and VM in four
different heterogeneities. The evaluations were performed
based onmakespan and averageVMutilization. On very large
task scales, the model was also contrasted with two other
emerging models i.e., ELISA and MELISA.

The suggested approach outperformed other considered
strategies for QoS parameters. A few reasons are listed below:

• The proposed allocation considers both the upcoming
tasks and newly added and deleted VMs. Addition-
ally, optimal load distribution and effective average
resource utilization occur simultaneously. As a result,
it provides significant enhancement in all considered
parameters.

• As can be seen from the overall results the utiliza-
tion of the proposed approach remains optimized on
varying the number of tasks and VMs. This is because
the proposed allocation strategy focuses on distribut-
ing the arriving tasks throughout the available VMs.
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Moreover, various strategic advancements in the pro-
posed HFSLM play a significant role in the same.

• Furthermore, the proposed model outperforms all the
compared approaches in HH and HL cases. It is
because in high task heterogeneity the ready time of
all the available VMs will always be sorted in other
words, whenever we have high task heterogeneity, the
ready time of all the VMs in the VM list will always be
sorted. The sorted ready time of VMs is the best case
for the proposed allocation.
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