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ABSTRACT The study presents the Multi-Strategy Learning Fusion Slime Mould Algorithm (MFSMA),
a novel method designed to optimize parameters in photovoltaic systems, thereby increasing the efficiency of
solar energy conversion. MFSMA employs an advanced technique that incorporates elite opposition-based
learning to quickly identify optimal solutions while preserving diversity within the population. Additionally,
it integrates a ranking mechanism from the Grey Wolf Algorithm, which categorizes individuals according
to their fitness levels, ensuring a balanced approach between exploratory diversity and exploitative precision
during the optimization journey. Through rigorous testing on various benchmark functions, MFSMA has
demonstrated its exceptional ability to outperform existing algorithms widely used in the sector. The
algorithm’s effectiveness is further validated through its application in determining the parameters of
single, double, and triple-junction photovoltaic modules. Moreover, the durability and effectiveness of
the MFSMA algorithm have been rigorously evaluated using data from manufacturers’ datasheets across
different temperature and irradiance conditions. Statistical analysis supports the conclusion that MFSMA
offers superior accuracy and dependability in estimating vital parameters for photovoltaic modules, making
it an invaluable tool for overcoming the challenges of parameter identification in solar energy technologies.

INDEX TERMS Photovoltaic models, parameter extraction, slime mould algorithm, multi-strategy learning,
parameter optimization, grey wolf algorithm, elite opposition-based learning.

I. INTRODUCTION
As the repercussions of the conflict between Russia and
Ukraine spread globally and the energy crisis intensifies,
some nations are responding by doubling their investments
in fossil fuels [1]. Billions are being funneled into the
coal, oil, and natural gas industries, which are principally
responsible for exacerbating the climate crisis [2]. Con-
currently, all climate indicators are relentlessly setting new
records, foretelling that large areas of the Earth will soon
experience severe storm surges, floods, droughts, wildfires,
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and unbearable heatwaves. The world is on the precipice of
climatic chaos. Persisting on directing more funds toward
the exploration and production of fossil fuels demonstrates
a stubborn refusal to recognize our mistakes. Fossil fuels
are not the answer to this problem, nor will they ever be.
The damage we have inflicted on Earth and its societies
is starkly evident, with relevant news emerging daily, and
no one is impervious to these impacts. Fossil fuels are
a principal cause of the climate crisis; the solution lies
in renewable energy. This alternative has the capacity to
limit environmental degradation and bolster energy security.
A plethora of sustainable energy sources are at our disposal,
including geothermal, wind, and notably, solar energy. Solar
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energy bears substantial potential as the preeminent clean
energy source for widespread use. Firstly, the distribution
of solar energy is extensive across the globe. The sun’s
radiance uniformly illuminates Earth’s surface, irrespective
of geographical region, making it exploitable on land or
sea, mountainous terrains, or flatlands alike. Secondly, the
energy conversion process involved in photovoltaic power
generation is straightforward and subjects itself to minimal
energy losses. Photovoltaic power generation excludes the
necessity of intermediate processes such as the conversion
of thermal energy to mechanical energy, or mechanical
energy to electromagnetic energy [3], [4]. Furthermore, this
process obviates mechanical movements, thereby eliminat-
ing mechanical wear and tear. Consequently, photovoltaic
power generation touts a high theoretical power generation
efficiency and holds considerable potential for technological
advancements. Nonetheless, numerous challenges need to be
addressed within solar photovoltaic systems. For instance,
photovoltaic power generation can be impacted by factors
such as weather conditions, seasonal variations, and radiation
intensity. During prolonged rain spells or in certain extreme
regions, photovoltaic systems may generate scant or even no
electricity. Moreover, as the duration of usage of photovoltaic
systems extends, inevitable hardware deterioration occurs,
directly influencing the system’s stable operation. Conse-
quently, it is crucial to design and optimize photovoltaic
systems effectively and to accurately evaluate their practical
performance [5], [6].

The practical performance of a photovoltaic (PV) system
is contingent upon the relevant unknown parameters. Eval-
uating these parameters can enhance our comprehension of
the PV system’s real-world performance [7]. Nonetheless,
a multitude of challenges persist within solar photovoltaic
(PV) systems that necessitate attention. Factors such as
weather variability, seasonal changes, and fluctuating radia-
tion intensity significantly impact photovoltaic power gener-
ation. During extended rainy periods or within particularly
harsh environments, PV systems may produce minimal
or even no electricity at all. Moreover, with the ongoing
utilization of PV systems, hardware degradation becomes
an inevitable consequence, adversely impacting the stability
and operational reliability of the system. Consequently, it is
imperative to adeptly design and optimize PV systems,
as well as accurately evaluate their real-world performance.
The operational efficiency of a PV system in practice
hinges on various unknown parameters. A thorough assess-
ment of these parameters can offer a more comprehensive
understanding of the system’s actual performance. However,
standard diode model (SDM), double diode model (DDM),
triple diode model (TDM), and PV system equations often
manifest as implicit transcendental equations, rendering
the parameter extraction process exceptionally challenging.
Hence, devising an effective method for extracting these
unknown parameters has become a focal point for continued
research and study. Consequently, effective methods for

extracting unknown parameters become the focal point for
subsequent research [8].

Swarm Intelligence (SI) algorithms have garnered sig-
nificant attention from researchers due to their wide-
ranging applicability, absence of black-box issues, lack
of stringent mathematical requirements such as differen-
tiability for problem-solving, and their ability to locate
near-optimal solutions in a reasonable timeframe without
necessitating gradient computation. Their exploratory and
exploitative tendencies have been extensively studied in
various fields, encompassing areas such as economic emis-
sion dispatch problems, image segmentation, scheduling
issues, medical diagnosis, costly optimization challenges,
feature selection, and global optimization. As a result,
recent years have witnessed the emergence of innovative
and groundbreaking algorithms, such as the Slime Mould
Algorithm (SMA) [9], Harris Hawks Optimization (HHO)
[10], Hunger Games Search (HGS) [11], Runge-Kutta
Optimizer (RUN) [12], Colony Predation Algorithm (CPA)
[13], Weighted Mean of Vectors (INFO) [14], and Grey
Wolf Algorithm [15]. Recently, these SIs algorithms have
been applied in identifying parameters of several photovoltaic
models to optimize the efficiency of photovoltaic models
for maximum conversion of solar energy into electrical
energy. Song et al. [16] developed a multi-strategy, co-
evolutionary differential evolution algorithm (MPPCEDE)
designed to fine-tune photovoltaic model parameters, thereby
enhancing the conversion efficiency of solar energy into
electricity. Chen et al. [17] introduced an innovative perturbed
stochastic fractal search algorithm that employs both a
perturbed stochastic fractal search operator and a chaotic
elite perturbation strategy for the precise optimization of
parameters within photovoltaic systems. Yousri et al. [18]
leveraged a fractional-order chaotic map variant (FCmap) to
boost the parameter extraction capabilities of the Enhanced
Particle SwarmOptimization (EPSO) [19]. Dkhichi et al. [20]
amalgamated the Levenberg–Marquardt (LM) approach with
simulated annealing (SA) [21], proposing the LMSA method
to counteract the detrimental effects of photovoltaic model
degradation. Li et al. [22] enhanced the sparrow search
algorithm (SSA), formulating a quantum adaptive version
that demonstrated impressive outcomes in isolated island
microgrids. Abbassi et al. [23] refined DDM parameters
utilizing the salp swarm algorithm [24]. Although meta-
heuristic algorithms have showcased remarkable perfor-
mance in practice, they are not without their challenges.
Primarily, the quality of solutions and convergence velocity
invite further enhancement. Secondly, following the no-
free-lunch theorems [25], algorithmic approaches require
bespoke analyses tailored to specific problems, compelling
ongoing research, and the development of more sophisticated
algorithms suited to varying problem domains.

This study is dedicated to advancing amulti-strategy fusion
Slime Mould Algorithm (MFSMA), which incorporates an
opposition-based learning operator and the operators from
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the Grey Wolf Optimizer (GWO) to enhance the evaluation
of photovoltaic models. SMA is inspired by the natural
behavior of slime mould, particularly its ability to find the
shortest path between points in a network, which mirrors the
process of optimizing solutions. This bio-inspired algorithm
stands out for its simplicity in implementation, flexibility
in handling multi-dimensional and multi-objective prob-
lems, and robustness against local optima traps. Compared
to other algorithms, SMA often requires fewer parameters to
be adjusted, making it more user-friendly and less prone to
overfitting. Its capability to dynamically adapt to the chang-
ing landscape of a problem space ensures a good balance
between exploration and exploitation, leading to high-quality
solutions within shorter computational times. These char-
acteristics make SMA a compelling choice for tackling
a wide range of optimization challenges where traditional
algorithms might struggle. Within MFSMA, these two mech-
anisms synergize to yield superior optimization outcomes.
Addressing one primary limitation of the current Swarm
Intelligence (SI) algorithms—the paucity of inter-individual
communication within the population—an opposition-based
learning mechanism has been integrated. This innovative
approach not only compensates for insufficient interaction
amongst population members but also adeptly circumvents
local optima, thereby fortifying the algorithm’s capability for
local exploitation. In pursuit of a more expansive solution
space that enables broader search capabilities, the GWO
mechanism was incorporated. The amalgamation of these
mechanisms empowersMFSMAwith robust solution-finding
efficiency while simultaneously equipping it with the agility
to escape local optimality traps. To validate the efficacy and
reliability of this proposed method, comparative analyses are
conducted against other cutting-edge algorithms, alongside
comprehensive experimentation on multimodal problems
related to assessing unknown parameters in photovoltaic
models. The empirical evidence suggests that MFSMA
exhibits commendable performance in tackling photovoltaic
optimization challenges.

The main contributions are as follows:
• To enhance the extraction of unknown parameters across
diverse photovoltaic modules, the multi-strategy fusion
SlimeMould Algorithm has been refined and designated
as the MFSMA.

• Inter-individual communication within a population is
bolstered through the integration of an opposition-based
learning operator as a search mechanism.

• AGreyWolf Optimizer (GWO) operator is incorporated
to facilitate exploration within an expanded solution
space in MFSMA.

• A comparative analysis of MFSMA against leading
algorithms confirms its substantial competitive strength
in the evaluation of photovoltaic model challenges.

• The proficiency of MFSMA in parameter extraction
within intricate environments is rigorously evaluated.

The organization of this document is outlined as fol-
lows: Section II delineates the particulars of background.

Section III offers an in-depth exposition of the MFSMA
algorithm. Numerical outcomes are disclosed in Section IV,
with Section IV-A detailing the validation benchmarks for
MFSMA. The application results of MFSMA to the Standard
Diode Model (SDM), Double Diode Model (DDM), and
photovoltaic modules are encapsulated in Section IV-B.
Section IV-C presents the performance of MFSMA against
the manufacturer’s datasheet specifications. A comprehen-
sive discussion is situated in Section V, and concluding
remarks along with prospective avenues for research are
situated in Section VI.

II. PROBLEM FORMULATION
A. SINGLE DIODE MODEL (SDM)
The equivalent circuit model of a Sigma-Delta Modulator
(SDM) is depicted in Figure 1. Owing to its relatively
straightforward architecture, this model enjoys widespread
utilization. It is characterized by a mere five parameters.
Photogenerated current, sometimes referred to as induced
current, denotes the flow of electrical charge driven by
carriers that are excited into motion within the battery under
photonic stimulation. This current is deeply intertwined with
the energy band structure of the battery and hinges on the
generation rate and the mobility of these photogenerated
carriers. The diode reverse saturation current, also known as
dark current, can be attributed to the properties like barrier
height, the expanse of the depletion layer, and the thermal
conditions within the PN junction of the battery. Regarding
the diode ideal factor—or emission coefficient—this metric
serves to evaluate the extent to which imperfections in
the battery influence its capacity for light absorption and
the efficacy of photon emission. An elevated ideal factor
signifies a heightened degree of carrier recombination
within the battery, pointing to efficiency losses. The series
resistance is largely derived from the inherent bulk resistance
present in semiconductor materials, compounded by the
resistive interface formed at the juncture between metal and
semiconductor layers. Lastly, the parallel, or shunt, resistance
is indicative of the PN junction’s suboptimal behaviors within
the battery and is illustrative of local short-circuit phenomena,
often precipitated by impurities situated proximate to the
junction.

The final IL is calculated as IL = Iph − Ish − Id ,
where Iph represents the photogenerated current; Ish denotes
the shunt resistor current. Id is the diode current; IL is
the ultimate current output. Id is calculated as Id =[
exp

(
(VL+Rs•IL )
n•k•T • q

)
− 1

]
• Isd , where Isd signifies the

reverse saturation current, q represents the charge of an
electron, quantified as (1.60217646× 10−19) Coulombs (C),
VL denotes the output voltage, Rs is the series resistance,
and n indicates the diode’s ideal coefficient. The con-
stant k has a value of (1.3806503 × 10−23) Joules per
Kelvin (J/K). T stands for temperature, measured in Kelvin,
which is the temperature unit employed throughout this
paper. Ish is Ish =

VL+Rs•IL
Rsh

,where Rsh represents the shunt
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resistance, and VL , Rs, and IL denote the same content as
previously mentioned. And then the IL = Iph − Ish − Id can
be wirten as:

IL = Iplr − Isdl ·
[
exp

(
q · (VL + RS · IL)

n · k · T

)
− 1

]
−

VL + RS · IL
Rsh

(1)

where Iph, Isd ,Rs,Rsh and n are the unknown parameters in
SDM, which exert a significant influence on the conversion
efficiency of solar energy.

B. DOUBLE DIODE MODEL (DDM)
In pursuit of heightened accuracy amidst intricate environ-
mental conditions, the Dual Diode Model (DDM) incorpo-
rates an additional diode in series with a photovoltaic power
source, as compared to the Single Diode Model (SDM). The
equivalent circuit representation of DDM is illustrated in
Figure 2. IL is IL = Iph − Id1 − Ish − Id2, and then it can
also be

IL = Iph − Isd1 ·
[
exp

(
q · (VL + RS · IL)

n1 · k · T

)
− 1

]
− Isd2 ·

[
exp

(
q · (VL + RS · IL)

n2 · k · T

)
− 1

]
−
VL + RS · IL

Rsh
(2)

where n1 and n2 signify the ideal coefficients of the diodes;
Isd1 and Isd2 represent the diode diffusion current and reverse
saturation current, respectively; other parameters remain
consistent with those previously described. Iph, Isd1,Isd2,Rs,
Rsh, n1, and n2 are unknown parameters that will impinge
upon the performance of the DDM in terms of solar energy
conversion efficiency

C. PV MODULE MODEL
The photovoltaic (PV) module model is composed of
solar cells of varying sizes arranged in series or parallel
configurations, and its equivalent circuit is depicted in
Figure 4. Equations 3 and 4 respectively correspond to the
output current expressions for the SingleDiodeModel (SDM)
and Dual Diode Model (DDM) applied to the PV module.

IL = IphNp − Isd • Np

•

exp

q •
(
VL
Ns
+ Ns • Rs •

IL
Np

)
n • k • Ns • T

− 1


−

VL
Ns
+ Ns • Rs •

IL
Np

Rss•Ns
Np

(3)

IL = IphNp − Isd11 • Np

•

exp

q •
(
VL
Ns
+ Ns • Rs •

IL
Np

)
n1 • k • T • Ns

− 1



− Isd2 • Np •

exp

q •
(
VL
Ns
+ Ns • Rs •

IL
Np

)
n2 • k • T • Ns

− 1


−

VL
Ns
+ Ns • Rs •

IL
Np

Rsh•Ns
Np

(4)

where Ns represents the number of solar cells connected
in series, and Np is the number of solar cells connected in
parallel. It is evident that Iph, Isd , Rs, Rsh, and n are the
unknown parameters.

D. OBJECTIVE FUNCTION
From the aforementioned discussion, our objective is to
ensure that the derived values of IL and VL closely
approximate actual conditions. To quantify this accuracy,
we employ the Root Mean Square Error (RMSE) as a metric,
with the calculation formula presented as follows:

RMSE(X ) =

√√√√ 1
N

N∑
i=1

f 2i (VL , IL ,X) i = 1, 2, . . . , N (5)

where X symbolizes the vector of the parameter set; popsize
denotes the number of measured current data points. For
the SDM, DDM, and TDM, X encompasses the unknown
parameters that influence their respective performances.

f (VL , IL ,X) = Iph − IL

− Isd •
[
exp

(
q • (VL + Rs • IL)

n • k • T

)
− 1

]
−
VL + Rs • IL

Rsh
(6)

f (VL , IL ,X) = Iph − IL

− Isd1 •
[
exp

(
q • (VL + Rs • IL)

n1 • k • T

)
− 1

]
−Isd2 •

[
exp

(
(Rs • IL + VL)
k • T • n2

• q
)
− 1

]
−
VL + Rs • IL

Rsh
(7)

f (VL , IL ,X) = Iph

− Isd1 •
[
exp

(
q • (VL + Rs • IL)

n1 • k • T

)
− 1

]
− Isd2 •

[
exp

(
q • (VL + Rs • IL)

n2 • k • T

)
− 1

]
− Isd3 •

[
exp

(
q • (VL + Rs • IL)

n3 • k • T

)
− 1

]
−
VL + Rs • IL

Rsh
− IL (8)

III. THE PROPOSED ALGORITHM
A. SLIME MOULD ALGORITHM
Drawing on the oscillatory behavior observed in natural
slime mould, the newly developed Slime Mould Algorithm
(SMA) boasts a set of unique features encapsulated within an
advanced mathematical framework. The model is predicated
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on adaptive weighting strategies that mirror the dynamic
feedback processes found in the wave propagation patterns
of slime mould, orchestrated by a bio-oscillator. This
sophisticated algorithm demonstrates exceptional proficiency
in establishing optimal foraging paths, evidencing superior
explorative prowess and an inclination toward effective
resource utilization. Since the SMA was proposed, it has
received widespread attention in academia and engineering
application circles [9].

The slime mold exhibits chemotactic behavior by moving
toward a food source in response to olfactory cues. The
contraction mechanism of the slime mold as it approaches
the nutrient can be represented by the followingmathematical
models:

−−−−−→
X (t + 1) =

{−−→
Xb(t)+

−→
vb ·

(
W⃗ ·
−−→
XA(t)−

−−→
XB(t)

)
, r < p

−→vc ·
−−→
X (t), r ≥ p

(9)

where
−→
vb represents some sort of velocity or change in

position that is bounded between negative a and positive a, t
often indexes the current step or generation in the process,

−→
Xb

represents the individual location with the highest odour
concentration currently found,

−→
X represents the location of

slime mould,
−→
XA and

−→
XB represent two individuals randomly

selected from the slime mould population, and W⃗ can
affect how different components of the model influence the
outcome. Themathematical formula for updating the location
of slime mould is as follows:

−→
X∗ =


rand · (UB− LB)+ LB, rand < z
−−→
Xb(t)+

−→
vb ·

(
W ·
−−→
XA(t)−

−−→
XB(t)

)
, r < p

−→vc ·
−−→
X (t), r ≥ p

(10)

This snippet generates a random value within the range
defined by LB and UB, rand and r denote the random value
in [0,1]. The detailed description can be seen in Algorithm 1.
The input parameters are population size n, current iteration
number t , maximum iterations T , and dimension d . In lines
two to five of the algorithm, each individual within the
population is randomly generated, thereby completing the
initialization of the population X = {x1,X2,X3, . . . ,Xn}.
In lines seven to thirteen of the algorithm, the algorithm enters
the iterative optimization process. If the current iteration
count t is less than the maximum number of iterations T ,
the algorithm continues to execute. If the current iteration
count exceeds the number of iterations, then the algorithm
completes and produces the output Fb and Xbest . During
the iterative optimization process, it is necessary to perform
operations such as calculating the fitness for each individual
and updating their positions accordingly.

B. GREY WOLF ALGORITHM
The Grey Wolf Optimizer (GWO) algorithm emulates the
hierarchical mechanism of leadership and hunting behaviors

Algorithm 1 Slime Mould Algorithm(SMA)

Input: n: Population Size;
t: Current Iteration Number;
T : Maximum iterations;
d : Dimension;

Output: best fitness Fb; Xbest
1 t ←0;
2 for i = 1 to n do
3 for j = 1 to d do
4 Xij← Initialization(i,j);

5 Xi← {xi1, xi2, xi3, . . . , xid };

6 X ← {x1,X2,X3, . . . ,Xn};
7 while NotTermination(t < T ) do
8 for i = 1 to n do
9 Fi← fitness(Xi);

10 Update the best fitness Fb;;
11 for i = 1 to n do
12 Update the position of Xi;

13 t ←t+1;

14 return Fb; Xbest .

observed in natural grey wolf packs. It simulates social
hierarchy through four types of grey wolves and mimics
the predatory actions of tracking, encircling, pursuing, and
attacking prey to fulfill the goal of optimization search.
The GWO algorithm is characterized by its simplicity
of principle, inherent parallelism, ease of implementation,
minimal requirement for parameter tuning, and independence
from gradient information of the problem, along with a robust
capability for global search [15]. In the GWO algorithm,
an initial population of grey wolves is generated randomly
within the search space. To construct a model of the social
hierarchy, the fittest solution in the population is designated
as the alpha (α) wolf, the second-best as the beta (β)
wolf, and the third-best as the delta (δ) wolf, while the
rest are considered omega (ω) wolves. Guided by the α,
β, and δ wolves, the ω wolves follow and participate in
the hunting optimization process, which involves searching
for, encircling, and attacking prey, culminating in the
identification of the optimal solution.

To mathematically model the hunting behavior of grey
wolves, we posit that the alpha (optimal candidate solution),
along with the beta and delta, possess superior knowledge
regarding the potential location of the prey. Consequently,
we retain the top three solutions discovered to date,
compelling the remaining search agents (comprising the
omegas) to adapt their positions in accordance with those
of the leading search agents. In alignment with this concept,
we introduce the following formulas. The core components
of the GWO algorithm are as follows:

D⃗α =

∣∣∣C⃗1 · X⃗α − X⃗
∣∣∣ , D⃗β =

∣∣∣C⃗2 · X⃗β − X⃗
∣∣∣ ,
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D⃗δ =

∣∣∣C⃗3 · X⃗δ − X⃗
∣∣∣

X⃗1 = X⃗α − A⃗1 ·
(
D⃗α

)
, X⃗2 = X⃗β − A⃗2 ·

(
D⃗β

)
,

X⃗3 = X⃗δ − A⃗3 ·
(
D⃗δ

)
X⃗ (t + 1) =

X⃗1 + X⃗2 + X⃗3
3

(11)

where t is the current number of iterations,the D⃗α , D⃗β and D⃗δ

are the distance between the α wolf, β wolf, δ wolf between
the current selected wolf. The A⃗1, A⃗2, A⃗3 and C⃗1, C⃗2, C⃗3 are
the coefficient vectors. The X⃗α , X⃗β , and X⃗δ are the position
vector of the prey. In this study, we attempt to integrate
the core operators of the Grey Wolf Optimizer (GWO)
algorithm with an opposition-based learning strategy into the
original Sine Cosine Algorithm (SMA), to integrate the core
operators of the Grey Wolf Optimizer (GWO) algorithm with
an opposition-based learning strategy into the original Sine
Cosine Algorithm (SMA).

C. THE OPPOSITION-BASED LEARNING
Over the past decade, Opposition-Based Learning (OBL)
has emerged as a distinctive research domain garnering
considerable attention [26], [27]. The OBL concept has been
leveraged to boost numerous soft computing algorithms,
including Reinforcement Learning (RL), Artificial Neural
Networks (ANN), Fuzzy Systems, and various optimization
methods like Genetic Algorithms (GA). The opposite number
of OBL is defined as follows: the x ∈ [a, b] be a real number
and its opposite x̆ is x̆ = a + b − x if the opposite point in
the D space xi ∈ [ai, bi] , i = 1, 2, . . . ,D, the opposite of x is
x̆ (x̆1, . . . , x̆D) and x̆i = ai + bi − xi [28].

Elite opposition-based learning (EOBL) is an avant-garde
methodology in the realm of computational intelligence,
as recently introduced in [29].Within EOBL, elite individuals
are initially identified to generate elite opposition solutions
that correspond to the current solutions. By evaluating and
comparing these elite opposition solutions with the existing
ones, the most advantageous individuals are selected to
constitute the succeeding generation. This strategy not only
broadens the algorithm’s exploratory scope but also amplifies
the population’s diversity and augments the efficacy of the
optimization algorithm. In this research, we integrate an elite
opposition-based learning strategy with the core operators
of the Grey Wolf Optimizer (GWO) into the original Sine
Cosine Algorithm (SMA), with the expectation of enhancing
the performance of the existing SMA algorithm.

D. THE PROPOSED MFSMA
In this study, we delineate a novel methodological frame-
work MFSMA wherein the core components of the GWO
algorithm are intricately woven together with the principles
of elite opposition-based learning. By embedding this
composite strategy within the fabric of the original SMA,
we intend to cultivate a hybridized algorithmic entity. This
enhanced entity is anticipated to not only inherit the powerful

search capabilities intrinsic to GWO—characterized by its
mimicking of grey wolves’ social hierarchy and hunting
techniques—but also to gain from the dynamic and innovative
features of opposition-based learning. Elite opposition-based
learning introduces a paradigm where solutions are not
merely considered in isolation but are also evaluated against
their diametric counterparts within the solution space. This
conceptual leap encourages the algorithm to contemplate
alternative perspectives and thereby avoid premature con-
vergence on local optima, a frequent pitfall in complex
optimization problems. The integration is meticulous and
deliberate, ensuring that the adaptive mechanisms that govern
the wolves’ pursuit, encirclement, and eventual capture
of prey in GWO are harmoniously balanced with the
reflective and explorative impetus provided by opposition-
based learning. When enmeshed with SMA’s mathematical
elegance—its sinusoidal functions guiding search agents
through a balance of exploration and exploitation—the result
is an algorithm poised for robust performance. The detailed
description of the MFSMA is shown in Algorithm 2. The
input parameters are n, t , T , and d . The population X =
{X1,X2,X3, . . . ,Xn} is generated at line five and the ith

individual is Xi. Line six initializes the value of t to 0. While
the maximum number of iterations T is greater than the
current iteration count t , the algorithm MFSMA enters the
iterative loop. And the position of each individual is updated
by the original SMA. During the iterative optimization
process, each individual is updated using GWO operators at
the 17th line. If the current iteration count exceeds the number
of iterations, then the algorithm completes and produces the
output Fb and Xbest .

IV. NUMERICAL RESULTS
An in-depth evaluation of the MFSMA method was carried
out via three separate trials in this study. To begin,
some benchmarks were performed to measure whether the
MFSMA’s property with themulti-strategy learning operators
was significantly better than that of the traditional SMA.
There are seven unimodal tasks (F1-F7), six multimodal
tasks (F8-F13), and ten different fixed-dimensionmultimodal
tasks (F14-F23) [30]. Unlike unimodal tasks, which only
have a single global ideal, multimodal and fixed-dimension
multimodal tasks often have more than one local optimal
value for assessing the exploratory attribute. In addition,
MFSMAwas compared to other current algorithms including
BA [31], PSO [32], FA [33], and GSA [34]. The parameters
of these algorithms are shown in Table 1.

In the second phase of our study, the MFSMA is deployed
to optimize parameter estimation for various types of solar
cells, including SDM, DDM, and encapsulated PV modules.
This investigation maintains consistency by employing the
same computational framework and conditions as previous
studies, with the bounds of the parameters delineated in
Table 2 for comparative analysis. Moreover, we benchmarked
the performance of MFSMA against several meticulously
selected algorithms that have demonstrated efficacy in similar
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Algorithm 2 Multi-Strategy Learning Fusion Slime
Mould Algorithm (MFSMA)

Input: n: Population Size;
t: Current Iteration Number;
T : Maximum iterations;
d : Dimension;

Output: best fitness Fb; Xbest
1 for i = 1 to n do
2 for j = 1 to d do
3 Xij← Initialization(i,j);

4 Xi← {xi1, xi2, xi3, . . . , xid };

5 X ← {x1,X2,X3, . . . ,Xn};
6 t ←0;
7 while NotTermination(t < T ) do
8 for i = 1 to n do
9 Fi← fitness(Xi);

10 Update the best fitness Fb;;
11 for i = 1 to n do
12 Update the position of Xi;

13 X∗← sort(X ); Xα ← X∗(1);
14 Xβ ← X∗(2); Xδ ← X∗(3);
15 Calculate the X⃗1,X⃗2,X⃗3;
16 for i = 1 to n do
17 Update the ithindividual using GWO operator;
18 Calculated the opposite position of the

ithindividual;

19 t ←t+1;

20 return Fb; Xbest .

contexts. These include NPSOPC as reported by Lin and
Wu [35], BLPSO introduced by Liang et al. [36], CLPSO
detailed comprehensively by Liang et al. [36], GOTLBO as
outlined by Chen et al. [37], and EMSFLA evaluated by
Wang et al. [38]. Each of these established methods serves
as a competitor in assessing the effectiveness of the proposed
approach.

In this research, the Wilcoxon signed-rank test is imple-
mented with a significance level of 0.05 to ascertain the
comparative performance of the MFSMA. Symbols ’+’,
’−’, and ’=’ are employed to denote instances where
MFSMA outperforms, underperforms, or matches the per-
formance of its counterparts respectively. To rigorously
evaluate MFSMA’s robustness under extreme conditions,
such as high pressure or low temperatures, one practical
dataset is sourced from manufacturer specifications. This
analysis also encompasses scenarios with varying levels
of irradiance and temperature, ensuring a comprehensive
assessment of the algorithm’s adaptability. The execution
of MFSMA and competing algorithms takes place on the
MATLAB R2020b platform, throughout thirty independent
trials, thereby mitigating any randomness in the testing
process. The computations are conducted on a computer

equipped with an Intel(R) Core(TM) i7-7500U CPU at
2.70GHz and 8.00 GB of RAM. For these photovoltaic
scenarios, the evolutionary process is run until reaching the
maximum iteration count of 1 × 104, with each agent’s
fitness determined by the value of the root mean square
error (RMSE).

A. F1-F23 VALIDATION
In this segment of our study, the MFSMA is evaluated against
other leading-edge algorithms, namely the original SMA,
BA, PSO, FA, and GSA. The benchmark suite encompasses
seven unimodal functions (F1-F7), six multimodal func-
tions (F8-F13), and ten fixed-dimension multimodal tasks
(F14-F23). Table 3 collates the average results (Avg),
standard deviations (STD), and overall rankings for tackling
functions F1 through F23, based on 30 independent runs
for each algorithm. Examination of this table reveals that
the MFSMA consistently achieves superior mean values
across the majority of the benchmark tests when competing
against these advanced algorithms. Focusing specifically on
the unimodal benchmarks,MFSMAnot only secures themost
favorable mean values but also outshines its contemporaries
in terms of standard deviation (STD), suggesting its potent
capability in addressing optimization problems characterized
by a singular global optimum. This affirms the efficacy
of MFSMA’s multi-strategy learning mechanisms, which
provide a tangible enhancement over the original SMA for
unimodal tasks. When navigating the multimodal bench-
marks, although MFSMA and SMA exhibit comparable per-
formance, MFSMA still manages to surpass all rivals, further
cementing its dominance in these tests. With regard to the
fixed-dimension multimodal tasks, MFSMA demonstrates
a pronounced superiority, distinctly advancing beyond the
capabilities of previous algorithms tailored for such complex
multimodal environments. It can also be seen from Table 3,
MFSMA performs the best Wilcoxon signed-rank test ’-’
Compared to other algorithms. In addition, Table 4 shows the
detailed Wilcoxon signed-rank test results for each function.
It can be seen that the proposed MFSMA has the best
rank among all these functions, and the values of mean
rank are 1.2173913,2,3.0434783,3.7391304,5.6521739 and
5.2173913 respectively. The overall rank result is that
MFSMA still has the best rank among these algorithms.

B. SOLAR ENERGY CONVERSION SYSTEM RESULTS
1) SDM
Figures 1 and 2 illustrate the I-V and P-V fitting curves
derived from theMFSMAmodel for SDManalysis. Themod-
eled I-V and P-V trajectories demonstrate notable alignment
with the experimental data across the entire assessed voltage
spectrum. Error-index evaluations, as reflected by the IAE
and RE figures in Figures 3 and 4, quantify the precision of
the calculated electric current and the fidelity of the simula-
tion. The IAE is established to be below 9.348978932E-03,
while the RE metrics range from -5.654789E-02 to
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TABLE 1. The parameters of these algorithms.

TABLE 2. Parameters of PV cells.

FIGURE 1. MFSMA for SDM (I–V characteristics).

1.2898998E+00, suggesting that the MFSMA proficiently
captures the authentic properties of SDM. Furthermore,
as detailed in Table 5, an absolute individual error of
0.1058408 was recorded, alongside a cumulative discrepancy
of 0.0413232 between the experimental findings and the
resultant model data. These findings attest to the ability
of MFSMA not only to accurately delineate critical SDM

FIGURE 2. MFSMA for SDM (P–V characteristics).

parameters but also to offer robust support for further research
into this area.

Table 6 summarises the results of 30 separate runs utilizing
MFSMA and other competing algorithms. In Table 6,
the symbols of the Sig means that the significance of
statistical differences among all comparative algorithms
after 30 comparative experiments. As can be seen, the

VOLUME 12, 2024 72511



C. Chen et al.: Assessment of Unknown Parameters in Photovoltaic Cells Utilizing MFSMA

TABLE 3. Results of benchmark functions.

FIGURE 3. Error index values on SDM (IAE values).

MFSMA proposal has the lowest RMSE values among all
comparator sets, indicating that its viability profile is more

FIGURE 4. Error index values on SDM (RE values).

reliable and consistent than the other algorithms. Using
statistical verification data, a significant performance gap
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TABLE 4. Wilcoxon signed-rank test results.

TABLE 5. IAE of MFSMA on SDM.

between the proposed SMA-based algorithm and competing
algorithms has been demonstrated. A 95% percent certainty
level is used to estimate the confidence ranges for the
parameter gauges, as shown in Table 7. It’s obvious that

MFSMA’s confidence interval has the best dispersion of
any competitor method, indicating that it can successfully
disentangle parameters in relatively accurate intermediate
intervals.
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TABLE 6. RMSE of SDM.

TABLE 7. Confidence intervals on SDM.

FIGURE 5. MFSMA for DDM (I–V characteristics).

2) DDM
In this section, the MFSMA is assessed based on its
application to the DDM problem. Figures 5 and 6 display
the I-V and P-V response characteristics of the MFSMA
when applied to DDM. The generated I-V and P-V curves
from the proposed technique demonstrate a high degree of
congruity with the experimental data across the entire voltage
spectrum utilized in this study. Figures 7 and 8 delineate the
error indices for the reconstructed electric current and DDM
test results, represented by IAE and RE values, respectively.
The analysis reveals that the peak IAE value stands at
3.045678E-03, while the upper and lower bounds of the RE
values are 2.8658949E-01 and -2.8976723E-02, respectively.
These metrics underscore the MFSMA’s precision in authen-
tically characterizing the properties of DDM. Additionally,
Table 8 details the concrete figures pairing the IAE with
the current and control values pertinent to DDM, tallying
up to 0.02740828 and 0.010485362, correspondingly. This
accuracy enables the unambiguous identification of critical

FIGURE 6. MFSMA for DDM (P–V characteristics).

FIGURE 7. Error index values on DDM (IAE values).

parameters within DDM and robustly affirms the efficacy of
the implemented MFSMA methodology in this context.

Table 9 highlights that MFSMA consistently outshines
its contemporaries with respect to root mean square error
(RMSE) metrics, recording the lowest (Min), average (Avg),
highest (Max), and standard deviation (SD) values. This
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TABLE 8. IAE of MFSMA on DDM.

FIGURE 8. Error index values on DDM (RE values).

superiority is evident despite the subpar performance of
other competing algorithms in these domains. Furthermore,
MFSMA demonstrates supremacy in statistical significance
when subjected to the Wilcoxon signed-rank test. Com-
plementing this, Table 10 displays the confidence intervals
for parameter estimation, calculated with a 95 percent
certainty. It is within this stringent confidence threshold that
MFSMA maintains the narrowest intervals of uncertainty for
each parameter, underscoring its robustness as evidenced in
Table 10. In summary, the MFSMA methodology proposed
in this study proves to be adept at accurately interpreting
the DDM model’s intricacies, thereby facilitating precise
estimations of performance.

3) PV MODULE
Within this section, the MFSMA is employed to tackle
the challenge of parameter estimation for the Photo

FIGURE 9. MFSMA for PV (I–V characteristics).

Watt-PWP 201 PV module example. Figures 9 and 10
demonstrate that, across the full voltage spectrum, the I-V
and P-V characteristics derived fromMFSMA closely mirror
the authentic data as well as the simulated data, showcasing
an exceptional fit with the experimental records. Moreover,
Figures 12 and 11 display the error indices characterized
by IAE and RE values. Notably, all IAE values are
maintained below 5.088463e-3, while the bounds for RE are
capped at 1.341222E-01 and -1.164536E-02, underscoring
the precision of MFSMA in accurately capturing the true
behaviors of PV module operations. Additionally, Table 11
consolidates the outcome of the IAE assessments regarding
the PVmode, documenting a cumulative sum of these metrics
at 0.065233288 and 0.753101573. Such metrics attest to the
high-quality accuracy of the parameters obtained through
the MFSMA. Consequently, the efficacy of MFSMA in
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TABLE 9. RMSE of DDM.

TABLE 10. Confidence intervals on DDM.

FIGURE 10. MFSMA for PV (P–V characteristics).

FIGURE 11. Error index values on PV (IAE values).

addressing this matter is consistently validated, reinforcing
its stature as a robust tool for parameter estimation in
PV modules.

Table 12 presents a comprehensive comparison of the
MFSMA against a range of competing algorithms within the

FIGURE 12. Error index values on PV (RE values).

context of photovoltaic module optimization. The data clearly
shows that the proposed MFSMA technique outclasses its
competitors, achieving an average RMSE of 3.023098E-04
and an impressively low standard deviation of 1.232232E-
06. While BLPSO and NPSOPC exhibit mean RMSEs that
are somewhat comparable, EMSFLA takes second place in
overall performance, edging out GOTLBO. When subjected
to the Wilcoxon signed-rank test, MFSMA demonstrates
significant superiority over alternate algorithms in this
photovoltaic scenario. Furthermore, Table 13 details the
confidence intervals for parameter estimations at a robust
95 percent confidence level. According to this table, the
MFSMA consistently exhibits the least amount of dispersion
across all parameters, validating its capability to precisely
retrieve the characteristic parameters of the PV model. This
proficiency is paralleled by the pattern observed in both SDM
and DDM case studies, further confirming the algorithm’s
efficacy and reliability.
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TABLE 11. IAE of MFSMA on PV module.

TABLE 12. RMSE values of PV.

TABLE 13. Confidence intervals on PV.

C. RESULTS OF THE MANUFACTURER’S DATASHEET
In this study, we explore the validity of the proposed Max-
imum PowerPoint Tracking technique known as MFSMA
through the analysis of a manufacturer’s dataset. The dataset
in question is comprised of multi-crystalline (KC200GT)

photovoltaic samples, which have been gathered under a
variety of temperature and irradiance conditions. By exam-
ining the ability of solar devices to recognize parameters
across different temperatures or pressures, the robustness
and adaptability of the MFSMA algorithm within complex
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TABLE 14. Optimal parameters with various irradiance under 25 ◦C on KC200GT.

environments can be effectively assessed. Optimal param-
eters for both the single diode model (SDM) and double
diode model (DDM) of two solar modules were identified
through meticulous experimentation and statistical scrutiny
at distinct irradiance levels while maintaining a constant
temperature of 25◦C. These findings are detailed in Tables 14.
To corroborate the precision of the photovoltaic parameters
obtained, the corresponding electrical current values were
also evaluated.

The I-V characteristics of the two solar modules were
charted across a spectrum of irradiance intensities—
namely 200 W/m2, 400 W/m2, 600 W/m2, 800 W/m2, and
1000 W/m2—as presented in Tables 15. For the SDM,
the determined optimal parameters showed remarkable
concurrence with the experimental data collected under
varying conditions of temperature and irradiance. This attests
to the capacity of MFSMA to maintain an acceptable RMSE
value for the KC200GT in the context of SDM. Similarly,
with the DDM, the conformity of the estimated results with
the empirical datasets was evident, even under less-than-
ideal environmental conditions characterized by extreme
irradiance or temperature variations. In such challenging
scenarios, the MFSMA algorithm continued to demonstrate
its reliability by ensuring satisfactory RMSE values. Based
on the foregoing evidence, it is reasonable to assert that the
proposed MFSMA stands as a high-caliber method for the
discernment of parameters in solar cell modules, prevailing
even against the rigors of adverse conditions, such as high
pressure or frigid temperatures. Consequently, the resilience
of the MFSMA approach has been convincingly validated.

V. DISCUSSION
Extensive testing on the F1-F23 benchmark functions
demonstrates a significant enhancement in the capabilities

TABLE 15. Optimal parameters with various temperatures under
1000 irradiance on KC200GT.

of MFSMA, thanks to the integration of new techniques.
Themethod’s effectiveness is further corroborated through an
exhaustive analysis of photovoltaic performance parameter
estimation using SDM, DDM, and PV modules based
on data from a manufacturer’s datasheet. Consequently,
the proposed MFSMA algorithm emerges as a formidable
contender among other competing algorithms for addressing
the problem at hand. As detailed in section 3, the MFSMA
underwent rigorous testing and comparison with several
well-established algorithms across a range of unimodal,
multimodal, and fixed-dimension multimodal benchmarks.
In these comparisons, MFSMA not only consistently sur-
passed the original SMA but also demonstrated properties

72518 VOLUME 12, 2024



C. Chen et al.: Assessment of Unknown Parameters in Photovoltaic Cells Utilizing MFSMA

that were markedly improved over its peers. Moreover,
MFSMA was applied to parameter identification within
three related solar module models. It is noteworthy that
MFSMA accurately ascertained essential parameters for
these models, showing high congruence with experimental
recordings across the entire voltage spectrum. This precision
indicates that MFSMA possesses a unique ability for
exploitation that other algorithms may lack, giving it a
distinct advantage in solving such problems. In summary, the
key characteristics of MFSMA have undergone substantial
refinements, as evidenced by various empirical datasets.
These advancements position the MFSMA as a superior
technique both in theory and application, capable of yielding
reliable and precise outcomes in the field of photovoltaic
parameter estimation.

The MFSMA’s robustness and efficacy were further
assessed using data from a manufacturer, specifically under
extreme conditions such as high pressure or low temperatures.
As a result, theMFSMAmay be considered a viable approach
for characterizing solar cells that exhibit consistent long-term
stability in performance. The proposed MFSMA is not
solely applicable to the case studies within this research;
it has potential utility in other domains, including power
engineering. Looking ahead, theMFSMA could be employed
to determine optimal settings for a variety of complex
challenges. Additionally, it is important to acknowledge
the limitations inherent to the algorithm proposed in this
paper. Firstly, while this paper introduces new operators to
enhance the original SMA, there is an associated increase in
computational time. This trade-off implies that efficiency is
somewhat compromised in favor of improved performance.
Secondly, the algorithm was designed with a focus on
single-objective optimization, which might not suffice for
applications requiring robust multi-objective algorithms.
Lastly, the dataset utilized in this study, although open source,
is quite limited. For a more comprehensive evaluation of the
algorithm’s performance, it would be ideal to test it against
data drawn from real-world scenarios.

VI. CONCLUSION AND FUTURE WORK
In this paper, multi-strategy learning fusion Slime Mould
Algorithm to extract the solar cell model parameters and
photovoltaic modules. Based on the above experimental
results, some conclusions can be drawn as follows:

• Benchmark results demonstrate that the inherent capa-
bilities of the conventional Slime Mould Algorithm
(SMA) can be augmented by leveraging the distinctive
mechanisms of opposition-based learning. Furthermore,
the integration of level-based learning contributes to a
more consistent equilibrium between intensification and
diversification strategies.

• The outcomes of the investigations indicate that
MFSMA possesses a discernible superiority over its
competitors in estimating diverse parameters of photo-
voltaic systems.

• The MFSMA exhibits robust performance under
extreme conditions, maintaining its functionality
both under high-pressure scenarios and in frigid
temperatures.

Considering the noticeable gap in the numerical evaluation
concerning the efficiency and computational time trade-
off, future research directions should emphasize exploring
parallel computing or GPU-based algorithms. This approach
aims to thoroughly assess how leveraging parallel processing
or GPUs can mediate the balance between achieving high
computational efficiency and minimizing execution time.
By focusing on these technologies, researchers could develop
innovative strategies that exploit the parallelism inherent in
GPUs or distributed computing environments to optimize
both efficiency and speed.
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