
Received 13 March 2024, accepted 17 May 2024, date of publication 22 May 2024, date of current version 30 May 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3404272

Energy-Aware Selective Inference Task Offloading
for Real-Time Edge Computing Applications
ABDELKARIM BEN SADA1, AMAR KHELLOUFI 1, ABDENACER NAOURI 1,
HUANSHENG NING 1, (Senior Member, IEEE), AND SAHRAOUI DHELIM 2
1School of Computer and Communication Engineering, University of Science and Technology Beijing, Beijing 100083, China
2School of Computer Science, University College Dublin, Dublin 4, D04 V1W8 Ireland

Corresponding author: Sahraoui Dhelim (sahraoui.dhelim@ucd.ie)

ABSTRACT IoT has recently witnessed a boom in AI deployment at the edge as a result of the newly
developed small size Machine Learning (ML) models and integrated hardware accelerators. Although it
brings huge benefits such as privacy-preserving and low-latency applications, it still suffers from typical
resource limitations of edge devices. A new approach aims to deploy multiple inference models varying in
size and accuracy onboard the edge device which could alleviate some of these limitations. This dynamic
system can be leveraged to provide real-time energy efficient application by smartly allocating inference tasks
to inference local models or offload to edge servers based on current constraints. In this work, we tackle the
problem of efficiently allocating inference models for a given set of inference tasks between local inference
models and edge server models in parallel under given time and energy constraints. This problem is considered
strongly NP-hard and therefore we propose LITOSS, a 2-stage framework in which we use a lightweight
Genetic Algorithm-based schemer for task scheduling along with a Reinforcement Learning (RL) agent for
improving edge server selection. We perform experiments using a raspberry pi with a set of edge servers.
Results show that our framework performed relatively faster compared to other meta-heuristic schemes such
as LGSTO, Ant Colony Optimization (ACO) and Particle Swarm Optimization (PSO) while providing higher
average accuracy. We also show that using an RL agent to select the best subset of available edge servers
increased, or maintained in worst cases, the average accuracy while reducing the average scheduling times.

INDEX TERMS Selective sensing, edge computing, machine learning, task offloading, genetic algorithms,
reinforcement learning.

I. INTRODUCTION
AI has gained an increasing significance in various IoT
applications. Specially with the emergence of compact AI
models suitable for deployment on edge devices with limited
resources which has ushered in a new era of low-latency
applications in IoT. These small AI models, designed to run
locally on edge devices rather than relying on remote servers,
facilitate real-time processing and decision-making directly
at the point of data collection or interaction [1].
One key application area for these local AI models is

in smartphones, where they enable a range of real-time
functionalities, including image and video recognition as

The associate editor coordinating the review of this manuscript and

approving it for publication was M. Anwar Hossain .

well as Augmented Reality (AR). With local AI models,
smartphones can perform tasks such as object detection,
facial recognition, and overlaying digital information onto the
physical world in real-time without needing to transmit data
to distant servers. This not only reduces latency significantly
but also enhances power efficiency by minimizing the need
for data transmission and processing in the cloud [2], [3].

The emergence of advanced small-size AImodels and Large
Language Models (LLMs) such as Llama 2 by Meta [4],
which represents a significant advancement in on-device AI
capabilities. One of the key advantages of these small-scale
models is their ability to perform on-device inference with
reasonable runtimes and accuracy levels. This capability
enables the provision of low-latency services, allowing
for swift responses to user queries or inputs. Additionally,

72924

 2024 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.

For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 12, 2024

https://orcid.org/0000-0002-9510-9097
https://orcid.org/0000-0002-9327-3643
https://orcid.org/0000-0001-6413-193X
https://orcid.org/0000-0002-3620-1395
https://orcid.org/0000-0002-7673-8410


A. B. Sada et al.: Energy-Aware Selective Inference Task Offloading

executing inference tasks locally on the device contributes to
more efficient energy consumption compared to offloading
these tasks to remote cloud services. By reducing the need for
data transmission and processing over the network, on-device
AI inference helps conserve battery life and optimizes the
device’s energy usage [5].

However, it is important to recognize that not all inference
tasks can be effectively performed locally on edge devices
while still providing real-time responses and maintaining
energy efficiency. Some tasksmay require more computational
resources or specialized hardware than what is available on
the device. In such cases, offloading these tasks to nearby edge
servers, which have more powerful hardware and resources,
may be necessary to achieve optimal performance.
Therefore, there exists a need to strike a balance between

performing inference tasks locally on edge devices and
offloading them to nearby edge servers. This balance
ensures that tasks are executed in the most efficient
manner possible, taking into account factors such as latency,
energy consumption, computational resources, and real-time
requirements [3]. By leveraging a combination of on-device
and edge server processing, organizations can optimize the
performance of their AI-driven applications while maximizing
resource utilization and minimizing operational costs [2].
Hardware manufacturers are driving these trends by

integrating AI accelerators into modern processors. This
in turn enables edge devices to perform AI tasks locally,
without relying heavily on cloud-based processing [1].
To accommodate the limitations of edge devices, such as
limited computational power and storage capacity, developers
are deploying multiple AI models with varying sizes and
accuracy to allow for dynamic switching between them
depending on the device’s resource conditions. The size
of an AI model dictates its inference time and accuracy.
Larger models, which typically have more parameters and
complexity, tend to produce more accurate inference results
but require longer processing times. Conversely, smaller
models, which have fewer parameters and are less complex,
can process data more quickly but may sacrifice accuracy to
some extent. One approach to address this trade-off between
accuracy and processing time is to adjust the hyperparameters
of the AI models. By tweaking these hyperparameters, the
accuracy of models can be fine-tuned according to the specific
requirements of the edge application. This flexibility allows
edge nodes to deploy multiple local inference models, each
optimized for different accuracy levels [6].
Considering an edge computing system empowered by

AI models in which edge devices receive sensed data from
the environment or from user interactions (see Fig 1). These
devices are equipped with pretrained inference models which
can be used to perform inference on data locally. Inference
models can be of similar types with different internal structures
or of different types. Each edge device is connected to a set
of edge servers available for task offloading. Edge servers
are equipped with more powerful and faster inference models.
Edge nodes can choose to process data locally or offload tasks

FIGURE 1. Edge computing system with inference task scheduling and
offloading.

to multiple edge servers to achieve the best performance and
energy efficiency under any given time and energy constraints.
The problem of assigning inference models to inference

tasks is similar in nature to a more complex variant of
the knapsack problem, where we attempt to fill a volume
and weight limited knapsack with given pieces to maximize
profit. In our case we try to fill a time and energy limited
schedule with inference models to maximize accuracy. This
type of problem is considered NP-Hard and therefore it has
no polynomial time solutions. Since an edge device can
be connected to large number of edge servers at a time,
this poses another challenge where only the best subset
of edge servers needs to be selected. Therefore, In this
research, we introduce an edge computing framework for
AI-powered real-time application leveraging meta-heuristic
and reinforcement learning methods for parallel inference
task scheduling under time and energy constraints while
maximizing inference accuracy [7].

The main contributions of this paper can be summarized as
follows:
• We provide a formulation to the novel problem of
inference model scheduling between local inference and
edge server offloading in parallel under time and energy
constraints.

• We propose LITOSS a lightweight framework for
inference task scheduling and offloading for edge
computing consisting of two main modules namely LITS
that is based on genetic algorithms for parallel scheduling
of tasks, in addition to a reinforcement learning agent
using the SARSA algorithm for learning the best edge
server selection policy.

• We perform experiments using a Raspberry Pi as an
edge device connected to multiple edge servers and
compare the performance of the framework against other
metaheuristic schemes such as LGSTO, Particle Swarm
Optimization (PSO) and Ant Colony Optimization
(ACO). We find that LITOSS offers higher average
accuracy schedules and better constraint conformity
compared to other schemes while resulting in lower
scheduling times thanks to the edge server selection
agent.

The rest of this paper is organized as follows. Section II
presents the related works and points out the research gap.

VOLUME 12, 2024 72925



A. B. Sada et al.: Energy-Aware Selective Inference Task Offloading

In Section III we describe the system model. In Section IV
we propose LITOSS and explain the framework components.
In Section V we present the experiment setup and results
in addition to analysis of the obtained results. Finally,
we conclude this work in Section VI.

II. RELATED WORKS
In this section we organise the related works into two
categories. First, we present works tackling the problem
of inference model scheduling in edge computing. Second,
we show edge server selection solutions proposed in the
literature. Finally, we compare and analyse related works
limitations and point out the research gap.

A. INFERENCE TASK SCHEDULING AND OFFLOADING
Task offloading and scheduling in the context of inference
models where accuracy plays an important role has seen
little attention in the literature except for a few recent works
mentioned here.
In [8], the authors propose a confidence metric data

selection scheme in edge nodes used to select the data samples
that could lead to poor accuracy inferences in which case
they are offloaded to the edge server. Their results show an
improved overall accuracy under an energy constraint. Their
work however, does not leverage multiple inference models
and does not consider any time constraints which makes it
unfit for real-time applications.
The authors in [6] proposed AMR2, a scheduling scheme

based on LP-Relaxation and rounding which considers all
possible cases of scheduling two inference tasks between the
edge device and the edge server. They relax the problem’s
constraint to take fractional values and then perform rounding
to get the result. Inference tasks are scheduled at the edge
device using dynamic programming. Although their scheme
performed better than the greedy scheme under time constraint,
their system does not take into consideration the energy
constraint of the edge node.
The work in [5] proposes LGSTO a lightweight genetic

algorithm for inference task scheduling in which their work
shows promising results where LGSTO performed 70%
faster than other metaheuristic schemes such as PSO, ACO,
and Non-dominated Sorting Genetic Algorithm 2 (NSGA-II)
while producing schedules with higher average accuracy.
However, two limitations have not been considered. First,
LGSTO only generates sequential schedules in which the
edge node stays idle while the edge server is processing the
offloaded inference task. Although this conserves energy,
it wastes precious CPU time specially in the case of real-
time applications. Secondly, they only considered a single
edge server while in practice an edge node can have access to
multiple edge servers at once which opens the door for more
parallel processing.

B. SERVER SELECTION IN EDGE COMPUTING
In this section we present recent works solving the server
selection in edge computing using multiple parameters such

TABLE 1. Related works comparison.

as network state, energy of edge devices, server capacity and
load.
A collaborative task offloading solution between Mobile

Edge Computing (MEC) servers and the cloud is proposed
in [9]. Considering dynamic environments such as channel
latency variations, energy of mobile devices and edge server
computing capacity they propose a Deep Q-Networks (DQN)
solution to find the optimal stationary control policy based on
recursive decomposition of action space available to each state.
Their proposed solution outperformed the block successive
upper-bound minimization method (BSUM) and Q-learning
methods in simulations.
To solve the server selection problem in dynamic MEC

with frequent user mobility, the authors in [10] modeled the
problem of continuous server selection as a Markov Decision
Process, and proposed a Deep Reinforcement Learning-based
algorithm to learn the selection policy based on the observed
performance of past server selections. Instead of simply adding
user information into the states which results in a complex state
space, they modeled user arrivals, departures and movement as
different events. Using a Long Short-Term Memory (LSTM),
they encoded historical information of past events and then use
them as states. By feeding these states into a neural network
their solution selects the optimal action. Their solution showed
lowest overall cost compared to other methods.
In [11] the authors propose a joint load balancing and

offloading solution (JSCO) in multi-server Vehicle Edge
Computing (VEC) systems under latency constraints. Their
system uses server load as a selection criteria in which they
select and distribute offloaded tasks on available servers
in order to balance the load and maximize system utility.
They formulate the problem as a mixed integer nonlinear
programming problem where by decoupling it as two
sub-problems they developed a lower complexity solution.
Their results showed fast convergence and performance
compared to benchmark solutions.
The limitations of works presented in Section II are

summarized in table 1 where we show a research gap which
this work is designed to cover.

III. SYSTEM MODEL
We consider system where an edge node is equipped with a set
of local inference models Mlocal = {1, . . . ,ml} as depicted
in Fig 2. Additionally, each edge node has access to a set

72926 VOLUME 12, 2024



A. B. Sada et al.: Energy-Aware Selective Inference Task Offloading

FIGURE 2. Inference model scheduling for given inference tasks using the
selected models.

of edge servers where each server is equipped with a single
inference model denoted as Mserver = {1, . . . ,ms}. Using
Mlocal and Mserver , every edge node can construct a set of
selected inference modelsM = {1, . . . ,m}. Finally, for each
time slot t , an edge node receives a set of inference tasks
denoted as J = {1, . . . , n}.

A. INFERENCE ACCURACY
Local inference models deployed in edge nodes can take
several forms. One option is to use a single tunable model,
where adjusting hyperparameters can change both the accuracy
and inference times. Another option is to deploy multiple
instances of a similar type of inference models with different
internal structures, such as varying layer sizes in the case of
Deep Neural Networks (DNNs). Alternatively, a variety of
models with different sizes and top-1 average accuracies can
be used to cater to diverse inference tasks.
The actual top-1 accuracy of each model for a specific

inference task is unknown before performing inference,
therefore, we rely on the average accuracy estimated from
historical measurements. The average top-1 accuracy of model
i is denoted as ai. This approach provides a practical estimate
for model performance across different tasks. It is important
to note that the average top-1 accuracy of inference models
deployed on edge servers is considered to be significantly
higher than that of local models on edge devices. This ensures
that offloading tasks to edge servers yields a substantial benefit
in terms of accuracy, justifying the additional energy and time
costs associated with data transmission and processing on the
servers.

aj > ai ∀i ∈ Mlocal, j ∈ Mserver

B. INFERENCE TIME
We estimate the average inference time for each inference
model i denoted as τ infi where i ∈ M by averaging historical
inference times. Additionally, data preprocessing delay is
considered to be included in τ infi .
Similarly, we define the average communication latency

of edge server i by τ lati which is estimated from previous

latency measurements. Let τ offij to be the time to offload task
j where i ∈ J to edge server i. τ offij can be calculated using
the communication channel bandwidth and the size of task j
denoted as sj. τ offij is given by:

τ offij =
sj
b
+ τ lati (1)

where b denotes the bandwidth of the communication channel
between the edge node and the edge server.

Let τ taskij be the total processing time of task j using model
i including inference and offloading given by:

τ taskij =

{
τ infi ∀i ∈ Mlocal j ∈ J
τ infi + τ offij + τ

resp
i ∀i ∈ Mserver j ∈ J

(2)

τ
resp
i represents the average response time from edge server

i wich is defined as:

τ
resp
i =

sr
b
+ τ lati (3)

Let xij = {0, 1} be a binary variable representing the
decision in which the inferencemodel i is assigned to inference
task j or not. Let τ slotk as the time to process all tasks for time
slot k . Since local inference and offloading are performed
in parallel, we define τ slotk as the maximum of the total local
inference time, denoted asωi, and the total server time, denoted
as φi, which includes the offloading, inference, and response
times for all offloaded tasks. τ slotk is given by:

τ slotk = max(τ localk , τ serverk ) ∀k ∈ K (4)

where

τ localk =

ml∑
i=1

n∑
j=1

xijτ infij

and

τ serverk = max(xij(γ+τ infij +τ
resp
i ), φk ) ∀i ∈ Mserver , j ∈ J

(5)

γ is given by:

γ =

ms∑
i=1

n∑
j=1

xijτ offij (6)

In Fig 3 we show an example of a schedule for 6 inference
tasks where 3 tasks are processed using local inference models
while the remaining 3 are offloaded to 3 different edge servers.
At t0 we have:

γ = τ off1,4 + τ off2,5

and

τ server = γ + τ inf2,5 + τ
resp
2,5

then at t1 we have:

γ = γ + τ off3,6

τ server = max(γ + τ inf3,6 + τ
resp
3,6 , τ server)

in which τ server keeps the old value.

VOLUME 12, 2024 72927



A. B. Sada et al.: Energy-Aware Selective Inference Task Offloading

FIGURE 3. An example of a schedule for 3 edge servers and 6 inference
tasks.

C. INFERENCE ENERGY
Let eoffij represent the energy cost of offloading task j to edge
server i. This cost depends on the offload time, τ offij, and ξi,
the average energy cost of transmitting data to edge server
i per unit of time. The value of ξi is influenced by several
factors, including the communication medium (such as Wi-Fi,
Cellular, Bluetooth, or Zigbee), each of which has distinct
power requirements, data rates, and transmission ranges that
affect energy consumption.
Other factors influencing ξi include the transmission

power level of the wireless device, with higher power levels
generally consuming more energy to maintain communication
over longer distances or in environments with obstacles or
interference. Additionally, the power consumed by the device
in idle or standby mode, as well as signal strength and
quality, impact energy consumption. Stronger signals and
better quality reduce energy needs, while weak or noisy signals
require higher power levels for reliable communication.
Environmental factors such as interference, obstacles,

and electromagnetic noise also affect energy consumption
by influencing signal propagation and reception quality.
Various optimization techniques, such as data compression,
packet aggregation, adaptive modulation, and power control
algorithms, can help reduce energy consumption by improving
spectral efficiency and minimizing transmission overhead.

We assume that ξi can be calculated internally bymonitoring
battery usage and the network adapter’s configurations, such
as transmission power. By averaging these measured power
usage metrics, we can estimate ξi. Therefore, the energy cost
of offloading task j to edge server i, eoffij , is given by:

eoffij =
τ offij

ξi
(7)

Using a similar approach, we can calculate the energy cost
of receiving the inference response denoted as erespi as follows:

erespi =
τ
resp
i

ξi
(8)

Let einfi represent the average energy cost of performing
an inference task using model i. This inference energy cost
is relatively negligible compared to the offloading energy
cost. Consequently, it is considered a constant, which can
be estimated based on the inference time and the maximum
power consumption of the edge device’s CPU under full load
conditions. Let etaskij denote the total energy cost of processing
task j using model i, calculated as follows:

etaskij =

{
einfi ∀i ∈ Mlocal j ∈ J
einfi + e

off
ij + e

resp
i ∀i ∈ Mserver j ∈ J

(9)

We define the total energy consumption of processing all
tasks of slot k by:

eslotk =

m∑
i=1

n∑
j=1

xijetaskij ≤ E (10)

D. PROBLEM FORMULATION
In this section we identify two optimization problems. First,
the problem of assigning inference models to inference tasks
while respecting the given time and energy constraints and
maximizing the overall accuracy. Secondly, the problem of
selecting an optimal subset of available edge servers which
maximizes the average accuracy of produced schedules while
reducing the scheduling time.

1) INFERENCE TASK SCHEDULING PROBLEM
The problem can be formulated as follows:

Maximize aslotk =

m∑
i=1

n∑
j=1

xijai (11)

where aslotk is the total accuracy for a time slot k . Given E and
T as the energy and time constraints respectively, Equation 11
is subject to:

τ slotk ≤ T ∀k ∈ K (12)

eslotk ≤ E ∀k ∈ K (13)
m∑
i=1

xij = 1 ∀j ∈ J (14)

Using Equations 12 and 13, we ensure that the parallel
processing time and energy consumption for each time slot
adheres to the specified time and energy constraints. Lastly,
Equation 14 guarantees that each inference task is assigned an
appropriate inference model, thereby producing a complete
solution.
This problem can be conceptualized as a variation of the

classic Knapsack Problem (KP). Here, we aim to fill our
schedule (the knapsack) with inference models (the items)
to maximize accuracy (profit), while adhering to time and
energy constraints (knapsack weight and volume capacities).
Specifically, this problem is a multi-dimensional knapsack
problem (MDKP) because both the items and the knapsack
have two dimensions. Additionally, since inference models
(items) can be reused to construct a schedule, the problem

72928 VOLUME 12, 2024



A. B. Sada et al.: Energy-Aware Selective Inference Task Offloading

becomes an instance of the unbounded multi-dimensional
knapsack problem (UMDKP).

However, considering that inference tasks can be processed
both locally and on edge servers in parallel, this situation
deviates from the UMDKP. In UMDKP terms, this parallelism
allows items to overlap in the time dimension (weight) but
not in the energy dimension (volume), which complicates the
direct application of UMDKP.
Alternatively, if we treat each edge server as a separate

knapsack, the problem aligns with the multi-knapsack prob-
lem (MKP). This approach, however, introduces significant
complexity, especially when trying to enforce a global time
constraint across all knapsacks.

2) EDGE SERVER SELECTION PROBLEM
Let yj be a binary variable representing whether the inference
model from edge server j is selected to be part ofM .

Objective:

Maximize aslotk =

ml∑
i=1

ai +
ms∑
j=1

ajyj (15)

Subject to :
ms∑
j=1

yj ≤ π (16)

yj ∈ {1, 0}, ∀j ∈ S (17)

where:
• ai is the average accuracy of local inference model i.
• aj is the accuracy of the inference model from edge
server j.

• π is the maximum allowed cardinality of set M , i.e., the
maximum number of edge servers that can be selected.

This formulation ensures that each selected edge server
contributes its single inference model to the selected subsetM .
The binary variable yj determines the selection of edge servers,
and the objective function maximizes the total accuracy
obtained from the selected models. Solving this optimization
problem provides the optimal or near-optimal solution for
selecting the subsetM for each time slot k .
This type of problem is a combinatorial optimization

problem known as a subset selection problem, where the
goal is to select a subset of elements from a given set while
optimizing a certain objective function subject to certain
constraints.

In this specific case, we are tasked with selecting a subsetM
of inference models from both local models and models hosted
on edge servers to perform inference tasks. The objective is
to maximize the total accuracy obtained from the selected
models while minimizing the cardinality of M (i.e., selecting
the fewest number of models necessary to achieve a faster
scheduling times and higher accuracy).
Such type of optimization problem can be solved using

various methods such as greedy algorithms where we select
models based on certain criteria (e.g., highest accuracy or

FIGURE 4. LITOSS architecture.

best cost-benefit ratio) until the cardinality constraint is
met. While greedy algorithms do not guarantee optimal
solutions, they can provide fast and efficient solutions in
many cases. Moreover, dynamic programming can also be
used if the problem exhibits overlapping subproblems and
optimal substructure properties. This approach is particularly
useful for problems with small problem sizes and a limited
number of feasible solutions. Metaheuristic algorithms such
as genetic algorithms, simulated annealing, or particle swarm
optimization can be used to explore the solution space and
find near-optimal solutions. These algorithms are suitable for
complex optimization problems with large solution spaces and
non-linear objective functions.

IV. A LIGHTWEIGHT INFERENCE TASK OFFLOADING AND
SERVER SELECTION FRAMEWORK
In this section we propose LITOSS a framework for efficiently
scheduling inference tasks between local inference and edge
server offloading. As depicted in Fig 4 LITOSS consists of two
main components. First, is the reinforcement learning-based
server selection module responsible for providing the optimal
subset of edge servers to second module denoted as the
scheduler. It assigns inference models to inference tasks
while adhering to the given time and energy constraints. The
scheduler provides feedback to the server selection module
to improve the selection process based on the obtained total
accuracy and constraint compliance parameters.

A. INFERENCE TASK SCHEDULING
In this section, we present a Lightweight Inference Task
Scheduling (LITS) scheme based on genetic algorithms. The
main steps of LITS are shown in Algorithm 1.

1) POPULATION INITIALIZATION
Let hk be a schedule containing the set of assigned
inference models to inference tasks at a time slot k . hk =
{m1,m2, . . . ,mJ }. LetH be the set of schedules representing
the population of solutions given by H = {hk1, h

k
2, . . . , h

k
p}

where p is the population size.

VOLUME 12, 2024 72929



A. B. Sada et al.: Energy-Aware Selective Inference Task Offloading

Algorithm 1Main Steps of LITS
1: Initialize population
2: Evaluate fitness and rank population
3: If termination criteria satisfied go to Step 7
4: Explore neighborhood of the best solution
5: Produce new generation using Tournament Selection,

Crossover and Mutation
6: Go to Step 2
7: Return the best solution

The initial population is generated randomly where each
schedule is assigned random inference models from the set
M as shown in Algorithm 2.

Algorithm 2 Population Initialization
1: H←− {}
2: for i = 1 to p:
3: hki ←− {}
4: for j = 1 to J :
5: hki ←− hki + {Random(M)}
6: H←− H+ {hki }

2) FITNESS EVALUATION AND RANKING
We define the fitness function fk for time slot k as the total
accuracy Ak multiplied by coefficients αk and βk added to
penalize overshooting the target time and energy constraints
respectively.

fk = aslotk αkβk (18)

where αk and βk are given by:

αk = min(1,
T

τ slotk

) (19)

βk = min(1,
E

eslotk

) (20)

T and E are the time and energy constraints respectively.
Using the above formulas results in 0 ≤ αk ≤ 1 and 0 ≤
βk ≤ 1 which ensures that we do not reward undershooting
the constraints.

After evaluating the fitness values for the current generation
of solutions, the population is sorted in descending order
according the fitness values.

3) NEIGHBORHOOD EXPLORATION
We define the steps of neighborhood exploration in
Algorithm 3. The algorithm takes a schedule hk and performs
a walk distance w for each assigned inference model i starting
from hk (i)−w to hk (i)+w respecting index limits of inference
models. By comparing the fitness values of each neighbor
f neighbork with fk and then storing them in the set B if they have
a better fitness value. Otherwise the inference model index
f neighbork (i) is returned to original value.

Algorithm 3 Neighborhood Exploration
1: GetBestNeighbors(hk , fk , w)
2: B←− {}
3: hneighbork = hk
4: for i = 0 to J :
5: for j = max(0, hk (i)−w) to min(hk (i)+w,M−1)−1:

6: if (j = hk (i))
7: continue
8: hneighbor(i)←− j
9: if f neighbork > fk :
10: B←− B+ hneighbor

11: else
12: hneighbor(i)←− hk (i)

Algorithm 4 Reproduction Process
1: G←− {}
2: for i = 0 to p:
3: p1 = TournamentSelection(H)
4: p2 = TournamentSelection(H)
5: (o1, o2) = Crossover(p1, p2)
6: if (µ > 0):
7: Mutate(o1)
8: Mutate(o2)
9: if (fitness(o1) > 0):

10: G = G+ {o1}
11: if (fitness(o2) > 0):
12: G = G+ {o2}
13: H←− G
14: µ = µ× σ

4) REPRODUCTION PROCESS
The next generation is create by performing tournaments
to select parents. A tournament of a predetermined size
is selected randomly from the sorted population. Then the
elements of the tournament are compared against each other
using their fitness values to pick the best schedule. This process
is repeated twice to obtain two parents which are then crossed
over using a discrete uniform approach where genes of the
offspring are chosen randomly from each parent with equal
probability.

The newly generated offspring are subjected to probabilistic
mutations to maintain population diversity and prevent
convergence to local optima. Amutation probability parameter
µ controls whether an offspring undergoes mutation. Higher
mutation probabilities increase random changes, aiding
exploration but risking disruption of promising solutions.
Lower probabilities slow exploration but help preserve
promising solutions.
A fading parameter σ is introduced to adjust the mutation

probability dynamically throughout the evolution process.
This involves reducing the mutation rate as the algorithm
progresses through generations. The strategy aims to promote
exploration initially with a higher mutation rate, gradually

72930 VOLUME 12, 2024



A. B. Sada et al.: Energy-Aware Selective Inference Task Offloading

decreasing it to allow for exploitation and refinement of
promising solutions. The fading mutation probability strategy
balances exploration and exploitation. Higher mutation rates
early in optimization aid in exploring diverse solution spaces,
while reducing rates as the algorithm converges allows for
fine-tuning around more promising regions. The steps of the
reproduction process are presented in Algorithm 4.

5) TERMINATION CRITERIA
The convergence of the evolutionary process can be monitored
by comparing the last n top-1 solutions from previous
generations. If reproduction fails to yield any better top-1
ranking solutions, the process is terminated.

B. EDGE SERVER SELECTION
The server selection module uses reinforcement learning
for optimizing the subset of selected servers using rewards
and penalties from the scheduling module. In this section
we start by modeling the selection process as a Markov
Decision Process (MDP) and employ State–action–reward–
state–action (SARSA) as method for learning the policy [12].
SARSA is preferable over more advanced algorithms such
as DQN, for constrained edge devices running time-sensitive
real-time applications primarily due to its lightweight nature
and faster execution speed. Unlike DQN, which relies on
deep neural networks requiring significant computational
resources and time for training and inference, SARSA uses
simpler tabular methods or linear function approximations
that are computationally less intensive. This makes SARSA
much faster, reducing latency, which is crucial for real-
time applications. Additionally, SARSA’s on-policy learning
approach allows for more stable and predictable performance
in dynamic environments, further enhancing its suitability for
edge devices with limited processing power and strict time
and energy constraints.

1) MARKOV DECISION PROCESS (MDP)
The decision-making in an MDP involves an agent interacting
with an external environment over discrete steps. At each step,
the agent evaluates the current environment state and chooses
an action. The environment then transitions to a new state
in response to the agent’s action, while the agent receives a
reward from the environment. This process repeats iteratively
until task completion or a termination condition. The agent’s
main goal in the MDP is to optimize its decision-making to
maximize cumulative rewards over time. By selecting actions
leading to favorable outcomes and accruing rewards, the agent
aims for the highest total reward [13].

In the context of the problem at hand, the agent, representing
the server selection module, maintains a state that encapsulates
relevant information about the environment. Each time the
agent selects a subset of servers as an action, it triggers a
transition to a new state, which reflects the updated status of the
environment after the selection has been made. Additionally,
upon taking an action, the agent receives a reward from the

environment, in our case represented by the scheduler, which
serves as feedback based on the effectiveness of the server
selection.

In the following sections, we describe the state space, action
space, and reward function of the MDP model.

2) STATE SPACE
Each state s is represented as a binary vector s =

[s1, s2, . . . , sn], where si denotes whether edge server i is
selected (1) or not selected (0) for offloading tasks.

3) ACTION SPACE
The actions a correspond to selecting subsets of edge servers
for offloading. Each action involves choosing which subset
of edge servers to select. Actions are represented as a binary
vector a = [a1, a2, . . . , an], similar to states, where each
element ai indicates whether edge server i is selected (1) or
not selected (0).

4) REWARD FUNCTION
The reward function combines the objectives of maximizing
the average accuracy and minimizing latency. Let Ak be the
average accuracy of the selected schedule of time slot k . Let
dk be the number of selected but unused inference models for
time slot k . We define the reward function Rk as:

Rk = aslotk αkβkϕk (21)

where αk and βk are the penalties of surpassing the time and
energy constraints respectively, while ϕk is a reward-only
coefficient for selecting the right set of edge servers that were
all used by the scheduler.

ϕk = max(1+
1− d
10

, 1) (22)

5) POLICY
A policy is defined as a strategy that controls the agent’s
decision-making process. Specifically, it defines how the agent
selects actions in different states to maximize its cumulative
reward over time.
To learn an optimal policy we use SARSA (State-Action-

Reward-State-Action) which is considered an on-policy
learning method meaning it learns the value of state-action
pairs while following a specific policy. It aims to learn
Q-Values representing state-action pairs, denoted as Q(s, a),
where s is the current state and a is the action taken in
that state. These Q-values represent the expected cumulative
reward an agent can obtain by taking action a in state s
and then following a specific policy to choose subsequent
actions. SARSA iteratively evaluates and improves its policy
by updating Q-values based on observed transitions. It follows
an ϵ-greedy policy, where with probability ϵ, the agent chooses
a random action (exploration), and with probability 1 − ϵ,
it chooses the action with the highest Q-value (exploitation).
Initially, Q-values are initialized arbitrarily or using heuristics.

At each time slot k , the agent observes the current state sk ,
selects an action based on the ϵ-greedy policy, and executes

VOLUME 12, 2024 72931



A. B. Sada et al.: Energy-Aware Selective Inference Task Offloading

the action. After taking action, the agent observes the resulting
reward Rk and transitions to the next state sk+1. The agent
then selects the next action ak+1 based on the ϵ-greedy
policy applied to the new state sk+1. SARSA updates the
Q-value of the previous state-action pair (sk , ak ) using the
observed reward and the Q-value of the next state-action pair
(sk+1, ak+1). [12] The Q-value update follows the SARSA
update rule given by:

Q(sk , qk )←− Q(sk , ak )+ α[Rk + γQ(sk+1, ak+1)

− Q(sk , ak )] (23)

where α is the learning rate and γ is the discount factor.
SARSA continues to interact with the environment,

updating Q-values and improving its policy, until a termination
condition is met (e.g., a maximum number of episodes or
convergence). It gradually reduces the exploration rate ϵ over
time with a decay coefficient ρ to shift from exploration
to exploitation, allowing the agent to exploit the learned
policy more as training progresses. With sufficient exploration
and learning, SARSA converges to an optimal policy that
maximizes cumulative rewards over time, taking into account
the trade-off between exploration and exploitation.

6) EXPERIENCE REPLAY
Instead of updating Q-values immediately after each transition,
we use experience replay in which the agent stores experiences
in the replay memory and updates Q-values using sampled
mini-batches from the replaymemory. Experience replay helps
stabilize training by breaking correlations between consecutive
experiences and preventing the agent from being biased
towards recent experiences. It improves learning efficiency
by reusing past experiences and facilitating learning from a
diverse set of experiences [14]. Let D be a replay memory
buffer to store experiences encountered by the agent during
interactions with the environment. Each experience ek =
(sk , ak ,Rk , sk+1, ak+1) consisting of the current state sk , the
action taken ak in the current state, the reward Rk received
after taking action ak , the next state sk+1 after taking action
ak , and finally the action ak+1 taken in the next state. During
training, we sample mini-batches of experiences B from the
replay memory D to update the Q-values.

The steps for learning an optimal policy using SARSA are
shown in Fig 5.

C. DESIGN OF LITOSS
At each time slot k , LITOSS receives a set of inference tasks
Jk . Initially, the server selection agent selects a random subset
from the available set of edge servers Mserver . Using the
selected edge servers and the local inference models, a set
M of selected inference models is constructed. The scheduler
assigns inference models to the given inference tasks and
calculates the reward Rk using the average accuracy aslotk and
the total time τ slotk . This reward is used to update the edge
server selection agent. The main steps of LITOSS are shown
in Algorithm 5.

FIGURE 5. Steps of learning an optimal policy using reinforcement
learning.

Algorithm 5Main Steps of LITOSS
1: Initialize Server Selection
2: for each time slot k:
3: Mk ← Mlocal
4: Mk ← Mk + ServerSelection(Mserver )
5: hk ← ScheduleTasks(Jk ,Mk )
6: Update(Reward(hk ))
7: if Mserver changes then ResetServerSelection()

V. EXPERIMENTS AND RESULTS
In this section we present our experiment setup followed by
the obtained results.

A. SETUP CONFIGURATION
Experiments are conducted using a Raspberry 4 representing
an edge device connected using a WiFi access point to a set
of 10 edge servers consisting of a combination of laptops and
desktop computers.
The experiment scenario is an object classification

application performed on a stream of images obtained from
the ImageNet-mini dataset [15].

A set of lightweight object classification inference models
are chosen as local models deployed in the raspberry pi
consisting of ResNet-18 and ResNet-34 [16], in addition
to ShuffleNet-V2 [17]. The edge servers are equipped with
a more accurate and larger inference model, specifically
the ResNeXt-101 [18]. During the deployment phase we
perform tests on these models to estimate the average
inference time and accuracy of each inference model
on each machine (see Table 2). Note that the average
inference time of edge servers (we experimented with
10 servers) varies from machine to machine depending on
their hardware capabilities and therefore is omitted from the
table.

72932 VOLUME 12, 2024



A. B. Sada et al.: Energy-Aware Selective Inference Task Offloading

FIGURE 6. Comparison of LITS, PSO, ACO and LGSTO with varying energy constraint.

TABLE 2. Models average accuracies and inference times.

B. EXPERIMENT PARAMETERS
In this section we provide implementation parameters of
LITOSS. Table 3 and Table 4 contain parameters for inference
task scheduling and edge server selectionmodules respectively.
These parameters are fine-tuned using automated scripts.

TABLE 3. LITS parameters.

C. IMPLEMENTATION OF COMPARABLE SCHEMES
We compare our results against LGSTO [5] and other
meta-heuristic schemes such as Particle Swarm Optimization
(PSO) and Ant Colony Optimization (ACO). The configura-
tion parameters for each scheme are presented in 6. LGSTO
and GA are configured similar to LITS.

VOLUME 12, 2024 72933



A. B. Sada et al.: Energy-Aware Selective Inference Task Offloading

FIGURE 7. Comparison of LITS, PSO, ACO and LGSTO with varying time constraint.

FIGURE 8. Accuracy comparison of LITS with and without edge server
selection.

D. RESULTS
In this section we present results of the experiments starting
with evaluating LITS (i.e. the scheduler) on its own compared
to other metaheuristic schemes. Followed by the evaluation of

FIGURE 9. Scheduling time comparison of LITS with and without edge
server selection.

the edge server selection module. We consider the average of
τ slot, eslot, aslot and scheduling times calculated over all time
slots of each test run as metrics.
To evaluate LITS we first perform experiments while

varying energy constraint from 5 to 40 w while keeping the

72934 VOLUME 12, 2024



A. B. Sada et al.: Energy-Aware Selective Inference Task Offloading

FIGURE 10. Performance comparison of all schemes.

TABLE 4. SARSA parameters.

TABLE 5. Experiment parameters.

TABLE 6. Parameters of comparable schemes.

time constraint set to 500ms as depicted in Fig 6. Subplot (a)
shows that LITS is producing schedules with higher average

accuracy compared to ACO and PSO. LGSTO, however,
showed very low average accuracy due to the fact that it only
generates sequential schedules and does not take advantage of
parallel offloading. This also affects LGSTO in the average
eslot and τ slot depicted in subplot (b) and (c) respectively.
Looking at subplot (b) we see that all schemes produce
schedules averaging 10w while the constraint is set to 5w
due to the fact that 10 is the lowest power a scheme can
have and no solutions which satisfy that constraint exist. After
that all schemes scale linearly with the increase of the power
constraint until 25 in which all schemes stay at below 24w due
to the limitation shifting from the power constraint to the time
constraint. In subplot (c) we see at the start that LGSTO and
LITS take advantage of the available time constraint to select
slower but higher accuarcy models which results in higher
average accuracy as shown in the start of subplot (a), while
other schemes fail to do so. Subplot (d) shows the scheduling
timewhere LGSTO and LITS have the lowest scheduling times
at less than 5ms however LITS produces much higher accuracy
schedules.

VOLUME 12, 2024 72935



A. B. Sada et al.: Energy-Aware Selective Inference Task Offloading

TABLE 7. Performance comparison of all schemes.

Similarly, we perform the same experiments but this time
varying the time constraint to observe how the scheduling
schemes scale with different constraint values. Looking at
Fig 7 we see a similar trend where LITS is producing schedules
at higher average accuracy. At the beginning we see that ACO
is producing slightly higher accuracy than LITS this is as a
result of ACO not respecting the time constraint as shown
in plot (d). On the other hand, LGSTO is producing very
low average accuracy as a result of not leveragin parallel
offloading. Subplots (b) and (d) show that most scheme were
unable to satisfy the time constraints below 200ms and only
found solutions at around 200ms which the minimum average
time for a schedule in this experiment. Above 200ms we see
that both eslot and τ slot scale linearly with the increase of time
constraint.
To evaluate the edge server selection module we perform

the same experiments as before while varying the number of
available edge servers from 0 to 10. In terms of accuracy as
shown in Figure 8 we see no reduction in average accuracy
while using server selection compared to not using it. Whereas
in Figure 9 we see an improvement in scheduling times as
a result of selecting a fewer number of edge servers for the
scheduler to work with which in turn reduces the dimensions
of the scheduling problem at hand and thus lower the runtime.
Finally, we compare all the schemes together as shown in

Figure 10 and Table 7. Subplot (a) shows that LITS with server
selection has the highest average accuracy compared to other
schemes even LITS without server selection while producing
these schedules at the lowest scheduling times as shown in
subplot (d).

VI. CONCLUSION
In this work, we proposed an inference task scheduling and
offloading framework for edge computing under time and
energy constraints. Using a lightweight genetic algorithm
based scheduling schemewe showed that the complex problem
of scheduling inference tasks across local models and edge
server models in parallel can be solved efficiently under given
time and energy constraints. Additionally, we introduced an
enforcement learning based server selection agent to help
reduce the number of available edge servers and improve the
speed and accuracy of the scheduling method. Experiments
performed using the ImageNet-Mini dataset showed that our
framework is lightweight enough to run on a raspberry pi and
perform real-time inference task scheduling under the given

time and energy constraints while producing higher average
accuracy compared to other schemes.
Finally, we identify three limitations in this work. First,

we did not develop a robust method for estimating the energy
cost of data transmission over unreliable wireless communica-
tion channels. Second, in task offloading applications, server
load is a critical parameter for server selection, yet we lack
a distributed scheme for accurately estimating server load.
Lastly, employing a deep reinforcement learning approach for
server selection could incorporate a broader range of state
parameters, enhancing decision-making. This approach is
being considered for future research.

REFERENCES
[1] M. G. S. Murshed, C. Murphy, D. Hou, N. Khan, G. Ananthanarayanan,

and F. Hussain, ‘‘Machine learning at the network edge: A survey,’’ ACM
Comput. Surveys, vol. 54, no. 8, pp. 1–37, Nov. 2022.

[2] N. Abdenacer, N. N. Abdelkader, A. Qammar, F. Shi, H. Ning, and S.
Dhelim, ‘‘Task offloading for smart glasses in healthcare: Enhancing
detection of elevated body temperature,’’ in Proc. IEEE Int. Conf. Smart
Internet Things (SmartIoT), Aug. 2023, pp. 243–250.

[3] A. Ben Sada, A. Naouri, A. Khelloufi, S. Dhelim, and H. Ning, ‘‘A
context-aware edge computing framework for smart Internet of Things,’’
Future Internet, vol. 15, no. 5, p. 154, Apr. 2023. [Online]. Available:
https://www.mdpi.com/1999-5903/15/5/154

[4] H. Touvron, L. Martin, K. Stone, P. Albert, A. Almahairi, Y. Babaei,
N. Bashlykov, S. Batra, P. Bhargava, and S. Bhosale, ‘‘Llama 2: Open
foundation and fine-tuned chat models,’’ 2023, arXiv:2307.09288.

[5] A. B. Sada, A. Khelloufi, A. Naouri, H. Ning, and S. Dhelim, ‘‘Selective task
offloading for maximum inference accuracy and energy efficient real-time
IoT sensing systems,’’ 2024, arXiv:2402.16904.

[6] A. Fresa and J. Prakash Champati, ‘‘Offloading algorithms for maximizing
inference accuracy on edge device under a time constraint,’’ 2021,
arXiv:2112.11413.

[7] V. Cacchiani, M. Iori, A. Locatelli, and S. Martello, ‘‘Knapsack problems—
An overview of recent advances. Part II: Multiple, multidimensional, and
quadratic knapsack problems,’’ Comput. Oper. Res., vol. 143, Jul. 2022,
Art. no. 105693.

[8] I. Nikoloska and N. Zlatanov, ‘‘Data selection scheme for energy efficient
supervised learning at IoT nodes,’’ IEEE Commun. Lett., vol. 25, no. 3,
pp. 859–863, Mar. 2021.

[9] T. M. Ho and K.-K. Nguyen, ‘‘Joint server selection, cooperative offloading
and handover in multi-access edge computing wireless network: A deep
reinforcement learning approach,’’ IEEE Trans. Mobile Comput., vol. 21,
no. 7, pp. 2421–2435, Jul. 2022.

[10] H. Liu and G. Cao, ‘‘Deep reinforcement learning-based server selection
for mobile edge computing,’’ IEEE Trans. Veh. Technol., vol. 70, no. 12,
pp. 13351–13363, Dec. 2021.

[11] Y. Dai, D. Xu, S. Maharjan, and Y. Zhang, ‘‘Joint load balancing and
offloading in vehicular edge computing and networks,’’ IEEE Internet
Things J., vol. 6, no. 3, pp. 4377–4387, Jun. 2019.

[12] T. Alfakih, M. M. Hassan, A. Gumaei, C. Savaglio, and G. Fortino,
‘‘Task offloading and resource allocation for mobile edge computing by
deep reinforcement learning based on SARSA,’’ IEEE Access, vol. 8,
pp. 54074–54084, 2020.

[13] G. Yang, L. Hou, X. He, D. He, S. Chan, and M. Guizani, ‘‘Offloading
time optimization via Markov decision process in mobile-edge computing,’’
IEEE Internet Things J., vol. 8, no. 4, pp. 2483–2493, Feb. 2021.

[14] M. Tang and V. W. S. Wong, ‘‘Deep reinforcement learning for task
offloading in mobile edge computing systems,’’ IEEE Trans. Mobile
Comput., vol. 21, no. 6, pp. 1985–1997, Jun. 2022.

[15] O. Vinyals, C. Blundell, T. Lillicrap, K. Kavukcuoglu, and D. Wierstra,
‘‘Matching networks for one shot learning,’’ 2017, arXiv:1606.04080.

[16] K. He, X. Zhang, S. Ren, and J. Sun, ‘‘Deep residual learning for image
recognition,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Las
Vegas, NV, USA, Jun. 2016, pp. 770–778.

[17] N. Ma, X. Zhang, H.-T. Zheng, and J. Sun, ‘‘ShuffleNet v2: Practical
guidelines for efficient CNN architecture design,’’ 2018, arXiv:1807.11164.

[18] S. Xie, R. Girshick, P. Dollár, Z. Tu, and K. He, ‘‘Aggregated residual
transformations for deep neural networks,’’ 2017, arXiv:1611.05431.

72936 VOLUME 12, 2024



A. B. Sada et al.: Energy-Aware Selective Inference Task Offloading

ABDELKARIM BEN SADA received the B.Sc.
degree in computer science from the University
of Djelfa, Algeria, in 2014, and the M.Sc. degree
in networking and distributed systems from the
University of Laghouat, Algeria, in 2016. He is
currently pursuing the Ph.D. degree with the
University of Science and Technology Beijing,
China. His research interests include computer
vision, machine learning, and the Internet of
Things.

AMAR KHELLOUFI received the B.S. degree
(Hons.) in computer science from the Faculty of
Sciences and Technology, Ziane Achour University
of Djelfa, Djelfa, Algeria, in 2012, and the
M.S. degree in distributed information systems
from the Faculty of Sciences, University of
Boumerdès, Boumerdes, Algeria, in 2014. He is
currently pursuing the Ph.D. degree with the School
of Computer and Communication Engineering,
University of Science and Technology Beijing,

Beijing, China. His current research interests include the Internet of Things,
blockchain applications, edge computing, and distributed systems.

ABDENACER NAOURI received the B.S. degree
in computer science from the University of
Djelfa, Algeria, in 2011, and the M.Sc. degree
in networking and distributed systems from the
University of Laghouat, Laghouat, Algeria, in 2016.
He is currently pursuing the Ph.D. degree with
the University of Science and Technology Beijing,
Beijing, China. His current research interests
include cloud computing, smart communications,
machine learning, the Internet of Vehicles, and the
Internet of Things.

HUANSHENG NING (Senior Member, IEEE)
received the B.S. degree from Anhui University,
Hefei, China, in 1996, and the Ph.D. degree from
Beihang University, Beijing, China, in 2001. He is
currently a Professor with the School of Computer
and Communication Engineering, University of
Science and Technology Beijing, China, and the
Founder and a Principal with Beijing Cyberspace
International Science and Technology Cooperation
Base. His current research interests include the IoT,

general cyberspace and metaverse, smart education, cyber-syndrome, and
cyber-health.

SAHRAOUI DHELIM received the master’s
degree in networking and distributed systems from
the University of Laghouat, Algeria, in 2014,
and the Ph.D. degree in computer science and
technology from the University of Science and
Technology Beijing, China, in 2020. He was a
Visiting Researcher with Ulster University, U.K.,
from 2020 to 2021. He is currently a Senior
Postdoctoral Researcher with University College
Dublin, Ireland. His research interests include

social computing, smart agriculture, deep-learning, recommendation systems,
and intelligent transportation systems. He serves as a Guest Editor for several
reputable journals, including Electronics journal and Applied Science Journal.

VOLUME 12, 2024 72937


