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ABSTRACT The integration of Edge Computing (EC) and Energy Harvesting (EH) technologies has
facilitated the growth of the Internet of Things (IoT), allowing for the interconnectivity of a wide range of
devices. The integration of this technology has not only enhanced energy sustainability but also significantly
extended the battery life of these devices. Adopting Renewable Energy (RE) sources has become more
widespread in energy systems as a strategy to reduce carbon emissions. Low energy consumption and
constrained battery capacity for IoT devices are concerns related to offloading. The unpredictability of RE
quality makes it difficult for edge servers to maintain high quality of service in EH-EC systems, which
impedes effective energy conservation for IoT. To solve an optimization problem, RE Predictions with a
Deep Reinforcement Learning algorithm named (REP-DRL) are proposed. Accurately, REP-DRL used the
actor-critic technique to identify the best approach for predicting RE and optimal offloading decisions.
The approach improves IoT device processing and expands the system state to offload experiences per
time slot. To store excess energy during periods of abundance and use it during times of higher demand,
the service offloading process is modelled based on the predicted amount of RE, to find the best service
offloading technique and improve energy sustainability for IoT. By determining the most efficient service
offloading approach using the predicted RE amount, this solution increases the energy sustainability of the
IoT ecosystem. Finally, the simulation results show that the REP-DRL system utilizes local computing to
conserve power when both the battery level and projected EH are low, showcasing its capacity to adapt to
varying operating conditions and optimize the utilization of resources.

INDEX TERMS Edge computing, energy harvesting, IoT, RE, DRL.

I. INTRODUCTION
The rapid development of the Internet of Things (IoT) is
impeded by limited device processing. Sustainably offload-
ing Edge Computing (EC) with Renewable Energy (RE)
is necessary to solve these problems. This calls for
an integrated approach that considers resource allocation
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strategies, hardware design, offloading strategies, and energy
sources [1], [2]. Implementing such a strategy can not only
have a positive impact on the environment but also enhance
the efficiency and reliability of IoT applications. IoT tech-
nologies can help reduce carbon footprints, resulting in more
efficient energy generation [3], [4].

The power sector is increasingly shifting towards RE
sources due to their affordability and significant contribution
to reducing carbon emissions. Solar, wind, hydroelectric,
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biomass, and other types of RE are all included in the RE
sources [5], [6], [7]. Integrating IoT technology into energy
systems and utilizing the data collected from interconnected
devices can offer a solution to long-standing issues such
as energy sustainability. By effectively managing the linked
devices, the potential benefits of IoT can be harnessed to
optimize energy usage and minimize waste. Energy Har-
vesting (EH) is a highly promising technology that has the
potential to significantly extend the battery life of IoT devices
while also ensuring a satisfactory quality of experience. IoT
increases energy usage since it uses electricity to communi-
cate with other IoT devices [5], [8]. Due to the insufficient
processing power of IoT devices, computing services are
often assigned to the cloud center [5]. This avoids significant
energy consumption caused by data transmission over long
distances between IoT devices and the cloud center, which
can also lead to energy depletion in IoT devices with short
battery lives. By harnessing energy from the environment,
such as from solar panels or motion sensors, EH technology
can reduce the dependence on traditional power sources and
enable IoT devices to operate for longer periods without the
need for frequent battery replacements or recharging [9]. The
EH module allows an IoT device to collect ambient RE from
diverse sources like solar radiation, wind power generation,
and Radio-Frequency (RF) transmissions to supply the IoT
Central Processing Unit (CPU) and radio transceiver with
cleaner energy [10]. A possible paradigm to address the prob-
lem of energy shortage is EC. The EC has the potential to play
a big role in fostering a more sustainable future by lowering
the amount of energy used in data centers, enabling energy-
efficient applications, and assisting in the management of RE
sources. On low-power devices, EC encourages the real-time
execution of several computing tasks [11], [12], [13], [14].
Edge Servers (ES) adjacent to IoT devices are distributed
processing, storage, and bandwidth resources by EC [15]. The
EC enables service delivery optimization by shifting service
requests to ESs, resulting in enhanced Quality of Service
(QoS) for end-users. In addition to this, it contributes to
the sustainability of the energy system by reducing trans-
mission latency, avoiding network congestion, minimizing
energy consumption, and extending the battery life of IoT
devices [16].

A growing number of energy systems are adopting micro-
grids to reduce their carbon footprints by using RE as their
primary power source, microgrids offer an environmentally
friendly alternative [17]. RE generation’s pivotal role in
renewable-powered energy systems highlights the signifi-
cance of accurately predicting its amount in improving the
QoS of ESs. Moreover, this can facilitate the service offload-
ing process [18]. New developments in Deep Learning (DL)
technology are required to create accurate learning models
that can be utilized in the energy analysis process, such
as prediction, forecasting, and decision-making, to enhance
the distribution of RE sources. Our goals are to develop a
DL-based enhanced RE prediction system and to establish
a service offloading system for EC IoT-enabled systems.

This scheme will be built based on the predicted amount of
RE generation, ensuring optimal utilization of resources and
efficient energy management.

A. RELATED WORKS
Based on previous research on RE supply and environmen-
tal health by developing an energy consumption model that
incorporates solar energy collection and energy storage using
batteries [4]. Information sharing among all objects has been
made possible by the emergence of IoT [19]. Energy sus-
tainability can be greatly increased by integrating IoT into
energy systems [20]. To employ an offloading framework to
transfer computation tasks from an IoT device to an ES, with
joint optimization of task allocation and CPU frequency. This
optimization aims to minimize both implementation delay
and energy consumption, thereby improving overall system
efficiency. IoT terminals are frequently challenged when
processing a large volume of data due to their typical com-
pact size and low power consumption. Although replacing
the batteries can significantly extend a device’s service life,
doing it at a distant location is difficult, expensive, and time-
consuming [21]. To assure sustainable energy production, the
authors in [22] integrated an industrial Internet of unmanned
aerial systems with the smart grid. However, a recurring flaw
in this research is that they never integrated EC into the energy
system. A learning-based online method is being investigated
for EH-powered ES so that the system operator can determine
how much workload should be transferred from the ES to
the central cloud and how quickly the ES should process
requests [22]. This analysis is based on data regarding core
network congestion, computation workload, and the state
of the energy grid. A computational offloading technique
that considers the low battery capacity of IoT devices is an
effective way to extend the lifetime of IoT systems, given
the restricted compute capacity of the mobile EC server.
To determine the best offloading policy, the authors of [10]
suggested using Deep Reinforcement Learning (DRL). The
rationale for using DRL to estimate EH and adjust battery
levels justifies its use in RE systems. For controlling the
inherent variability in RE sources, DRL algorithms are a good
fit. To optimize battery usage, DRL can provide adaptive
control systems that use data to predict EH patterns and make
decisions in real-time. This method improves the system’s
overall sustainability and efficiency while also maximizing
the use of RE. The Markov Decision Process (MDP) was
developed as a solution to the problem of large-time com-
plexity in learning algorithms.

Enhance the smart devices’ processing capability while
saving battery-level power. The problem is the variable gen-
eration of RE and the energy used, which affects the battery
level. To enhance battery level the [11] proposed a deep
Q noisy neural network model that automatically predicts
changes in the volume to adjust the level of noise in smart
devices to save battery energy. The authors in [12] improve
IoT QoS and prolong battery life. IoT fog systems enabled
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by EH bring important offloading challenges to light. IoT
devices are assumed to fully grasp system states in exist-
ing works. Consequently, [12] investigates partially visible,
decentralized offloading in IoT fog systems with EH enabled.
By offloading decisions through a decentralized, partially
observable Markov decision process, several IoT devices
collaborate for the best possible network performance and
quality of experience. EC has arisen as a potent paradigm
for furnishing IoT devices with top-tier computing services.
This approach addresses the inherent limitation of substantial
computational capacity in the majority of IoT devices [23].
The authors of [24] introduced EC and edge IoT to address
the scalability challenges of traditional IoT architecture in
energy systems. This technique integrates EC into the IoT
infrastructure, providing a viable solution for scaling IoT
systems. To select whether to offload to an edge device
that serves many users, the authors of [25] presented a
binary EC offloading mechanism known as DRL. Com-
pared to complete offloading and non-offloading systems,
this can decrease energy consumption and average estima-
tion delay. In addition, the dynamic mobile EC network
has implemented offloading solutions using DRL algorithms.
An effective DRL-based resource management strategy was
recommended by [26]. With the help of this plan, real-time
workload dumping rates will be improved for the ES and the
centralized cloud, respectively. It also emphasizes providing
services to reduce service delays and manage operational
costs successfully. However, in [27], the authors propose an
offloading strategy based on DRL for an IoT devices with
EH capabilities. The strategy involves selecting the optimal
edge device and offloading rate based on the device’s current
battery level, thus maximizing its energy efficiency. In [27],
the authors propose a DRL-based offloading strategy that
aims to accelerate the learning process, increase transmission
rates to each edge device, and predict the amount of energy
that can be harvested. This approach leverages DRL tech-
niques to optimize the offloading decision-making process,
resulting in faster and more efficient EC. To enhance the
lifespan of IoT devices, researchers in [28] have proposed
a Deep Neural Network (DNN) architecture incorporating
regularization techniques and an energy-efficient computa-
tion offloading with EH-IoT. The primary goal of this design
is to accelerate the convergence rate and optimize Resource
Allocation (RA) by establishing a suitable offloading strategy
to extend the battery life of IoT devices while maintain-
ing an acceptable level of performance [12], [28]. In [29],
the authors propose an online RA method for IoT systems
that considers real-time tasks and channel states, as shown
in Table 1. To improve the system’s energy efficiency,
an approach driven by offline optimization is employed.
This approach utilizes the Lagrangian dual method combined
with a sliding-window-based online RA to optimize both the
offloading decision and RA. By considering both factors,
this joint approach more effectively minimize the system’s
overall energy consumption, leading to better performance

and reduced costs. This technique is well-suited for real-
world applications where energy efficiency is a critical
concern. In [30], the authors propose a service offloading
technique that leverages RE predictions to reduce the insta-
bility and discontinuity of renewable generation. By utilizing
memory cells, Long Short-Term Memory (LSTM) effec-
tively handles the issue of exploding and vanishing gradients
in DNN, facilitating long-term prediction. Prediction time
series data is one of the many sequence prediction tasks
where this approach has shown efficacy. By considering
these predictions, this approach can optimize the offloading
decision-making process and lower the ES-QoS. By reducing
the reliance on non-RE sources. The proposed MDP is used
by these authors [30] to improve the service of offloading
procedure.

In [14], the authors develop an online CPU frequency
for sustainable edge computing by minimizing the execu-
tion time of tasks offloaded. To balance energy consumption
and computational latency, the authors in [14] proposed an
optimal offline strategy as well as a prediction value for the
energy that can be harvested by optimizing energy efficiency
while fulfilling performance requirements, changing service
offloading decisions based on real-time RE predictions, and
adjusting the clock frequency. The asynchronous advantage
actor-critic is used with the anticipated amount of RE to
choose the best service offloading method. Renewable gen-
eration plays a critical role in RE systems, and predicting
the amount of renewable generation can lead to improved
QoS for ES. Additionally, such predictions can guide the
process of service offloading [16]. Over the past few years,
DL has exhibited remarkable success across various tasks,
such as predicting stock market trends [31] and predicting
traffic flow [32]. EC research is confronted with two primary
challenges: (1) One of the major optimization challenges is
lowering the energy usage of IoT devices. To formulate this
problem, RA and offloading decisions must have significant
computational overhead and time expenses. This strategy
aims to reduce overall energy consumption by concurrently
optimizing compute offloading options, modifying the time
allocation ratio for EH, and utilizing the device’s local CPU
processing capabilities. (2) IoT terminal batteries have a
limited capacity, and task processing uses energy. In [33],
a novel technique for energy-efficient IoT systems with EC
is leveraged to determine the optimal service offloading by
proposing renewable prediction-driven service offloading.
The goal is to predict the availability of RE to reduce reliance
on conventional power sources. A DL-based approach for
predicting RE data is used to find the best service offloading
approach. This approach involves extending the system state,
to include the offloading experience sequence at each time
slot based on the proposed RE Predicted with a Deep Rein-
forcement Learning algorithm named (REP-DRL), which
leverages RE predictions to optimize service offloading.
Thus, the magnitude of RE generation anticipated necessi-
tates the development of a DL-based strategy for accurate
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TABLE 1. Summary of several works related to sustainable edge computing offloading.
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prediction, and the creation of an IoT-enabled energy system
service offloading scheme utilizing EC technology.

The instability and discontinuity of renewable generation,
low energy consumption, and extending the battery life of
IoT devices are concerns related to offloading. The unpre-
dictability of RE quality makes it difficult for ES to maintain
high QoS in EH-EC systems, which impedes effective energy
conservation for IoT.

This work focuses on building a service offloading
approach with RE prediction for IoT-enabled energy sys-
tems powered by RE sources. This study’s main goal is to
construct a service offloading method with RE. This article
focuses on enhancing energy sustainability for edge-enabled
IoT energy systems, not many of these studies have integrated
EC and RE prediction as an integrated whole. This could
lead to unpredictable QoS for the edge servers. This essay
explores the issue of observable computation offloading in
the context of the EH-enabled IoT EC system to close this
gap. This depends on the energy stored in excess during times
of abundance and used when demand is higher. To find the
best service offloading methods and improve energy sustain-
ability for IoT applications, the service offloading process is
envisioned by utilizing the predicted RE amount. To clarify
the difference between this work and previous works, this
approach combines the use of the actor-critic with expected
renewables, it improves IoT processing. Energy consumption
is decreased, and RA is optimized REP-DRL for RE predic-
tion. DNN is used by REP-DRL to make the best offloading
decisions and improve energy sustainability.

B. MOTIVATION AND CONTRIBUTIONS
To date, there has been limited research that has effectively
coordinated RE prediction-driven service offloading mech-
anisms. To improve the energy sustainability of IoT and
enhance the extended battery life of these devices. To address
this issue in the [24], [25], [26], [27], [28], [29], [30], and
[31], we have developed REP-DRL, a novel approach that
leverages RE predictions to optimize service offloading. Our
work represents a significant advancement in this field. The
main contributions of this paper are listed as follows.

• To address the challenge of reducing the energy con-
sumption of IoT devices, an optimization problem is
formulated that considers RA and offloading decisions.
To enable local processing and compute offloading, IoT
devices use RE sources like solar energy to generate
their energy. By simultaneously maximizing the choice
of compute offloading, the time allocation ratio for EH,
and the device’s local CPU processing capabilities, this
approach aims to lower overall energy usage.

• Offloading raises concerns regarding IoT devices’ low
energy consumption and constrained battery capacity.
Maintaining high QoS in EH-EC systems is difficult
for ES due to the unpredictable nature of RE qual-
ity. To optimize the allocation of resources and lower
the energy consumption. This depends on the proposed

REP-DRL. The REP-DRL algorithm achieves the best
offloading decision based onDNN.Where the DNN cre-
ates binary offloading decisions to faster up and stabilize
convergence for LSTM to solve accelerated convergence
by updating the gradient function based on time series
prediction.

• To enhance the processing performance of IoT devices,
we develop a service offloading approach by combin-
ing the asynchronous advantage of actor-critic with
the anticipated amount of renewable generation. REP-
DRL used the actor-critic technique to identify the
best approach for predicting RE and optimal offloading
decisions. This approach involves extending the system
state, to include the offloading experience sequence at
each time slot. By doing so, the optimal offloading des-
tination is determined by allocating as many resources
as possible to handle the offloading process from action
to execution and improve energy sustainability.

II. SYSTEM MODEL
In this section, we proposed an EC offloading framework in
IoT to enable EH-IoT as shown in Fig. 1, wherein an IoT
device that has EH and electricity-storage components can
offload some of its processing tasks to one of M ES that
are each individually connected to Base Stations (BS). The
IoT device has a battery that is powered by energy that is
harvested from the environment, such as solar, wind, and
RF signals. Let M∈M = [1, . . . , ] signify the indices of
ES, and each device generates a task with a time-slots of
∈j = [1, . . . ,T], where the duration of each time-slot is

τ seconds. Considering the randomized time-slots for tasks
and the constraints of available local computing resources,
the device will determine whether to offload a given task or
not. The offloading choice made by the device is represented
by.

δj =

{
0, Offload j to local computing mode
1, Offload j to the ES

. (1)

This system uses orthogonal frequency division multi-
plexing access (OFDMA), with each subchannel having a
bandwidth of B. Based on radio link transmission, the IoT
device chooses an ES to offload the compute tasks during
time-slot . The rate of transmission between the −th ES
and the IoT device is given by

j = B log2
(
1+

Pj j

σ 2

)
, (2)

where j represents the channel gain, Pj represents the trans-
mit power of the device for offloading computations, and σ 2

is the Gaussian white noise power of the ES. Every IoT device
j performs the task within the time slot , which is represented
by Cj (in kbit) as:

loc
j =

Cj
f locj

, (3)
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FIGURE 1. EH powered for IoT device with RE.

where is the total of CPU cycles needed to complete a 1 kbit
operation, and f locj is denoted by the CPU frequency of a com-
puting resource, the processor frequency has a super-linear
relationship with processing power. The energy needed for
local computation at time-slot can be written as:

loc
j = ςCj (f locj )2. (4)

According to [1] the chip architecture-dependent effective
capacitance coefficient ς . The time it takes for Cj tasks to be
offloaded to the − th ES-QoS at time-slot can be written
as:

off
j =

Cj(
1− ∂j

)
j

, (5)

where ∂ indicate the offloading rate selected by the IoT device
at the time-slot , and denoted by ∂j and 1−∂j, where If ∂j= 0,
the calculations are performed locally, and fully offloading to
the ES if ∂j = 1. The amount of energy needed for the device
j to transfer the task to the ES is given by

off
j = Pj

off
j . (6)

Using an EH module and an internal battery, the IoT
devices may harvest energy from renewable sources, such as
solar energy. During times of favorable wind speeds and low
electricity demand, the proposed algorithm can efficiently
store the output power generated by the wind farm and simul-
taneously inject it into the grid. Hence, let’s define har

j and j
as the total amount of EH at time-slot and the battery level
at the beginning of time-slot , respectively. Based on the
power harvested history and themodelingmethod [2], the IoT

device may estimate the amount of energy collected at each
time-slot. Whereas specifies the location of each service’s
offloading j−th the energy consumption of each service.

ej =
[(
1− δj

) loc
j + δj

off
j −

har
j , j

]
, (7)

where δj represents the task offloading decision by device j.

A. BATTERY MODEL
The energy derived from the solar panel and stored in the
battery during are represented as εrec ( ) and εbat ( ),
respectively. Energy consumption and the amount of energy
available for services are correlated in two different ways.

εbat ( + 1) = mi n (εbat ( )+ εrec ( )

−

∑
i∈ jej ( ) , max

bat

)
, (8)

where max
bat represents the battery’s capacity for subchannel

to evaluate the service offloading performance and services
waiting are run at a given time interval as indicated by the
indicator j. However, services cannot be provided using
stored battery energy and received solar power when the
received energy is insufficient (in the evening) and can be
expressed as εj =

(
jej( )+εbat ( )− εrec ( )

)
, the battery

capacity will be reduced to zero.

III. PROBLEM FORMULATION
To minimize system energy consumption through efficient
offloading and enhance the QoS in EH-EC systems, we for-
mulate an optimization problem that focuses on reducing the
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overall energy consumed by terminal devices.

min
δj,∂j,f locj

∑
j∈{1,2,....M}

ej, (9)

0≤f locj ≤f
max
j , (9a)

0≤
Cj

j

(
1− ∂j

)
, (9b)

0≤ loc
j ≤eharj + j, (9c)

0≤ off
j ≤eharj + j, (9d)

0≤∂j≤1, (9e)

1≤ j≤
max
bat , (9f)

δj∈ {0, 1} , j∈M . (9g)

The CPU computing resource constraint on the device j
is indicated by constraint (9a). The completion of the task
offloading within the time limit is shown by constraint (9b).
Per constraints (9c) and (9d), in the event of local computing
and data transfer, the task’s energy consumption should not
be greater than the total energy gained by wireless charging
and the battery’s available energy. The time allocation ratio
for EH cannot be more than 1, as per constraint (9e). The
j in (9f) determines the amount of energy harvested , then

check the battery level. The value of the offloading choice is
shown by constraint (9g) to be either 0 or 1.

IV. PREDICTED RE AND EC OFFLOADING
In this section, the optimization problem in (9), is proposed
to be solved by the REP-DRL. The algorithm uses REP-DRL
to achieve the best offloading decision-based DNN. This
algorithm combines this decision with momentum gradient
descent to optimize the allocation of resources, further low-
ering the system’s energy consumption, and computation
offloading with RE generation prediction can be highly ben-
eficial in the IoT. Where IoT devices can extend their battery
life and use less energy by shifting computing to distant
servers [27]. The complexity of the conventional approach
rises as the number of devices increases:

min
∂j,f locj

∑
j∈{1,2,....M}

ej
(
δ∗j

)
, (10)

where δ∗j represents the suitable offloading decision.

A. OFFLOADING DECISION-MAKING
The weather and RE are closely correlated, and weather
data and RE data are combined to create vectors. In this
case, the DNN creates binary offloading decisions to faster
up and stabilize convergence. Each DNN layer’s output is
regularized using stochastic gradient descent when the loss
function is minimized to produce the best-fitting effect. This
approach accelerates convergence by updating the gradient
function based on a single sample can be written as:

ε ( ) = εrec ( )⊎ ( ) , (11)

where ( ) indicates the weather conditions at the time inter-
val , and ⊎ denoted as a series of interconnected. Increasing

the amount of RE that is generated at various time frames
will help balance generation fluctuations over a wider range
of time periods, and compressed air energy storage to help
balance fluctuations in RE generation [29], [31]. On account
of various temporal connections, the concatenated vectors
are divided into three vectors called short-time vector, period
vector, and long-term vector as follows:

εsh ( ) = ⊎ sh
τ=1ε ( −τ) , (12)

εp ( ) = ⊎
p

τ=1ε
(
−µpτ

)
, (13)

εl ( ) = ⊎ l
τ=1ε ( −µlτ) , (14)

where µp and µl represent the long-term vector and period
vector of the platform for the interval between two vectors;
each vector’s length, or the quantity of actually renewable
vectors in each temporal group, is denoted by the letters
sh, p, and l , which are all hyperparameters in REP-DRL

respectively.

B. LONG SHORT-TERM MEMORY NETWORK
LSTM is a recurrent neural network that is especially
well-suited to handle data sequences, including time series.
Problems with time series prediction are developed using
DNN for LSTM [3]. The two LSTM layers receive the three
vectors, and the number of LSTM units per layer can be
adjusted to prevent overfitting and decrease training time. The
three vectors are used to extract temporal features from two
LSTM layers, which are calculated as:

f (τ ) = f (τ ) . f (τ − 1)+ i (τ ) . f̄ (τ ) , (15)

H (τ ) = (τ ) .tanh (f (τ )) , (16)

εl ( ) = ⊎ l
τ=1 (τ ) ℓ = 1, 2, (17)

where C (τ ) and H (τ ) denote the cell status and hidden
status of the input tensor’s τ − th renewable vector, respec-
tively; and (.) illustrates the multiplication of elements. To get
certain attributes from a time series database that has a lot
of underlying information and has the potential to improve
predicting performance, the DNN component is utilized. The
LSTM framework design has four essential components: out-
put stage, forgetting entry, feed gateway, and cell condition.
The updating, preservation, and removal of cell updates are
governed by the inputs, forgetting, as well as outputs gate-
ways. The update rule for LSTM cell [3] proceeds as follows:

C (τ ) = ϕ
(

f .ε
′ (τ )+ f

)
, (18)

i (τ ) = ϕ
(

i.ε
′ (τ )+ i

)
, (19)

f (τ ) = tanh
(

C.ε ′ (τ )+ C
)
, (20)

(τ ) = ϕ
(

.ε′ (τ )+
)
, (21)

where f , i, and are the weight matrices of the forget-
ting gate, input gate, and output gate, respectively; and f , i,

are the balance items of the forgetting gate, input gate, and
output gate, respectively, ϕ represent the nonlinear activation
perceptron, and tanh represent sigmoid transfer feature. The
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input to the network typically consists of a vector of values
denoting the characteristics of the input data, which are then
concatenated with the hidden state of the τ − th vector [32].
A set of neurons make up the hidden layers (τ −1) and apply
a set of weights to the input values to generate an output.

ε′ (τ ) = εℓ−1 ( ,τ )⊎H (τ − 1) . (22)

Because there are two connected LSTM layers, the output
is ε2(τ ). After that, each residual unit is fed into a network
that is completely connected to the residual unit and can be
written as:

εℓ+2 ( ) = εℓ+1 ( )+ r (εℓ+1 ( )) , 1≤ℓ≤L (23)

where L represents the number of residual units. The residual
function, denoted by the r is a stack of two fully connected
layers that has been activated by the ReLU function. In par-
ticular, we utilize L= 1 as the sole residual unit in REP-DRL
to transform the output into a scalar. Subsequently, this output
is passed into another completely connected layer as follows:

ε(4) ( ) = 4.ε3i ( )+ 4. (24)

The final output of a neural network is typically a vector
of values representing the predicted output for each regres-
sion target. The in the output layer is learned during the
training process using backpropagation. The error between
the predicted output and the actual target value is used to
adjust the to minimize the error. By using a fully-connected
layer with a single neuron in the output layer, the REP-DRL
can reshape the output of the neural network into a scalar
value that can be used for regression tasks. The three distinct
vectors’ outputs are combined using a weighted sum that is
activated by a hyperbolic tangent to provide the estimated
value of the amount of renewable generation can be written
as:

ε ( ) = tanh
(

j.ε
4
j ( )+ p.ε

4
p ( )+ ℓ.ε4ℓ

( )
)

, (25)

where j, p, and ℓ represents the learnable weights. The
Mean Squared Error (MSE) loss function is assumed to be
the sample’s loss function q = {1, 2, . . . .m}, and the loss
function for all m samples can be written as:

loss (ϕ) =
1
m

∑m

q=1
∥ε ( )− εrec ( ) ∥22. (26)

The most suitable parameters can be established as ϕ∗ to
make the loss diminished by using gradient descent. There-
fore, ( (ε0j ( )+ p.ε

0
p ( )+ ℓ.ε

0
ℓ ( ) ;ϕ∗) can be utilized

for predicting the amount of RE in the future.

C. PREDICTIONS FOR RE
By enabling energy to be stored during periods of abundance
and utilized later on during times of higher demand. Our
aim is to reduce the amount of energy that must be drawn
permanently from the conventional power system. This kind
of EC issue can be reduced to a MDP, which can handle
successfully by DRL [32], [33], [34], [35]. An actor-critic
with asynchronous advantage is used to find the best service

offloading technique using the anticipated amount of RE and
improve energy sustainability for IoT.

1) STATE SPACE
Tomitigate potential challenges such as dimension explosion,
it is advisable to restrict the agent’s observation to the state of
a single service at any given time . Based on this evaluation,
the device determines the proportion of data to offload to an
ES. According to the EH model shown in (8), the IoT device
can estimate the quantity of RE overline (ε ( ) in each time
slot , evaluate its battery’s capacity at the moment max

bat , and
check the radio link data rates to the M edge devices in the
previous . The anticipated amount of RE is included as a
state component, as it guides the management of the service’s
load by projected future levels of RE, which can be written
as:

S ( ) =< ε ( ) , , σ 2,P ( ) ,C ( ) , max
bat ( ) , |Q| >

(27)

where the Q-value is used to determine the length of Q.

2) ACTION SPACE
Based on state S ( ), the IoT device chooses ES j, and uses
the greedy policy with a threshold j of 0 to 1 to prevent
remaining in the local maximum. The offloading action can
be written as:

Al ( ) = {0, 1, , . . . ., loc
j ≤(e

har
j + j)}, (28)

Ao ( ) = {0, 1, , . . . ., off
j ≤(e

har
j + j)}, (29)

Ab ( ) =
{
0, 1, , . . . ., max

bat
}
. (30)

When the requirements in (9) cannot be satisfied bymerely
implementing the offloading action. The task’s energy con-
sumption shouldn’t be higher than the sum of the energy
gained bywireless charging and the battery’s available energy
in (30), where (28), and (29) represent local processing and
data transfer. Additionally, the offloading destination δj must
be addressed for actions to offload by allocating as many
resources as possible for the service.

3) REWARD FUNCTION
Throughout the learning process, the IoT device is motivated
by immediate rewards, which are determined by evaluating
the benefits of sharing data, along with other factors such
as the current battery level, energy consumption, and overall
delay. The device receives its reward R( ) through equa-
tions (7) and (25) after receiving the processed service from
the ES, it can be written as

R ( ) = εbat ( )+ εrec ( )− ej ( ) . (31)

D. REP-DRL METHOD
REP-DRL used the actor-critic technique to identify the best
approach for the MDP. The time-varying decision-making
problem is initially modeled using a MDP [14], [36] and the
MDPmodel is subsequently solved using aDRLmethod [37],
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FIGURE 2. Offloading the decision-generation process.

[38], [39], [40]. The time slot in an MDP is determined by
carefully evaluating the objectives of the decision-making
process. The actor-critic is made up of an actor-network that
decides what to do in a given state and a critical network
that calculates the expected cumulative reward perception of
a particular state [34], [38], [41].

The strategy in the system is represented by the symbols
π (Al ( ) ,Ao ( ) ,Ab ( ) |S ( )) and refers to the agent’s
potential to select actions Al ( ) ,Ao ( ) , and Ab ( ) when
the system state is S ( ). The objective of REP-DRL is to
identify the best strategy π∗, where the maximum accumu-
lated reward can be expressed as:

R =
∑ max

µ R ( ) . (32)

The max represents the maximum time step, and µ ∈

(0, 1) represents the discount factor. The REP-DRL net-
work employs a fully connected to fit the critic, denoted
by

(
S ( ) ; η

)
, using the temporal-difference error as a

measure. The most effective service offloading technique is
determined using asynchronous advantage actor-critic and
the predicted amount of RE.

The actor-critic scheme, which increases the processing
performance by extending the system state S ( ) to the
offloading experience sequence at , denoted by η , speeds
up learning. Gradient ascent on the actor and critic networks
can be used to determine the best offloading approach. The
gradient of the objective function of the critic can be written
as:

dη =
∂[R ( )+ µ (S ( + 1)− (S ( ))]2

∂η
. (33)

Concerning the variable , the actor component can
perform admirably on REP-DRL. To do this, the pol-

icy is created by the parameter vector . The actor part
πηp (Al ( ) ,Ao ( ) ,Ab ( ) |S ( ))) is based on the-headed
fully connected network, whose value gradient can be
expressed as:

∂ηp = A ( )∇ηp

∫
S

∫
A

[
logπηp (Ao|S)

+ logπηp (Al |S)+ logπηp (Ab|S)
]
dAdS. (34)

where η and ηp represent the global actor and critic net-
work, and A ( )= R ( ) + µ (S ( + 1)− (S ( )) is the
advantage function. Getting the best offloading depends on
adjusting the gradient for the global actor and critic by sum-
marizing the training status and removing the problem of
ongoing parameter updates as:

d +1 = +AS2A∂ηp, (35)

where 2A represents the learning rate of the actor.

Algorithm 1 REP-DRL Based Offloading
1-Input , C , f , ∂ , ε ( ), µ, B, , Cmax ,
2-output π∗ (Al ( ) ,Ao ( ) ,Ab ( ) |S ( )

3- initialize ηp,η
4- ← 1
5-for = 1, 2, 3, . . . . . . do
6- Calculate the amount of harvested energy har

7- Observe the radio transmission rate B( ), and battery
level max

bat ( ).
8-ε ( )← (ε0j ( ) , ε0p ( ) , ε0ℓ ( ) , η)
9- Find the current state S ( ) by ε ( )

10- Evaluate the current battery level based on calculating the
reward in (31)
11- Calculate the global actor and critic for dη and dηp on
(33) and (34)
12- Update the 1ηp, 1η

13- end for
14- return πηp (Al ( ) ,Ao ( ) ,Ab ( ) |S ( )))

V. SIMULATION RESULTS
In the upcoming section, we assess the effectiveness of
our proposed compute offloading strategies for IoT devices,
which are based on the REP-DRL approach, in a dynamic
network that includes edge devices. We consider a scenario
where an IoT device is tasked with providing real-time
emergency treatment through simulations. Two benchmark
schemes were evaluated via simulations, namely the DRL
scheme from [42], and the Q-learning-based offloading sys-
tem described in [43]. Figure 3 depicts the impact of the
average data size of computational activities on energy con-
sumption across various battery levels and CPU frequencies.
Because all activities are executed locally at the highest
frequency, the NO scheme, running at maximum CPU fre-
quency, has the highest energy usage. On the other hand, less
energy is used by the REP-DRL, which reduces latency by
offloading tasks to EC servers.
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FIGURE 3. Battery energy level versus time slot.

The NO method shows reduced energy usage limited by
latency when it operates at optimal CPU frequency after CPU
frequency allocation. Additionally, the technique that has
been suggested manages energy usage the least by combining
computing RA with power control. Furthermore, by pre-
serving energy, mobile devices with low battery levels can
increase their operational hours thanks to the battery level-
aware algorithm. The average ratio of jobs offloaded by
applying the REP-DRL yields superior cell capacity than
when the number of devices grows, as shown in Fig. 3.
The average ratio of offloading duties gradually reduces as
the maximum distance increases, which explains why. Zero
offloading compute jobs will occur when the distance is
arbitrarily large. Because of this, there will be longer exe-
cution delays and higher energy consumption as the distance
between eachmobile device and each EC server increases due
to the channel power gain.

In Fig. 4, we present a comparison of our scheme’s run-
time efficiency with that of two benchmark methods over
10,000 time slots and convergence very quickly. As the
task requests are directed towards the ES, the REP-DRL
method is more appropriate for handling under sampled
records. As demonstrated, the cost of the proposed REP-DRL
is significantly lower compared to all benchmark meth-
ods. The suggested DRL technique [L. Xiao] leads to a
high time-average cost because it fails to consider the
decision-making process over time, resulting in frequent acti-
vation of backup power in later time slots.

By incorporating RE into mobile EC, the authors of [29]
focus on improving delay sensitivity at the mobile network’s
edge. While ignoring the temporal link between system
states and decisions, the authors of [29] stress the signifi-
cance of maximizing the time-average cost. By using all of
the battery’s energy, they hope to reduce the cost function,
which increases to 14 in this time frame. The suggested
REP-DRL structure, however, shows that it is possible to cut
the time cost to 9.8. This is accomplished by taking particular

FIGURE 4. Time cost versus time slot.

FIGURE 5. Computation power versus battery level.

attributes out of a time series database that contains a wealth
of underlying data, which improves the DNN’s predicting
ability. While the Q-learning method developed by Q[ J. Li]
is known to have a slow convergence rate due to the large
state space, our proposed REP-DRL strategy outperforms it.
Despite the decrease in time average cost across 10,000-time
slots, our approach demonstrates a significant improvement
over the Q-learning method. Figure 5 displays the optimal
policy that was learned, providing further evidence for why
the suggested approach outperforms the REP-DRL. The pol-
icy learned by the proposed method tends to be conservative
in its use of local processing resources when the battery level
is low andworkload demand is modest, and when the network
is not congested. This behaviour highlights the effectiveness
of the proposed method in adapting to different operating
conditions and optimizing resource utilization.

Compared to [29], which is based on an ideal solution,
it ignores temporal correlation, which is a myopic approach.
To boost the battery level to the ideal power demand of
0.98 KW with a battery level of 0.38 %, it turns on local
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FIGURE 6. Energy consumption versus computation task.

servers to handle the load. However, this manuscript extends
the system state, S ( ), to the offloading experience sequence
at , and the REP-DRL architecture reduces processing power
while improving processing performance. The LSTM pre-
diction can completely examine the changing pattern of data
transfer and has greater data prediction abilities and predic-
tion accuracy. Reducing the processing power to less than
0.97 KW and maintaining a 0.4% battery level expedites the
learning step η . Nevertheless, this will result in a higher
prediction overhead, which will lengthen the LSTM model’s
training period. Figure 5 demonstrates that the computational
power demand policy learned through REP-DRL can be con-
served when the environment state is at a low level. The figure
indicates that REP-DRL utilizes local computing power more
judiciously when the battery level is low and the projected
EH is low, highlighting its ability to adapt to changing oper-
ating conditions and optimize resource utilization. When the
workloads are high, implementing power-saving measures
during periods of improved network congestion can result in
long-term cost savings for the system. Despite the existence
of temporal correlations, the DRL [L. Xiao] algorithm fails
to account for them and may activate local servers to han-
dle workloads even when the battery level is low. Figure 6
demonstrates a correlation between the performance of the
system and the scope of the computation task C.

The increase in the number of computing tasks in EC
leads to a rise in the energy consumption of IoT devices.
Migration of computation-intensive jobs to the mobile EC
server is one way that mobile EC can increase the compu-
tational capability at the edge of wireless networks (J. Li).
Furthermore, although there will be a cost and energy cost
associated with this, the multi-user mobile EC system can
execute computation offloading across wireless channels to
a mobile EC server. Even with intermittent and unstable RE
sources, the REP-DRL allows renewable-powered IoT energy
systems to effectively choose the best offloading strategy,
greatly improving EC performance. Despite the number of
processing resources and subchannels implemented in the

FIGURE 7. Energy consumption versus CPU.

energy system, the REP-DRL exhibits remarkable profi-
ciency in decreasing the supplementary energy demand from
the power grid. With an increase in the computing power
of the energy system, the REP-DRL approach demonstrates
superior performance in comparison to the other two meth-
ods. This is illustrated in Fig. 6, where it can be observed
that under all conditions, REP-DRL only necessitates an
additional energy of 0.002 J to provide services, as opposed to
0.006 J for the benchmark technique and 0.008 J for the Q[J.
Li] approaches. For instance, the REP-DRL strategy reduces
the energy consumption of the IoT device more than the two
techniques, when the computation task size increases from
60 kb to 140 kb. The performance of various task processing
techniques in terms of the number of CPU cycles needed for
each task is shown in Fig. 7. Based on the data, the CPU
cycles per task range from 2 to 2.4 Gcycles, and it is evident
that the average energy consumption increases as the number
of CPU cycles per task increases. As the CPU cycle per
task increases, it requires more energy and time to execute
and transmit tasks, which can limit the number of tasks
that can be processed simultaneously when there are more
subchannels. To create effective mobile offloading solutions,
[L. Xiao] analyzes the interconnections among mobile EC
offloading. Nonetheless, the attainment of maximum exper-
tise in mobile offloading disposed identifications is hindered
by financial delays resulting from computational resources
like CPUs, disks, memory, and substantial databases. Nev-
ertheless, by utilizing RE projections to maximize service
offloading, REP-DRL can increase the usefulness of IoT
devices, boost detection accuracy, and shorten detection time.
This methodology expedites the process of arriving at optimal
offloading choices while augmenting energy sustainability.
However, despite these limitations, the promising results in
other situations suggest that the reduced task processing
capacity is still acceptable in such scenarios.

From Fig.7, the RED-DRL proposed reduces the energy
consumption of the IoT device more than the two techniques,
when the CPU cycles increase from 2 to 2.4. Based on the
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findings presented in references (22) and (23), it can be
observed that the REP-DRL proposed achieves the highest
computation offloading performance once convergence is
reached. When the simulation settings satisfy conditions (28)
and (30), the utility of the IoT device approaches the perfor-
mance bound specified by (34).

VI. CONCLUSION
In this paper, to optimize the utilization of RE, a service
offloading technique called REP-DRL has been developed
for energy systems enabled by IoT and EC. To forecast
RE, a DL-based technique is employed, followed by the
use of actor-critic in REP-DRL to determine the optimal
service offloading approach for energy systems, leverag-
ing the predicted RE generation information. The use of
a REP-DRL approach allows for renewable-powered IoT
energy systems to efficiently determine the optimal offload-
ing and autoscaling policies. This is achieved through fast
learning, even in the presence of unknown system parameters,
by considering the specific problem formulation. From the
simulation results REP-DRL optimize computation offload-
ing and greatly increases EC performance even when it is
powered by intermittent and unreliable RE. In addition, the
REP-DRL saves more energy and lowers the energy con-
sumption of the IoT device, when the CPU cycles increase.
Our future efforts will be directed toward enhancing the
accuracy of REP-DRL forecasts, reducing service latency,
and designing a more precise service offloading mechanism.
These endeavors will enable us to effectively apply the tech-
nique to real-world energy systems.
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