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ABSTRACT This article describes the computational analysis of Radio Frequency - Electromagnetic Field
(RF-EMF) exposure of Uterus-Fetus Units (UFUs) embedded inside the body of a 26 year old human female.
Realistic UFU models are obtained from ultrasound images acquired for different fetuses and at specific
development stages (7 weeks, 9 weeks and 11 weeks old), for which a deep-learning based segmentation
method is developed. Each UFU model is then inserted into a computational electromagnetic model of a
26 year old female. The Specific Absorption Rate (SAR) of the fetus at commonly used wireless com-
munication frequencies is estimated using a commercially available numerical electromagnetic solver. The
Inverted F antenna (IFA), which is a commonly used mobile phone antenna was used as the excitation source.
Fetus SAR values are reported for different combinations of excitation frequencies, phone positions and UFU
ages. It was found that the fetus SAR for all the cases is well below the maximum allowable exposure limit of
80 mW/kg, as prescribed by ICNIRP. Furthermore, we replaced the embryo with uterus tissues and calculated
the SAR in the uterus tissues (i.e. uterus tissues with same volume and shape, and at the same location as
that of UFU). The uterus SAR values were found to be only marginally different from that of fetus SAR.

INDEX TERMS Dosimetry, fetus, RF exposure, SAR, ultrasound, image segmentation, deep learning.

I. INTRODUCTION deposited in the biological tissues. Biological tissues are

With the increasing use of wireless communication tech-
nologies in everyday life, there is a public concern about
the possible adverse health impact linked to electromagnetic
field exposure. The main concern in Radio Frequency -
ElectroMagnetic Field (RF-EMF) exposure [1] is the energy
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electrically lossy materials characterized by non-zero con-
ductivity or non-zero imaginary part of permittivity. The
electromagnetic energy absorbed by these lossy tissues is
converted to heat energy. The absorbed EM energy is
quantified by the Specific Absorption Rate (SAR). SAR is the
power absorbed per unit and is defined as:

o (MIE@)?

SAR = -
2p(r)

(W/kg) ey
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where o (Sm™!) is the electrical conductivity, p (kgm_3)
is the mass density, E (Vm™!) is the electric field intensity
vector in the frequency domain and 7 is the position vector.

Recently, several computational studies were proposed for
estimating the RF-EMF exposure in a plethora of cases [2],
[31, [41, [5], [6], [ 7], [8], [9], [10], [11], [12]. In particular, the
correlation between RF-EMF exposure and embryo and fetal
development at different stages of gestation is of interest. The
World Health Organization (WHO) identified fetal exposure
as of high priority [13]. Previous works on fetal RF-EMF
exposure can be classified according to the excitation sources
(i.e. plane wave, cell phone, Magnetic Resonance Imaging
(MRI) field, etc.), frequency, embryo age, and uterus-fetus
unit (UFU) model creation procedures. Some of the initial
works involved exposure analysis of pregnant women with
fetus embedded for the case of an incident plane wave [5], [6],
[7]. Plane wave excitation can be used only when the human
body is in the far-field of the radiating source. In addition to
the limitation of using a plane wave, Kawai et. al. [6] used
simple geometries such as cube and spheroidal shapes to
approximate the embryo. Fetus whole body SAR (WBSAR)
and fetus brain SAR for the case of a plane wave at
2100 MHz were reported in [7]. In [7], the 8 to 13 weeks old
UFU models were obtained from segmentation of ultrasound
images, and 14 to 32 weeks UFU models were generated from
MRI images and fetus growth modeling tools. Furthermore,
a truncated model of a pregnant woman was used to limit the
simulation resources. In comparison to [7], our work uses a
full female body for simulation.

In a more recent work [4], stochastic dosimetry was used
to assess the fetal exposure for the case of a 4G Long Term
Evolution (LTE) tablet. The authors of [4] used a generic
model based on MRI images for developing the 3-month UFU
and the 9-month UFU was a scaled female baby. Some of the
other noteworthy works include [8], [9], [10], [11]. In these
papers, temperature elevation and SAR changes in the tissues
of pregnant woman and fetus during MRI procedure was
reported. However, the results were for MRI frequencies of
64 MHz and 128 MHz.

In this paper, we analyse RF-EMF exposure at different
stages of UFU development at the end of the first trimester
of pregnancy. We consider UFUs of three different ages:
7 weeks, 9 weeks and 11 weeks. Using ultrasound (US)
data, we develop 3D computational models of embryos
at these three stages of pregnancy. Ultrasound data were
used since MRI procedure is not recommended in early
stage pregnancy. The UFU models are then inserted into a
numerical electromagnetic model of a non-pregnant adult
female. This is followed by simulations to predict the fetus
SAR. The fetus SAR is calculated at commonly used wireless
communication frequencies. The frequencies used in this
work are 1800 MHz, 2100 MHz, 2400 MHz, 2600 MHz
and 3500 MHz. Our work is unique in the sense that we deal
with early stage embryos of 7 weeks, 9 weeks and 11 weeks
old, which contrasts with the older embryos aged 3 months
and 9 months studied in [4]. Furthermore, while deformation
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of female human belly to insert larger embryos was done
in [4], [7], since the size of embryos used in our work is
smaller, it was not necessary to deform the female human
model.

The paper outline is as follows. For the sake of clarity
the method is divided into its main steps, each described
in a separate section. In Section II, we describe the
image segmentation of ultrasound data using deep learning
techniques. In Section III, details of the computational
electromagnetic modeling is provided. This is followed by
cell phone antenna design and SAR assessment procedure in
Section IV. Simulation results and conclusions are provided
in Section V and Section VI, respectively.

Il. SEGMENTATION OF UTERUS AND FETUS IN
ULTRASOUND IMAGES
The first step consists in building realistic digital 3D models
of fetus from the segmentation of ultrasound images. Data
were collected as part of the Generation R Next Study,
and provided by the Generation R Study Group, Erasmus
University Medical Center Rotterdam, in accordance with the
Dutch Data Protection Act and the EU Directive 95/46/EC.
We employed the U-Net model [14] to segment the
uterus and fetus in ultrasound images. As one of the most
popular deep-learning methods for image segmentation,
U-Net has demonstrated state of the art results in several
applications [15], [16], [17], and was applied successfully on
ultrasound images [18], [19], [20], including fetal segmenta-
tion [21], [22], [23]. In this section, we describe the image
data preparation, model architecture and implementation,
as well as a Graphical User Interface (GUI) that facilitates
the usage of the proposed method.

A. IMAGE DATA PREPARATION

Since manual segmentation and labeling is a tedious task,
we propose an iterative method, where the network trained
at one step is used to segment more images, and is then
retrained after correction of these segmentations. An initial
data set contains 12 sequences of US images obtained at
different stages of pregnancy, including two cases at 7 weeks
of pregnancy, five cases at 9 weeks of pregnancy, and five
cases at 11 weeks of pregnancy. In total, 1376 2D images
were obtained from these 12 sequences. The uterus and fetus
regions were manually segmented in each image, and mask
images corresponding to them were produced, defining the
reference used for training and evaluation. Our model was
trained with this dataset.

Then new cases were segmented using this trained
network, which is a fast process. Manual corrections were
then done when needed, which is far less time consuming than
doing the complete segmentation manually. These images
and their corrected segmentations were then used to increase
the dataset and to retrain the model to improve performance.
This procedure was iterated a few times (6 with our actual
dataset). At the end of this process, the final model was
trained by using 69 sequences of US images (12 cases at
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FIGURE 1. Examples of data used in this study. Column 1: Original US images. Column 2: Manual
segmentations corresponding to Column 1. Column 3: Labeled masks (white: fetus, gray: uterus).

7 weeks of pregnancy, 22 cases at 9 weeks of pregnancy, and
35 cases at 11 weeks) with a total of 4974 2D images, which
significantly improved the results of segmentation.

To guarantee that no bias was introduced by this procedure,
the final network was tested on images not seen at all
during training, and the results were evaluated visually, as
well as quantitatively using the Dice index. Figure 1 shows
some original US images selected from our dataset and their
corresponding manual segmentations and masks.

B. MODEL ARCHITECTURE AND IMPLEMENTATION

We utilized a multiclass U-Net model to jointly segment
the uterus and fetus in US images (see Figure 2). U-Net
is a convolutional neural network consisting of an encoder
path and a decoder path arranged as a U shape. In the
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encoder path, spatial information decreases while feature
representation information increases. In the decoder path,
high-resolution features from the encoder path and spatial
information are merged through a series of up-convolutions
and concatenations operations. In our implemented model,
the encoder path includes five layers that individually
contain two 3x3 convolutions with rectified linear unit
(ReLU) activation function, a 2x2 max pooling operator
for downsampling, and a dropout operation with a rate of
0.1 to avoid overfitting. At the top layer, there are 8 feature
channels, which are further downsampled and multiplied by
two in each subsequent layer to reach 128 feature channels
at the bottom layer. In the decoder path, the upsampling
is performed using 2x2 up-convolutions. In each layer of
the decoder, the result of upsampling is integrated with the
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FIGURE 2. U-Net architecture [14]: the encoder path uses as input the US images, and the decoder path outputs the segmentation results.

cross-feature map of the encoder path, followed by two 3x3
convolutions with the ReLU activation function and a dropout
operation with a rate of 0.1. In the final layer, a segmentation
mask with the dimensions of the input image is generated by
passing through a 1x1 convolution followed by a softmax
activation function.

We implemented the U-Net model in Python with the
Keras package using the TensorFlow back-end. The network
is trained to optimize the pixel-wise categorical cross-entropy
loss function defined as:

1 N C
Loss = — Z Z(y(n, ¢)log p(n, ¢)) )

n=1 c=1

where N is the number of image pixels, and C is the
number of classes. For the considered images and fetus
ages, we set C = 3 for three categories: fetus, uterus,
and background. In Equation (2), y(n,c) € {0, 1} is the
reference segmentation, i.e. saying whether pixel n belongs
or not to class ¢, and p(n, ¢) € (0, 1) is the probability that
pixel n belongs to class c, predicted by the network. Each
pixel in a pixel-wise categorical cross-entropy loss function
is considered an independent sample, and the average loss
value over all pixels is used as the total loss for training.
The Adam optimizer with a learning rate n = 0.000001, and
1000 epochs were employed for training the network. To save
memory and computation resources, all the process is done on
2D slices. The results show a good consistency in 3D (which
can be further improved using manual corrections if needed,
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but this is rare with the final network). From the segmentation
results, a 3D model is build.

C. GRAPHICAL USER INTERFACE

We developed a user-friendly GUI using the PyQt5 Python
library to facilitate visualization and modification of the
segmentation results (even by non experts in image analysis),
illustrated in Figure 3 (see Appendix for details).

D. RESULTS OF SEGMENTATION AND 3D MODELING

The proposed method, with limited manual corrections
needed, provided very good results, after visual evaluation
and feedback from medical experts. Results corresponding
to the images in Figure 1 are shown in Figure 4. A good
agreement with the manual contours is observed.

It should be noted that the primary aim is to have realistic
UFUs, hence a precise, pixel-wise evaluation is not required
for the purpose of this study. Still the segmentation results
are good, according to the reference manual segmentations,
with a Dice score equal to 0.9 for the uterus, and equal to
0.8 for the fetus. Moreover, the potential imprecisions are
much lower than the differences due to age, which thus allows
for the subsequent study on the dependence on fetus age of
SAR measures.

Due to the specificities of the electromagnetic charac-
teristics of the amniotic field, including it in the model is
important. Its small thickness makes it hardly visible in
ultrasound images. Therefore, a systematic amniotic fluid
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FIGURE 3. Graphical user interface for the segmentation of the uterus and fetus in ultrasound images. The left panel lists
the functionalities offered to the user. On the right, the results of segmentation are illustrated on three orthogonal views,
and the derived 3D model is shown. See the Appendix for details.

FIGURE 4. Examples of segmentation results on images not used for
training. The uterus contours are displayed in blue and the fetus contours
in magenta.

layer was added around the fetus in all models, again with the
aim of guaranteeing realism of the models. Based on medical
expertise, a 2 mm thick layer is a realistic representation of
the amniotic fluid, and this value was used in our experiments.
Examples of final 3D models are displayed in Figure 5.

lll. COMPUTATIONAL ELECTROMAGNETIC MODELING

The commercially available computational electromagnetic
software CST MWS was used for whole body SAR
calculations. A 26 year old human female voxel model called
‘Ella’ [24] was used for simulations. ‘Ella’ is composed
of 265 x 150 x 840 cubical voxels. The dimension of
each voxel side is 2 mm. Each voxel is of a particular
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FIGURE 5. Examples of final 3D models, including the amniotic fluid layer
(in green), for fetuses at 7 weeks.

tissue corresponding to the location of the voxel with in
the human body. The frequency dependent, electromagnetic
properties of human tissues are based on a five term Cole-
Cole model [25]. ‘Ella’ is composed of 76 tissues.

Once the ‘Ella’ voxel model at the simulation frequency is
generated, the UFU is inserted at the position of the uterus
of the ‘Ella’. This is done by altering the tissue (or material
properties) of an ‘Ella’ voxel if it intersects with an UFU
voxel. A picture of UFU inserted into the human model
is shown in Figure 6. Even though both the computational
electromagnetic and image segmentation output models are
composed of cubical voxels, the sizes of these voxels are
different. For the computational electromagnetic model, the
voxel dimension is 2 mm. The dimension of the image
segmentation output voxel is smaller, usually around 0.5 mm.
Since the fetus is immersed in the amniotic fluid, it can
undergo rotation. To study the effect of fetus rotation on
SAR, a rotation of the UFU model can be applied by any
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FIGURE 6. UFU model inserted into a human female model.

arbitrary rotation angles (three independent angles) before
being inserted into the ‘Ella’ model.

The UFU is composed of three different tissues (or
materials): uterus, amniotic fluid and fetus. The constitutive
parameters (i.e. permittivity and conductivity) of these
materials vary with frequency. The constitutive parameters
of uterus of the UFU is the same as that of the uterus
tissue in ‘Ella’. The constitutive parameters of amniotic
fluid is identical to that of Cerebrospinal Fluid (CSF) [9],
which is available in the ‘Ella’model. For the electromagnetic
properties of the fetus, we have used the dielectric properties
of rat fetus, which are provided in [26]. It is mentioned in [26]
that there is no significant difference between dielectric
properties of fetal homogenized tissue at different stages
of pregnancy. Therefore, a unique value of permittivity and
conductivity can be used for fetus at different stages of
gestation. However, the permittivity and conductivity of the
fetus is a function of frequency, which was taken into account
in the simulations. The relative permittivity of the fetus at the
frequencies of 1800 MHz, 2100 MHz, 2400 MHz, 2600 MHz,
3500 MHz are 55.71, 55.25, 54.80, 54.49, 53.09, respectively
and the conductivities are 1.60 Sm~!, 1.79 Sm~!, 2.0 Sm™!,
2.17Sm™!,2.97 Sm~!, respectively.

The human body has tissues with high relative permittivity.
For instance, CSF has a relative permittivity of 65 at a
frequency of 3.5 GHz. Therefore, discretization in numerical
electromagnetic solver should be adequate (i.e. fine) to
take this into consideration. The CST simulations were
accelerated by using Graphical Processing Units (GPUs).
Organ specific SAR was obtained by outputting the electric
field values at discrete spatial points inside a box enclosing
the UFU followed by the application of a discretized version
of Equation (1). Let Ny be the number of ‘Ella’ computational
electromagnetic voxels which make up the fetus and Av be
the volume of each voxel. For accurately calculating the fetus
SAR, we divide each voxel into 8 sub-voxels. The fetus SAR
can be estimated using

1 Av W

-2
275 2 2
Fetus SAR ~ ==

3
PrNf Av 3

where oy, pr are the fetus conductivity and fetus density, E;;
is the complex electric field intensity vector at the center of
the j sub-voxel with in the i voxel.
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FIGURE 7. Generic Inverted F Antenna (IFA) with ground plane and
battery. The ground plane thickness is 1 mm. The bent-feed separation is
denoted by s, with s = 5 mm for all frequencies. The dimension d dictates
the resonance frequency of the antenna. The figure on the right bottom
shows an enlarged view of the bent monopole, its dimensions and the
feed point. The radius of the monopole wire is 1 mm. Battery thickness is
2 mm and it is located above the ground plane.

Return loss of IFA

-2
4
6
8 °f
g
T ol
5 -0
az|
A4 1800 MHz
~————2100 MHz
A6 | 2400 MHz
2600 MHz
3500 MH
A8 = ‘ ‘
0 1 2 4 5

3
Frequency (GHz)

FIGURE 8. Return loss (dB) vs. frequency for IFAs designed to resonate at
different frequencies.

IV. ANTENNAS

A. MOBILE PHONE ANTENNAS

We used Inverted-F Antennas (IFA) as the excitation source
for the frequencies of 1800 MHz, 2100 MHz, 2400 MHz,
2600 MHz and 3500 MHz. IFA is a commonly used cell
phone antenna [27]. The cell phone antenna used in the
simulation is shown in Figure 7. The generic IFA consists
of a bent monopole, ground plane and a battery. The large
ground plane and metallic battery affect the radiation pattern
significantly and hence it must be included for realistic
SAR simulations. The dimensions of the ground plane and
battery are similar to what is used in smart phones. All the
components are made of Perfect Electric Conductor (PEC).

VOLUME 12, 2024
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FIGURE 9. IFA over tissue emulating phantom. The tissue-equivalent
phantom is pink colored and the phantom shell is in blue color. The
lateral dimensions of the phantom are: 210 mm along the direction of
phone width (i.e. 3 times the phone ground plane width) and 300 mm
along the direction of phone height (i.e. 2 times the antenna ground
plane height). The phantom has a thickness of 120 mm.

The resonant frequency of the antenna is dependent on the
length of the bent monopole, i.e. (d + 3) mm in Figure 7. The
monopole lengths (i.e. (d + 3) mm) for the antenna system to
resonate at frequencies of 1800 MHz, 2100 MHz, 2400 MHz,
2600 MHz and 3500 MHz, are 38 mm, 33.5 mm, 31 mm,
29.85 mm and 19.15 mm, respectively. The return loss
characteristics of the antennas designed at these frequencies
are shown in Figure 8.

B. SAR ASSESSMENT PROCEDURE

It is a standard procedure in mobile phone SAR assessment
experiments to calibrate the excitation antenna so that it
induces 1 W/kg of peak spatial SAR averaged over 10 g [30]
in a flat tissue-mimicking phantom [29]. A flat phantom of
tissue-equivalent liquid covered with a thin shell of plastic
is used to relate the peak spatial SAR averaged over 10 g in
the lossy, tissue-equivalent liquid to the excitation voltage of
the antenna [28]. The simulation setup for this procedure is
depicted in Figure 9.

The FDTD solver of the Sim4Life platform v7.0.1 (ZMT
Zurich MedTech AG, Switzerland) was used for these
simulations. The main advantage of using Sim4Life platform
is that it has specialized SAR post-processing features.
The frequency dependent permittivity and conductivity of
the tissue-equivalent liquid can be found in [29]. For the
sake of reproducing the results, we have shown the relative
permittivity and conductivity of the tissue-mimicking liquid
in Table 1. The density of the tissue-equivalent liquid is
1000 kg/m>. The plastic phantom shell thickness, phantom
shell permittivity, phantom dimensions and the distance
between the antenna and the phantom are all dependent on
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TABLE 1. Tissue mimicking liquid properties and excitation voltage
required to induce 1 W/kg peak spatial SAR averaged over 10 g in the
liquid phantom.

Frequency| Relative [Conductivity|Antenna excitation
(MHz) |permittivity (S/m) V)
1800 40.0 1.40 10.00
2100 39.8 1.49 8.74
2400 39.3 1.77 8.51
2600 39.0 1.96 8.63
3500 37.9 291 8.24

FIGURE 10. Phone antenna positions with respect to the human model.
A) phone antenna near the ear, B) phone antenna near the belly and
perpendicularly oriented to the body, and C) phone antenna near the
belly with parallel orientation.

the frequency [29]. For all the frequencies we use in this
work, the phantom shell thickness is 2 mm and the shell
permittivity is 3.7. The antenna - phantom separation is
15 mm for all the frequencies. The lateral dimensions of the
phantom are: 210 mm along the direction of phone width
(i.e. 3 times the phone ground plane width) and 300 mm
along the direction of phone height (i.e. 2 times the antenna
ground plane height). The phantom has thickness of 120 mm.
It was found that, at an excitation frequency of 1800 MHz,
further increase in these phantom dimensions did not result
in a change in the phantom SAR values. Since the wave
attenuation increases with both frequency and conductivity
(see Table 1), the phantom dimensions at 1800 MHz will
be sufficient for the other higher frequencies. The antenna
excitation voltage values required for the antenna displayed
in Figure 7 to induce a SAR of 1 W/kg in the tissue phantom
at different frequencies are listed in Table 1.

V. RESULTS AND DISCUSSION

The fetus SAR was estimated for a combination of three
different phone positions [12], fetus ages and simulation
frequencies. The antenna was excited with voltage sources
which vary with frequency as shown in Table 1. The three
phone positions (shown in Figure 10) are near the ear, near
the belly and perpendicular to the body and near the belly
and parallel to the body. The phone near the ear is the most
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TABLE 2. Fetus SAR when the phone is near the ear.

Frequency|7 week fetus SAR|9 week fetus SAR|11 week fetus SAR
(MHz) (uW/kg) (uW/kg) (uW/kg)
1800 6.49¢-02 2.07e-01 1.38e-01
2100 6.76e-02 1.91e-01 1.25e-01
2400 1.65e-02 2.55e-02 1.93e-02
2600 3.89e-04 1.18e-02 1.02e-02
3500 6.81e-20 3.84e-14 6.47e-13

TABLE 3. Fetus SAR when the phone is near the belly with perpendicular

orientation.

Frequency|7 week fetus SAR|9 week fetus SAR|11 week fetus SAR
(MHz) (uWikg) (uW/kg) (uW/kg)
1800 309.10 255.50 118.60
2100 98.69 90.06 36.23
2400 26.89 29.13 13.84
2600 12.82 15.50 10.14

3500 0.15 0.23 0.30

TABLE 4. Fetus SAR when the phone is near the belly with parallel

orientation.

Frequency|7 week fetus SAR|9 week fetus SAR|11 week fetus SAR
(MHz) (uW/kg) (pWikg) (pWikg)
1800 374.90 291.57 260.47
2100 66.34 57.41 65.18
2400 13.33 13.41 22.41
2600 13.68 14.54 20.34

3500 0.29 0.43 0.53

commonly used position. We have included the other two
positions (i.e. phone near the belly with different orientations)
to estimate the worst case fetus exposure, when the phone is
closer to the embryo.

The simulation used three fetuses of age 7 weeks,
9 weeks and 11 weeks, respectively. The three fetuses are
not necessarily from the same person. The volumes of the
7 weeks, 9 weeks and 11 weeks old fetuses are 1392 mm?,
6496 mm?> and 12760 mm?, respectively. The fetus SAR for
the three phone positions and different frequencies are listed
in Tables 2, 3 and 4. We have also plotted these values in
Figures 11, 12 and 13 to visualize the general trend of these
results.

As per ICNIRP 2020 [31], the maximum allowable whole
body exposure level for general public is 80 mW /kg and
the maximum allowable local exposure level for head and
trunk is 2 W/kg. All the values in the tables are well below
that limit. It should be reiterated that these SAR values are
for mobile phones with excitation which induces 1 W/kg
peak spatial SAR in tissue equivalent phantom, when it is
located 15 mm from the phone. Since the SAR values are
low, we did not perform bio-heat simulation to estimate
temperature distribution.

From the data, it can be observed that the fetus SAR
decreases with increasing frequency for all phone positions
and fetus ages. This is the due to the fact that, at lower
frequencies, the electromagnetic waves penetrate the tissues
more than it penetrates at higher frequencies. The wave
attenuation is proportional to the square root of frequency.
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FIGURE 11. Fetus SAR (xW/kg) vs. frequency when the phone is near the
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Phone position: perpendicular to the belly
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FIGURE 12. Fetus SAR (1W/kg) vs. frequency when the phone is near the
belly with perpendicular orientation.

Phone position: parallel to the belly
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FIGURE 13. Fetus SAR (1W/kg) vs. frequency when the phone is near the
belly with parallel orientation.

Another reason is that the wave attenuation is also pro-
portional to the square root of conductivity and for most
tissues, the conductivity increases with frequency. It can
also be observed that the fetus SAR is very low, when the
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phone is near the ear. Moreover at frequency of 3500 MHz,
the fetus SAR is drastically reduced by several orders
for all the phone positions and fetus ages. This is due
to the RF energy being absorbed by skin and peripheral
tissues.

A. EFFECT OF FETUS AGE AND ORIENTATION ON SAR
From Tables 2, 3 and 4, it can be observed that for a fixed
phone position and frequency, the fetus SAR can either
increase or decrease or vary randomly with respect to the
fetus age. The fetus SAR is a function of several independent
parameters such as the frequency of excitation, antenna (or
phone) position and orientation, orientation of the fetus, fetus
mass (or age), material properties of all the tissues of the
body at a specific frequency, thickness of the amniotic fluid
envelope and so on. For a fixed excitation frequency and
phone position and orientation, the factors that affect SAR
are the fetus mass (or age) and the fetus orientation. Even
though the three fetuses are from a different person, the
fetus volumes and hence their mass increase with age. Older
fetus means more volume and hence more electromagnetic
energy it absorbs, and therefore we would expect the SAR
to be higher. However, the mass of the fetus also increases
with age. The rate of increase of absorbed EM energy
with respect to fetus age may be smaller or higher than
that rate of increase in mass with fetus age. To exemplify,
consider the case of a lossy, dielectric sphere illuminated
by a plane, electromagnetic wave. When the sphere radius
is much larger than the wavelength (i.e. geometrical optics
regime), the absorption cross-section is proportional to R?,
where R is the radius of the sphere [32]. Therefore, the
power absorbed is proportional to R>. However, the sphere
mass is proportional to R3. Consequentially, the sphere SAR
is linearly proportional to 1/R. This simple result is for a
spherical object and a plane wave. In our case, we have an
irregularly scattering object embedded inside a very complex,
inhomogeneous human body, and the incident wave is no
longer a simple plane wave. Therefore, we cannot always
qualitatively predict the fetus SAR trend with respect to its
age.

Another major factor is the fetus orientation. For the SAR
results we have presented, the three fetuses aged 7 weeks,
9 weeks and 11 weeks are not all in the same orientation.
The image segmentation model was embedded into the
computational electromagnetic model without changing the
orientation. This is acceptable in the sense that the fetus can
randomly undergo rotational transformation in the amniotic
fluid. Let us say our reference coordinate frame has z
direction along the human body’s height and x, y directions
in a plane orthogonal to the height direction. In order to
show the variation of fetus SAR with respect to orientation
angle, we varied the orientation of the fetus with respect to z
direction from 0 to 360 degrees for the three fetuses. The fetus
SAR variation with respect to this orientation at frequency
of 1800 MHz and when phone near the belly in perpendicular
direction is shown in Figure 14.
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FIGURE 14. Fetus SAR vs. rotation angle for fetuses of different ages.
Simulation frequency is 1800 MHz and the phone is near the belly and
perpendicularly oriented to body.

This figure shows that the maximum SAR of nearly
0.6 mW/kg is well below the ICNIRP restriction of
80 mW /kg. A more thorough approach to evaluate the SAR
variation with respect to fetus orientation is to use stochastic
dosimetric techniques such as Polynomial Chaos Expansion
(PCE) [1]. In PCE, SAR is approximated as a function of
several independent parameters (fetus orientation angles in
our case), by using SAR simulation outputs at a fixed number
of points in the independent variable domain space. This is
done by using orthogonal basis functions such as Legendre
polynomials. We attempted PCE for the problem of fetus
SAR variation with respect to three fetus orientation angles.
However, we were not able to obtain good convergence. The
total time required for embedding the image segmentation
output into the computational electromagnetic model and
further SAR simulation at a fixed set of orientation angles
was more than one hour. Since a large number of points
are required for PCE convergence in the three dimensional
independent variable space, the time required to build a
PCE model was prohibitively large. In Figure 14, it can
be seen that at different orientation angles, the fetus SAR
can vary randomly with age. Even though in general the
trend is 7 week fetus SAR greater than 9 week fetus SAR
which in turn is greater 11 week fetus SAR, at certain
angles of rotation (for example 100 degrees), this order is
violated. This random variation of the fetus SAR with respect
to fetus orientation and fetus mass explains the somewhat
unpredictable dependence of fetus SAR with respect to fetus
age as seen in Tables 2, 3 and 4, and Figures 11, 12 and 13.

B. SAR IN UTERUS OF VOLUME EQUAL TO FETUS

The processing time for inserting image segmented UFU
into the ‘Ella’ human model followed by full wave elec-
tromagnetic simulation is more than one hour. This is in
addition to the time and effort for image segmentation of the
ultrasound images. In order to circumvent this series of steps,
we try to verify whether SAR in uterus tissue of same volume
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TABLE 5. Fetus SAR vs. equivalent volume uterus SAR for a 7 week UFU.
Phone position is near the belly with perpendicular orientation.

Frequency|7 week fetus SAR|Equivalent volume uterus SAR
(MHz) (Wkg) (uW/kg)
1800 309.10 346.80
2100 98.69 86.68
2400 26.89 29.09
2600 12.82 13.52
3500 0.15 0.12

TABLE 6. Fetus SAR vs. equivalent volume uterus SAR for a 9 week UFU.
Phone position is near the belly with perpendicular orientation.

Frequency|9 week fetus SAR|Equivalent volume uterus SAR
(MH2) | (uWikg) (uW/kg)
1800 255.50 352.70
2100 90.06 94.11
2400 29.13 37.83
2600 15.50 19.75
3500 0.23 0.24

TABLE 7. Fetus SAR vs. equivalent volume uterus SAR for a 11 week UFU.
Phone position is near the belly with perpendicular orientation.

Frequency|11 week fetus SAR|Equivalent volume uterus SAR
(MH2) (uW/kg) (uW/kg)
1800 118.60 169.70
2100 36.23 40.49
2400 13.84 18.69
2600 10.14 13.56
3500 0.30 0.36

and shape as that of fetus plus amniotic fluid envelope can
approximate the fetus SAR. The equivalent uterus tissue mass
is at the same location as that of the fetus.

The fetus and amniotic fluid voxels of the UFU are
replaced with uterus tissue voxels. Fetus SAR compared with
the equivalent volume uterus SAR for the three different
UFU ages are listed in Tables 5, 6, and 7. For all the three
UFU ages and frequencies, it can be noticed that the uterus
SAR is only marginally different from that of the fetus SAR.
Moreover, the equivalent volume uterus SAR is always higher
than that of fetus SAR. This is due to the electromagnetic
shielding effect caused by the surrounding amniotic fluid.
Since similar values of SAR were obtained for both the fetus
and an equivalent volume of uterus, we conclude that for
young fetuses, we can obtain a good estimate of the fetus SAR
by just calculating the SAR in uterus tissues of same volume.
This result is advantageous because image segmentation of
ultrasound images followed by insertion of the model into a
human body model is cuambersome.

VI. CONCLUSION

In this work, we proposed and developed a deep-learning
based image segmentation method to build realistic digital
3D models of uterus fetus units from ultrasound images. The
results were in good agreement with the reference manual
segmentation. The aim of this study was to have a realistic
model of the fetus, and the good Dice values (0.9 for the
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uterus and 0.8 for the fetus) indicated that the segmentation
results were sufficient for the subsequent steps. The potential
imprecision on the segmentation did not have a significant
impact on the numerical simulations. What is important is to
have realistic differences according to fetus age, that we were
indeed able to obtain.

The image segmented 3D UFU model was embedded
inside a computational electromagnetic model of a human
body, allowing for the numerical estimation of fetus SAR for
a combination of commonly used cellular phone frequencies,
phones positions and fetus ages. Fetus SAR values were
found to be well below the ICNIRP prescribed limit for all
the cases. We also examined and inferred the effects of fetus
age and fetus orientation on fetus SAR. In general, the fetus
SAR displays a random variation with respect to both of these
parameters. We further calculated the SAR in a mass of uterus
which is centered at the embryo’s location and whose volume
is equivalent to that of the embryo. The uterus SAR values
were comparable to the fetus SAR values and can be used
in epidemiological studies to analyze the possible impact of
RF-EMF at early stages of gestation.

In future work, fetus from the ultrasound images could be
differentiated into individual tissues such as brain, muscle,
etc. Ultrasound images are also still improving, which may
result in much smoother and more accurate SAR predictions.
The series of procedures proposed in this paper will be used
as guideline for future work.

APPENDIX

This appendix provides some more details about the GUI
developed to facilitate visualization and modification of the
segmentation results. As shown in Figure 3, the proposed
GUI comprises five main parts: Load Image Sequence,
Segmentation, 3D Model Rendering, Edit Segmentation
in the Current Slice, and 4 Display Windows. When the
Load Image Sequence push button is clicked, a file
selection window is opened. Then, the user can choose a
sequence of US images displayed in three display windows:
sagittal, axial, and coronal slices. In the Segmentation part,
when segmentation results are available for the current US
sequence, the user can load them by pressing the Load
Segmentation push button and selecting the folder in which
the results are stored. Following that, the segmentation results
of the uterus and the fetus are displayed as an overlay
on the original images. To utilize the proposed automatic
segmentation method, first, the user must determine the
slices within a given sequence that need to be segmented by
selecting Start Slice No and End Slice No in two relevant
edit boxes. By clicking on the Auto Segmentation push
button, the trained U-Net model introduced earlier in the
section will automatically segment determined slices and
show the results as an overlay on the original slices in the
three display windows. Following segmentation, using the 3D
Model Rendering push button, a three-dimensional model
of the uterus and the fetus is created, and displayed in the
4th display window entitled 3D Model. It is possible for
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the user to manually modify the obtained segmentation at
any time by using Edit Segmentation in the Current Slice
part of the GUI. Four push buttons are available in this part
of the interface for adding or removing regions from the
uterus or fetus. Each push button opens an editing window
that allows the user to increase or eliminate regions from the
segmentation result. Finally, the Save Segmentation or Save
Edit push buttons can be applied to save the results.
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