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ABSTRACT Real-world applications of word embeddings to downstream clustering tasks may experience
limitations to performance, due to the high degree of dimensionality of the embeddings. In particular,
clustering algorithms do not scale well when applied to highly dimensional data. One method to address
this is through the use of dimensionality reduction algorithms (DRA). Current state of the art algorithms for
dimensionality reduction (DR) have been demonstrated to contribute to improvements in clustering accuracy
and performance. However, the impact that a neural network architecture can have on the current state of
the art Parametric Uniform Manifold Approximation and Projection (UMAP) algorithm is yet unexplored.
This work investigates, for the first time, the effects of using attention mechanisms in neural networks for
Parametric UMAP, through the application of network architectures that have had considerable effect upon
the wider machine learning and natural language processing (NLP) fields - namely, the transformer-encoder,
and the bidirectional recurrent neural network. We implement these architectures within a semi-supervised
metric learning pipeline, with results demonstrating an improvement in the clustering accuracy, compared
to conventional DRA techniques, on three out of four datasets, and comparable SoA accuracy on the fourth.
To further support our analysis, we also investigate the effects of the transformer-encoder metric-learning
pipeline upon the individual class accuracy of downstream clustering, for highly imbalanced datasets. Our
analyses indicate that the proposed pipeline with transformer-encoder for parametric UMAP confers a
significantly measurable benefit to the accuracy of underrepresented classes.

INDEX TERMS Dimensionality reduction, attention mechanisms, clustering, transformer networks, metric
learning.

I. INTRODUCTION
High quality embeddings produced through techniques such
as transformer networks [1] ensure the provision of large
amounts of information encoded in highly dimensional vec-
tors, which can be measured using the GLUE benchmark [2],
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[3]. This has contributed to significant improvements across a
range of natural language processing (NLP) tasks, including
question answering [2], sentiment classification [4], and
text clustering [5]. However, the high degree of dimen-
sionality in embeddings produced by these methods can
present difficulties in downstream analysis tasks, due to
the prevalence of the ‘‘curse of dimensionality’’ [6], which
introduces a multitude of problems, as dimensionality
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increases. Firstly, the volume of computational memory
required for storage and processing of high-dimensional
vectors is large, and grows exponentially. Secondly, a greater
computational complexity is observed in algorithms, as the
number of dimensions is increased [6]. Thirdly, the distance
measurements necessary for determining distances between
embeddings tend to become meaningless in high dimensional
spaces, wherein the ratio between nearest and farthest points
approaches one, such that the points essentially become
equidistant from each other [7], [8], [9]. In analysis tasks
relying upon such distance measures, such as clustering, this
can lead to a detrimental effect upon the result [10].
To address these limitations, the technique of dimensional-

ity reduction (DR) may be applied, which seeks to represent
the global and local structure of highly dimensional data in
a smaller feature space [8]. The current state of the art in
dimensionality reduction, Uniform Manifold Approximation
and Projection (UMAP) [11], has been demonstrated to
improve accuracy in a number of clustering algorithms,
when used as a DR technique [12], while also considerably
improving the computation speed of clustering. Moreover,
an extension of UMAP into Parametric UMAP [13] was
proposed, which introduces a neural network into the UMAP
pipeline. However, there remain a number of open questions
to be addressed regarding the use of UMAP and DR in
general, prior to clustering, as well as questions related to
Parametric UMAP, which we formulate as the following
research questions:

• RQ1 How do current dimensionality reduction algo-
rithms affect accuracy in text clustering tasks?

• RQ2 How is dimensionality related to performance in
text clustering tasks?

• RQ3 Can small portions of labelled data used in the
metric learning of dimensionality reduction contribute
to improvements in downstream clustering accuracy?

• RQ4 Can the introduction of attention mechanisms
within neural networks (further) improve the met-
ric learning of dimensionality reduction algorithms,
in terms of clustering accuracy?

To answer these questions, we target two objectives. Firstly,
we perform an empirical investigation of existing DR
techniques, and how they impact upon the performance
of text clustering tasks. Secondly, we propose two new
architectural pipelines, both using attention mechanisms in
metric-learning dimensionality reduction as a preprocessing
technique, constructed from parametric UMAP [12], [13],
and each pipeline including one of two network architectures
that have been demonstrated to perform well in sequence-to-
sequence tasks: the transformer-encoder, and recurrent neural
network (RNN) architecture with attention mechanisms.

The main contributions of this work are as follows.
(1) To demonstrate, for the first time, to the best of our
knowledge, the effectiveness of the transformer-encoder as
an architecture in the metric learning of lower dimensionality
embeddings with parametric UMAP for text clustering.
We demonstrate it achieves the highest accuracy across three

of the four datasets investigated, with no loss in accuracy
when our proposed transformer-encoder is compared with the
current SoA, UMAP, on the fourth dataset. We showcase this
through both a visual analysis of the clustering solution on
two datasets, and an evaluation of clustering accuracy based
on four datasets. (2) We present the outcomes of the first
empirical study into the outcomes of DR, andmetric learning.
I.e., we contribute with an empirical evaluation of all variants
of UMAP, as well as of the traditional techniques Principle
Components Analysis and Linear Discriminant Analysis,
by comparing performance when applied to text-clustering
tasks across a range of dimensionalities. (3) We demonstrate,
for the first time, the effectiveness of applying attention
mechanisms within architectures in the parametric UMAP
pipeline, when combined with metric-learning. (4) We
provide a public repository of the implementations of the
best in class (P-UMAP Transformer) and runner up, i.e.
both the transformer-encoder and the RNN with attention
architectures, which can be easily accessed and applied by
researchers to their own domains using parametric UMAP,
or can be compared with the algorithms investigated within
this work, using a script within the repository1; additionally,
we also provide all scores attained by our experiments.

II. RELATED WORKS
A. DIMENSIONALITY REDUCTION
Dimensionality reduction may be defined as the trans-
formation of high-dimensional data into a meaningful
representation with reduced dimensionality [14]. As noted,
this is necessary in many domains, where highly dimensional
data can negatively impact comput ing efficiency, and
accuracy. In clustering tasks, this problem is best represented
through the effect on distance measures, such as k-Means,
where it becomes clear that the distance measure becomes
meaningless, as dimensionality increases [7], [8]. Empiri-
cal investigations have demonstrated that this phenomena
appears for dimensionalities greater than 10 [7]. The reason
being that, as dimensionality increases, the distance to the
nearest data point approaches the distance to the farthest
data point. This presents difficulties in any downstream
tasks that apply nearest-neighbour searches, such as k-Means
clustering, or systems that use distance measures, such as
cosine similarity in nearest neighbour searches.

Amongst techniques proposed for dimensionality reduc-
tion, t raditional ones include linear techniques, such as
Principal Component Analysis (PCA) [15]. Another tech-
nique, Linear Discriminant Analysis, provided a supervised
approach to dimensionality reduction, through a generalisa-
tion of Fischer’s linear discriminant [16], seeking to identify
linear combinations of features, as a means to characterise
or separate objects, or documents. This technique, however,
failed to perform suitably when applied to complex, non-
linear data.

1https://github.com/ryanon4/Parametric-Metric-Learning-with-Attention
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More recently, t-distributed stochastic neighbor embed-
ding [17] was proposed, as a nonlinear means of dimension-
ality reduction for the purpose of visualisation. t-SNE was
based upon Stochastic Neighbour Embedding [18], wherein a
Gaussian is centered over high-dimensional objects, ensuring
that a probability distribution may be defined over potential
neighbours of the object. t-SNE expanded upon this, through
the implementation of a Student-t distribution in place of a
Gaussian, when computing similarity between points in low-
dimensional space. In this method, reduction was typically
performed to a dimensionality of 2 or 3, with the resulting
vectors being applied as coordinate points in the visualisation.
t-SNE observed a significant decrease in performance as
dimensionality increased [19].

An extension to t-SNE [20] works upon the assumption
that a neural network possessing sufficient hidden layers is
capable of achieving an approximation of the non-linear func-
tions employed by t-SNE, when mapping a high-dimensional
representation to a lower-dimensional representation. In this
work, the authors discuss that directly training a neural
network through backpropogation is not feasible, due to the
tendency for backpropogation to encounter a local minimum,
given the complex interactions between layers in the network,
which entail a large number of parameters. To address this,
the authors applied a training strategy involving the training
of autoencoders based upon Restricted Boltzmann Machines
(RBMS). In this process, a stack of RBMs is trained, and
then used to generate a pre-trained feedforward network,
which can subsequently be fine-tuned using backpropoga-
tion. The resulting network represents an approximation of
the functions of t-SNE. The work demonstrates through
experimentation that the parametric model can outperform
PCA and an autoencoder in the dimensionality reduction of
the MNIST [21], and 20 Newsgroups datasets [22].
Another experiment into dimensionality reduction [12]

focused upon the application of the Uniform Manifold
Approximation and Projection (UMAP) algorithm to improve
clustering performance in image classification tasks; as
representing the current state of the art, albeit in a different
field, this approach is briefly presented in sections II-A1
and II-A2. Authors applied their experiment across four
clustering algorithms; k-Means [23], HDBSCAN [24], [25],
Gaussian Mixture Models [26] and Agglomerative Clus-
tering [27]. Results indicated a significant improvement in
accuracy across multiple datasets, achieving an improvement
of 60% when applied to HDBSCAN on the United States
Postal Service [28] digit classification dataset. However,
there was no reporting of parameter configuration for
both UMAP and the clustering algorithms applied. Most
notably, the dimensionality selected for the experiments was
not disclosed. This presents a necessity for disclosure of
information for future researchers, and forms the basis of our
initial experiments into dimensionality reduction, which are
detailed in section III-B.
As discussed, dimensionality reduction algorithms have

been demonstrated to be an effective preprocessing tool,

which can contribute to downstream clustering [12], [29],
[30], [31]. Given their promise, we seek to investigate
whether a novel pipeline based on the cross-domain imple-
mentation of neural network architectures, facilitated by the
parametric UMAP framework would lead to improvements.
Within the literature, we have not identified any evidence
of the transformer encoder architecture, or experimentation
with any specific neural network architectures within the
parametric UMAP framework.

1) UNIFORM MANIFOLD APPROXIMATION AND
PROJECTION
Uniform Manifold Approximation and Projection (UMAP)
[11] was one of the most recent techniques proposed for the
task of dimensionality reduction. The algorithm sought to
better represent the local structure, while additionally pre-
serving the global structure. Similarly to other dimensionality
reduction techniques, the algorithm serves as a suitable tool
for visualisation of high dimensional data; however, it has
been demonstrated as an efficient tool for general purpose
dimensionality reduction for use in machine learning, with
it being applied to topic modelling [29], text clustering [12],
and genetics research [30], [31]. Most notably, the algorithm
provided a significant improvement in scalability, when
compared with t-SNE, making it more accessible for use in
machine learning pipelines.

Functionally, UMAP is a manifold learning technique
based upon Reimannian geometry and algebraic topology.
UMAP performs two key steps in the computation of low-
dimensionality vectors: Firstly, the computation of a graph
representation of data; and secondly, the optimisation of
a low-dimensionality representation of the graph through
stochastic gradient descent. In the first stage, UMAP
performs the construction of a fuzzy simplicial complex
(a topological representation of a local neighbourhood
graph), containing a weighted graph where edge weightings
represent the likelihood that two points are connected. The
connectedness of this graph is determined through a radius
drawn from each point, with points being connected when
radii overlap. This radius length is assigned locally, based
on the distance from a point to the nth nearest neighbour,
where n is a hyperparameter. The likelihood of connections
being formed is decreased as the radius grows, with each
point being required to be connected to at least its closest
neighbour, thus ensuring to maintain local structure [11]. For
the second stage, a stochastic gradient descent optimisation
is applied, to identify a low-dimensional representation
that provides the closest similarity to the original high-
dimensionality input, similar to t-SNE. Currently, UMAP
(and derivatives of UMAP) are the state-of-the-art in dimen-
sionality reduction, and, as such, UMAP is the principal DR
algorithm investigated in this work.

2) PARAMETRIC UMAP
A subsequent extension of UMAP is the parametric
UMAP [13]. While UMAP performed optimisation of the
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low-dimensional representation using stochastic gradient
descent, parametric UMAP introduced a neural network in
its place, which learns a parametric relationship between the
original high-dimensional data and the embedding [13]. This
provides a significant improvement in the speed of inference
of new embeddings, once the parametric model has been
trained. The authors also analysed the performance of para-
metric UMAP in clustering tasks, through the evaluation of
normalised mutual information (NMI) in k-Means clustering,
with findings indicating this to be comparable to UMAP.

Most notably, the introduction of a neural network in
learning of low-dimensionality representations in parametric
UMAP presents the opportunity for the specification of
tailored neural network architectures. Th is opens up the
possibility to tailor networks to specific domains, and forms
thus the basis of our investigation.

Moreover, the robust mathematical foundation of UMAP
permits the extension to supervised learning, which is
discussed briefly in UMAP [11] and extended by Parametric
UMAP [13]. In the case of Parametric UMAP, the intro-
duction of labelled, or partially labelled data allows training
of the network using both classifier loss for labelled data,
or UMAP loss for unlabelled data. Through the use of
partially labelled data, semi-supervised learning allows the
joint learning of data structure with unlabelled data, with
labelled data being used for the optimisation of a supervised
objective function. For our work, we thus construct a novel
pipeline including the partially-supervised methodology of
Parametric UMAP in conjunction with our proposed neural
network architectures, aiming at improving the clustering
accuracy.

B. RECURRENT NEURAL NETWORKS AND ATTENTION
The term Recurrent Neural Network (RNN) refers to an arti-
ficial neural network, wherein neurons send feedback signals
to each other [32]. This subsequently allows for the output
of some nodes to influence an input of the same node. Long
Short-Term Memory (LSTM) networks [33] have provided
significant contributions to several domains, including speech
recognition [34], handwriting recognition [35] and machine
translation [35]. In speech recognition tasks, bidirectional
RNNs [36], [37] have been applied, where both a forward
and a backward RNN is present, with each respective RNN
reading the input sequence in opposite directions.

As such, LSTM networks have demonstrated success in
sequence to sequence learning tasks, and it is this which we
would seek to evaluate as part of this study, as we can consider
the task of a neural network in parametric UMAP to be able
to be described as the modelling of a shorter sequence based
upon a longer input.

Subsequent improvements to RNN architectures in
sequence to sequence modelling tasks have involved the
inclusion of attention mechanisms [38], [39] in encoder-
decoder networks. Attention mechanisms perform the
computation of a context vector, representing the relationship

between the layer output and inputs, where the context vector
is a weighted sum of the hidden states of the network at
each time - step. This guides a model to focus on specific
components of the input sequence, rather than the whole
vector sequence. In language modelling tasks, this allows
a model to focus upon specific words within a sentence or
speech, which may provide the most contextual information.

Recently, the use of attention mechanisms was further
developed [1], by proposing the concept of transformer
network. This architecture is based solely on attention mech-
anisms, with no convolutional or recurrent layers, instead
leveraging the proposed ‘‘Scaled Dot-Product Attention’’,
and Multi-Head Attention, to achieve improved performance
in machine translation tasks [1]. The transformer architecture
has subsequently contributed to improvements in benchmark
performance across a number of tasks in NLP, including
question answering, sentence continuation, named entity
recognition, and language understanding [2], [40]. This has
been advanced through the introduction of the pre-trained
transformer in works such as BERT [2], where a transformer
model is trained upon a large corpus, through the omission of
certain words and prediction of the correct word.

Of particular value to our investigation is how the intro-
duction of the transformer architecture led to an improvement
in downstream NLP tasks, without the need for recurrent or
convolutional layers, which in turn allows for a reduction in
training time [1].

III. METHODOLOGY
A. DATA
To demonstrate that the outcomes of dimensionality reduc-
tion, when applied to text embeddings, are generalisable,
we performed experiments on three datasets: 20 News-
groups [22], Text REtrieval Conference (TREC) [41] and
AG’s News.2 They were selected, as each of these provide a
textual representation of the data from a range of domains.
In the case of the 20 Newgroups, data is arranged into
20 ‘‘newsgroup’’ categories, with each document being
assigned to a single category, representing the topic of the
document. The 20 Newsgroups dataset is a widely cited
dataset, and was selected for the ease of implementation
in comparing the results of this work with any future
investigations. The original work presenting this dataset
is widely cited [22], and the dataset is accessible easily
through the scikit-learn framework.3 The TREC Question
Classification dataset provides 5500 training documents, and
500 test documents consisting of labelled textual questions,
resulting in 6000 labelled documents overall. Labels for
this dataset are provided as coarse-grained and fine-grained,
wherein the coarse-grained set has 6 class labels, with
the fine-grained having 47 class labels. We evaluate both
labelling formats, to estimate the influence of the number of
classes upon accuracy. This dataset was originally intended

2http://groups.di.unipi.it/ gulli/AG_corpus_of_news_articles.html
3https://scikit-learn.org/stable/index.html
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TABLE 1. Total number of records and classes present in
the 20 Newsgroups, TREC and AG’s news datasets.

as a classification task [41], however we investigate this
dataset from a clustering perspective for two reasons. Firstly,
the dataset is imbalanced, particularly for the finer-grained
labels, which presents opportunities to analyse how the
DR algorithms in our investigation are affected by such
an imbalance. Secondly, the dataset is relatively small by
modern standards, which presents the opportunity to again
investigate how this affects DR algorithms. The AG’s News
corpus provides 127,600 news articles, consisting of titles
and description fields of articles collected from more than
200 news sources over a year through the ComeToMyHead
search engine, with each document being assigned one of
four class labels from either ‘‘World’’, ‘‘Sports’’, ‘‘Business’’
or ‘‘Sci/Tech’’ news categories. This dataset features no
class imbalance; however, it is significantly larger than the
others used in our study, which again presents an opportunity
in comparing how size influences downstream clustering
followingDR. These datasets were selected to provide a range
in corpus size and class numbers, as we seek to investigate
how these may impact upon the proposed methodology.
Furthermore, this ensures that additional comparisons of DR
algorithms on different datasets are provided. An overview of
these is provided in Table 1.
For each dataset, we leverage the RoBERTa pre-trained

transformer network [40], for the computation of embeddings
of the documents within the dataset. These may then be
passed to the dimensionality reduction algorithms used in
the experiments. The embeddings produced by RoBERTa
are contextual, and therefore it is not necessary to perform
‘‘traditional’’ preprocessing, such as stopword removal,
or lemmatisation. This is due to the fact that RoBERTa,
which is built upon the work of BERT [2], adopts a
masked language-model (MLM) strategy for pre-training,
where tokens are randomly masked, with the objective of
the training being the prediction of the masked term based
only on its context [2], [40]. Thus, no preprocessing is
performed, as this would affect the contextual information
entailed within the text. One exception to this, however,
is the 20 Newsgroups dataset, where the original dataset,
consisting of data extracted from online forums, also contains
header and footer information, with personal information,
such as email addresses and names of the users. We remove
these, due to both ethical considerations, as well as due to
them contributing any useful information to the clustering
task. All preprocessing steps can be found in the provided
repository1.
Figure 1 demonstrates the number of documents present

in each class of the selected datasets. In the 20 Newsgroups
dataset (Figure. 1a), a significant portion of the classes feature

FIGURE 1. Number of documents assigned to each class.

a small degree of class imbalance, with the smallest class
being class 20 with 628 documents, and the largest, class 16,
having 997 documents. In comparison, in Figure 1b, it is clear
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that for the TREC-6 dataset, there is a significant imbalance
in class sizes, with the smallest (class 3) containing only
95 documents. This imbalance is even more prevalent in the
TREC-50 dataset (Figure 1c), which uses the same corpus
as TREC-6, however, with a finer-grained labelling scheme.
In this dataset, the smallest class contains only 4 documents.
Finally, the AG’s News dataset (Figure 1d) features no class
imbalances, with each class having 31,900 documents.

For the investigation of a supervised learning methodology
with UMAP, it is important to consider the impact of class
imbalance on the dimensionality reduction process and,
subsequently, the downstream clustering task. Anticipated
effects include reduced class-specific accuracy in underrepre-
sented classes, such as class 20 in the 20 Newsgroups dataset
or class 3 in the TREC-6 dataset (as shown later in Results
Figure 5). We present an analysis of these implications
in Section IV. In downstream clustering, class imbalance
has been demonstrated to have a considerable impact
upon the clustering result for the k-Means algorithm [42].
k-Means was found to tend to produce clusters of uniform
size [43], even in diverse datasets with imbalanced data,
which leads to sub-optimal clustering results. To address this,
a variety of strategies are available to mitigate the effects
of class imbalance, broadly classified into three primary
groups: resampling techniques, algorithm-level adjustments,
and hybrid methods [44]. Resampling techniques seek to
address the imbalance at a data-level, typically using over-
sampling, or under-sampling methods, where the data is
adjusted in order to decrease prevalence of the skewed class
distribution within the dataset [45]. Of these, one of the
most prevalent is the SMOTE algorithm, wherein synthetic
minority class examples can be introduced to the dataset
to address the imbalance [46]. Algorithm-level adjustments
incorporate adaptations to algorithms, such that they take
into account the skew in data. For k-Means, examples of
this include the introduction of artificial neural networks
for the determining of the initial cluster centroids [47],
or the introduction of ‘multicenter’ clustering variant, where
multicenters are used to determine each cluster, rather than
one centroid per cluster [42]. Additionally, cost-sensitive
methods [48] combine algorithm and data-level techniques,
to assign a misclassification cost for each class based on
evaluation methods [49].

To mitigate overfitting in the transformer-encoder archi-
tecture, instead of using sampling techniques that may not
accurately represent the data, randomised dropout layers
are incorporated within the network architecture. This is
applied through the random omission of units within the
neural network, which has been demonstrated to be effective
in addressing overfitting [1], [50]. This random omission
of units, also referred to as deactivation, ensures that
each neuron of the network will learn to produce useful
outputs in various contexts, i.e., when random preceding, and
succeeding neurons are omitted. This effectively creates a
different network architecture, or ‘sub-model’ during each
training iteration, such that during inference when all neurons

are used, the predictions of the various ‘sub-models’ are
averaged [51].
For our task, which differs from the language modelling

task the architecture was initially intended for, we apply
dropout following the multi-head attention layer of the trans-
former block, similar to the original transformer encoder [1].
However, a second layer of dropout is then applied to the final
feedforward layer of the architecture, prior to the output layer.
The amount of dropout in each model is determined through
an optimisation strategy. The hyper-parameter optimisation
strategy is discussed in Section III-D.

B. PRELIMINARY EVALUATION OF EXISTING TECHNIQUES
FOR DIMENSIONALITY REDUCTION
Uniform Manifold Approximation and Projection (UMAP)
[11], t-distributed stochastic neighbour embedding (t-SNE)
[17], Principal Components Analysis (PCA) [15] and Lin-
ear Discriminant Analysis (LDA) [16] are state-of-the-art,
respectively benchmark methods for DR, which we evaluate
in terms of accuracy when used as a DR technique prior to
clustering, addressing our first and second research questions
(RQ1, RQ2). LDA requires the provision of labelled data.
Hence, we provide this as a randomly shuffled subset of
20% of the whole dataset, from which we compute the
low-dimensionality representations of the full dataset.

The computational complexity for the algorithms analysed
in the preliminary investigation differ considerably, and
therefore their use is best suited for different situations and
datasets. For LDA, the time complexity is O(Ndt + t3),
and memory requirement is O(Nd + Nt + nt), where N
is the number of samples, d is the number of features,
or the dimensionality of the data, and t = min(N , d).
In instances where N and d are large, the algorithm becomes
infeasible, as discussed by [52], who also evaluated the
algorithm upon the 20 Newsgroups dataset, where they
identified a considerable increase in time complexity for
large samples of the dataset. For PCA, a time complexity
of O(min(N 3, d3)) is outlined by [53]. Regarding t-SNE,
there is a significant limitation due to the computational
complexity of the algorithm, which scales at a degree of
O(N 2), where N is the number of data points [54]. The
application of the Barnes-Hut algorithm as an approximation
method for the gradient calculation algorithm can enhance
efficiency to O(logN ) time complexity, as demonstrated
in [55] and [56]. However, it is important to note that this
approach is applicable only when the output dimensionality
is less than or equal to 3 dimensions. Finally, in the case of
UMAP, empirical results indicate an approximate complexity
of O(N 1.14), which is bounded by the complexity of the
approximate nearest neighbour algorithm, and has, at this
time, no theoretical proof [11], [57]. Based on these, it would
appear that UMAP presents the best scalability in terms of
time complexity. As discussed in our introduction section,
the ‘‘curse of dimensionality’’ arises in clustering algorithms,
due to the impact that high dimensionalities have upon the
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distance measurements, which are necessary in determining
distances between points, when assigning them to clusters.
k-Means has a time complexity of O(N dk+1) [58], where
d is the dimensionality, N is the number of points to
cluster, and k is the number of clusters. Therefore, opting
for the lowest-dimensional representation prior to clustering
is beneficial when working with large datasets, if it can be
proven that a low-dimensionality representation will perform
adequately.

Figures 2a-2d demonstrate the clustering accuracy attained
by k-Means clustering across dimensionality ranges d =

{1, . . . , 16} for UMAP, PCA, LDA and t-SNE. Notably,
LDA indicates a positive correlation regarding an increase
in accuracy relative to dimensionality across all datasets,
outperforming both UMAP and PCA. However, there are
limitations to this method, as LDA relies upon the presence
of labelled data. Additionally, the algorithm is not capable
of generating embeddings with a dimensionality greater than
(u− 1), where u is the total number of unique labels present
in the data. Most notably, as demonstrated in Figures 2a
and 2c, in some cases, the dimensionality must be large,
in order to obtain optimal clustering accuracy. This is not
ideal based on the increase in computational complexity
that is observed by clustering algorithms when analysing
highly dimensional data. PCA outperforms, or performs
comparably to UMAP, the established state-of-art, on the
TREC6, TREC50 and AG News datasets. As with LDA,
accuracy for downstream clustering by k-Means appears to
improve as the dimensionality increases. t-SNE performs
comparably with UMAP at low-dimensionalities; however,
this is evaluated only up to an output dimensionality of 3,
due to the Barnes-Hut approximation algorithm used in
the algorithm restricting output dimensionality to below
4 dimensions.

C. PARAMETRIC UMAP WITH BIDIRECTIONAL
RECURRENT NETWORKS WITH ATTENTION
Following the preliminary evaluation of UMAP, t-SNE, PCA
and LDA, a novel pipeline of a bidirectional RNN with
attention mechanism for DR is proposed, which is facilitated
through parametric UMAP [13], using a metric learning
methodology, wherein the parametric dimensionality reduc-
tion model is trained upon a small subset of labelled data.
It is to be hypothesised that the introduction of supervised
learning to the computation of lower-dimensionality embed-
dings could improve downstream clustering performance.
Furthermore, this work aims to demonstrate how the defini-
tion of a recurrent network with attention could potentially
enhance clustering accuracy, given a small amount of
training data. Therefore, a sample of only 20% of the
dataset is used in the training of the supervised metric
learning model. This performance is compared with other
configurations of UMAP, including UMAP itself, super-
vised UMAP, parametric UMAP and parametric supervised

UMAP. Parametric UMAP in this case is configured with
a default network architecture of 3 fully connected layers
consisting of 100 units each.

We propose a recurrent neural network with self-attention
mechanism, to investigate the impact of recurrent net-
works and attention upon the parametric learning of low-
dimensionality embeddings. Figure 3 demonstrates this over-
all architecture, which consists of 2 blocks of stacked RNN-
attention layers, followed by a fully connected layer. This
results in a total of 35, 119, 359 trainable parameters. The
configuration of this architecture and the assigned number of
nodes for each layer is identified through the Tree-structured
Parzen Estimator [59], [60], [61] hyper-parameter optimi-
sation, facilitated by the Optuna framework [62]. For this
optimisation strategy, we set the optimisation objective as the
maximising of accuracy score for the k-Means clustering of
the whole dataset, with the model being provided with only a
20% subset of the data.

D. PARAMETRIC UMAP WITH TRANSFORMER-ENCODER
We define a transformer-encoder, the main crux of our inves-
tigation, based upon the original architecture [1], consisting
of a stack of N transformer blocks, where each transformer
block comprises two sub-layers. The first of these sub-layers
consists of a multi-head self-attention mechanism, while
the second is a fully connected feedforward network with
ReLU activation [63]. After both the multi-head attention,
and feedforward layer, layer addition is performed. This
entails the concatenation of the outputs of the previous layer
with the original input sequence. This layer addition process,
which is also known as residual connection, is intended
to mitigate the vanishing gradient [64] problem, wherein
during backpropagation, the multiplication of the gradients of
each layer, if they are smaller than 1, leads to exponentially
decreasing gradients. It is reported that as the sequence
length of a model increases, the gradient magnitude typically
decreases, which can slow down or even stop the training
process [65].

Using the same hyper-parameter optimisation strategy
outlined when designing the RNN with attention, we iden-
tify an optimal network configuration, consisting of four
sequential transformer-encoder blocks, followed by a fully-
connected layer. The amount of dropout present within
the transformer block, and before the output layer of the
model, is also defined through this same hyper-parameter
optimisation strategy. Contrary to the implementation of
dropout in [1], the strategy for hyper-parameter optimisation
pinpoints an ideal setup where the transformer-encoder
block does not undergo any dropout. Instead, dropout is
exclusively implemented on the model’s final feedforward
layer, at a rate of 5%. This configuration results in a total
of 10, 784, 272 trainable parameters, which is more than
three times fewer than the total parameters of the RNN
with attention architecture. For both the transformer-encoder,
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FIGURE 2. Comparison of LDA, PCA, t-SNE and UMAP DR techniques upon accuracy in downstream k-Means clustering.

and RNN with attention, we investigate our fourth research
question (RQ4).

E. EXPERIMENTAL SETUP
To evaluate the outcomes of our proposed methods, namely
the implementation of the transformer-encoder, and RNN
with attention upon metric learning for DR, we propose
the following experiment, comparing clustering accuracy
across a range of UMAP variations, where we seek to
evaluate both RQ3 and RQ4. These are performed upon
the four benchmark datasets applied for the preliminary
evaluation in Section III-B. For each dataset, we evaluate
UMAP, Parametric UMAP (P-UMAP), UMAP Supervised,
Parametric UMAP Supervised, Parametric UMAP with
RNN Supervised, and Parametric UMAP with Transformer-
Encoder Supervised, with the latter being our two proposed
novel architecture pipelines demonstrated in Figure 3 and
Figure 4. In the supervised cases, dimensionality reduction
models were trained upon the same subset of 20% of the

overall dataset, to perform metric learning of the reduced
embeddings.

Similarly to the preliminary evaluation (III-B), we compare
the accuracy across dimensionalities ranging from d =

{1, . . . , 16} for each algorithm against a baseline score,
where k-Means clustering is performed upon the original
RoBERTa [40] embeddings, without dimensionality reduc-
tion being applied. Results are based on an average taken over
25 separate experiments, which allows for the calculation of
statistical significance using a Wilcoxon-Mann-Whitney U
Test [66]. We present the accuracy for each algorithm, across
each dataset, for each dimensionality, across all 25 iterations
of each experiment1.

1) CLUSTERING EVALUATION
Evaluation of the performance relative to dimensionality
entails calculation of the accuracy of the downstream
clustering task. The integer label assigned by the k-Means
algorithm to a cluster may not directly reflect the integer
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FIGURE 3. Proposed novel bidirectional recurrent architecture with
attention mechanism using gated recurrent units for use in the DR
pipeline via parametric UMAP.

FIGURE 4. Proposed novel transformer encoder architecture for
dimensionality reduction for use in the DR pipeline via parametric UMAP.

label assigned as the true label, even if the clustering solution
is correct. For example, a clustering solution may assign
cluster A a label of 0, and cluster B a label of 1, however, the
true label present in the dataset is 1 for cluster A, and 0 for
cluster B. When we examine the results, we may find that if
the error is low, and the clustering solution is correct, then it
is necessary to map the predicted clusters to their associated

true labels for evaluation. The Kuhn-Munkres Algorithm [67]
is hence applied to map the assigned label, by clustering,
to the true label. This allows the framing of the evaluation
as a supervised learning task, to obtain an accuracy score.
We calculate accuracy as:

ACC =
TP+ TN

TP+ TN + FP+ FN
(1)

where TP represents the true positives, TN represents true
negatives, FP represents false positives and FN represents
false negatives.

2) TESTING FOR STATISTICAL SIGNIFICANCE IN RESULTS
We select the Mann-Whitney-Wilcoxon (WMW) U test [66]
when testing the significance of experimental results. WMW
has been demonstrated to function suitably when applied
to a smaller sample size, such as a population of 25 [68].
The WMW test is a nonparametric test that makes no
assumptions about the distribution of the data, and as such
is suitable when data is not normally distributed. For our
experiments in section IV-B, we use a population size of
25. While it would be preferable to conduct our experiment
across a larger population size, this would require extensive
compute requirements and therefore take significantly longer
to evaluate across all dimensionalities and datasets. For
testing the significance in results, we adopt a significance
level α = 0.01. The significance between two arguments
is computed using the complete set of 25 iterations for
each experiment, wherein a run represents the training
of the dimensionality reduction algorithm, and subsequent
clustering by k-Means. This guarantees that the given scores
encapsulate a comprehensive depiction of the performance
exhibited by the corresponding algorithms. For example,
if testing for significant difference between the accuracy of
the UMAP algorithm, when compared to the Supervised
Parametric UMAP algorithm, with both having an output
dimensionality of 3, for the 20 Newsgroups dataset; Sample 1
would entail the 25 accuracy scores, which were attained
by k-Means algorithm when clustering the low-dimensional
vectors produced by UMAP with an output dimensionality
of 3. Sample 2 would be the 25 accuracy scores for the
clustering of the vectors produced by the Supervised Para-
metric UMAP algorithm, using the same criteria. We form
a null hypothesis H0 that there is no significant difference
between two comparisons, and an alternative hypothesis Ha
that there is significant difference between results. For each
statement we make with respect to statistical significance,
we provide the U-statistic U , z-score, and probability p,
as well as providing the standard deviation SD, and mean
accuracy scoreM for each individual population.

IV. RESULTS
A. CLUSTER ANALYSIS
Figures 5 and 6 represent a two-dimensional plot of the
distribution of vectors produced by the dimensionality reduc-
tion techniques of UMAP, supervised UMAP, supervised
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UMAP with RNN and Attention, and supervised UMAP
with transformer network. This is provided as a visual
demonstration of the clustering solution, which can aid in
evaluating how the different DR algorithms can partition
the data. Points are colour-coded, to correspond to the
true class label associated with each document. To aid
in visual comprehension by the reader, both TREC-50
and 20 Newsgroups were not visualised in this work, due to
the large number of classes present, and subsequent difficulty
in discerning colour differences. However, these may be
produced using the provided reference repository.

We observe a notable distinction in the arrangement of
points when comparing unsupervised (UMAP and UMAP
parametric, Figures 5a and 6c) with supervised approaches
(UMAP supervised, UMAP parametric supervised, UMAP
supervised, RNN with attention, and UMAP supervised
transformer, Figures 5b, 6d, 5e and 5f). When trained upon
the subset of data, all supervised configurations of UMAP
indicate greater effectiveness in the partitioning of documents
based upon their class assigned label, in comparison with
their unsupervised variants. However, there appear to be only
five distinct clusters extracted across all supervised variants,
which reflects the class imbalance in the TREC-6 dataset
identified in 1b, where class 3 is highly underrepresented,
with only 95 documents. When accounting for the 20%
sample taken for training, this provides only 19 labelled
documents representing class 3. Overall, both the RNN
with attention, and transformer architectures, appear to
provide improvements in the separation of clusters, with the
transformer providing the clearest separation. However, these
appear to form only 5 clusters, which is best demonstrated
in Figure 5f. It appears that the class imbalance and
under-representation of class 3 in the TREC-6 dataset leads
to this cluster failing to be represented by UMAP in all its
variants.

B. ACCURACY OF CLUSTERING
Figure 9a demonstrates the clustering accuracy of the models
for the 20 Newsgroups dataset. When testing for significance
in subsequent analyses in this section, we apply a WMW test
as detailed in Section III-E2. For a two-tailedWMW test with
a population size of 25, the critical value ofU is 180, such that
any U value greater than this is rejected as being statistically
significant. It is worth noting that in our analyses, a U value
of 0 is frequently observed. This is due to the prevalence of
all observations in one population having a score lower than
all observations in the other population, and implies a perfect
separation between two groups. Individual results used in our
experiments can be accessed at the downloadable repository1.
At a glance, it is evident that all configurations of UMAP

provide an improvement in accuracy when compared to the
baseline, with a clear ‘‘knee’’ that can be observed between
an output dimensionality of 2 and 3. At a dimensionality of 3,
which we adopt for all subsequent calculations, comparing
UMAP [11] (SD = 0.007, M = 0.582) with the
k-Means baseline score (SD = 0.012, M = 0.517)

indicates a significant improvement of 6.5% (U = 0,
z-score = 6.054, p < 0.0001) and parametric UMAP
(P-UMAP) (SD = 0.013, M = 0.579) [13] improving
significantly by 6.1% (U = 0, z-score = 6.054, p <

0.001), compared to the baseline score. The introduction of
a metric learning approach, trained upon a subset of data,
is demonstrated by the UMAP Supervised (SD = 0.013,
M = 0.668), where we accept the alternative hypothesis,
indicating a significant improvement compared baseline
score of 15% (U = 0, z-score = 6.054, p < 0.001).
For the supervised UMAP parametric (P-UMAP Supervised)
(SD = 0.018, M = 0.562) algorithm, we again accept the
alternative hypothesis, indicating a significant improvement
of 4.4% (U = 0, z-score = 6.054, p < 0.001). This
supports our investigation into RQ3, into evaluating metric
learning as a suitable method to be used prior to clustering.
There is a significant difference between supervised UMAP,
and supervised parametric UMAP algorithm, wherein at a
dimensionality of 3, the nonparametric algorithm attains an
accuracy 10.6% higher than the parametric variant (U = 0,
z-score = 6.054, p < 0.001). As the default configuration of
the parametric UMAP neural network architecture consists of
only fully-connected layers, it is worth evaluating whether the
implementation of more complex architectures can contribute
to improving the performance of the parametric UMAP
model. It is observable in both unsupervised and supervised
cases that the nonparametric UMAP algorithm attains a
higher accuracy score compared to the parametric version
consisting of the default fully connected layers. However,
the transformer-encoder (P-UMAP Transformer) (SD =

0.0083, M = 0.698) model attains the greatest significant
improvement in accuracy relative to the baseline, of 18.1%
(U = 0, z-score = 6.054, p < 0.001). The supervised RNN
with attention (SD = 0.0103, M = 0.594), in compari-
son, provides a significant accuracy improvement of 7.7%
(U = 0, z-score = 6.054, p < 0.001) compared to the
baseline score.

When comparing the transformer-encoder with the next
highest scoring algorithm, UMAP supervised, it is evident
that the transformer-encoder attains a overall significant
higher-scoring accuracy in downstream clustering, even
at a lower dimensionality. At a dimensionality of 2, the
transformer-encoder (SD = 0.007, M = 0.698) exhibits a
significant difference 4.7% greater (U = 0, z-score = 6.054,
p < 0.001) thanUMAP supervised (SD = 0.013,M = 0.65).
At a dimensionality of 3, this significant difference is 3%
greater (U = 0, z-score = 6.054, p < 0.001) for the
transformer-encoder (SD = 0.008, M = 0.698), compared
with UMAP supervised (SD = 0.013, M = 0.668). This
indicates that an advantage of our proposed pipeline using
the transformer-encoder, is that a higher accuracy can be
achieved in downstream clustering at lower dimensionalities,
which has benefits with regards to computational complexity,
and memory efficiency corresponding to the storage of the
smaller vectors. These results are depicted in Figure 9a.
In Figure 9b, when applied to the TREC-6 dataset, we observe

VOLUME 12, 2024 77545



R. Hodgson et al.: Partially-Supervised Metric Learning via DR of Text Embeddings

FIGURE 5. Visualisation of reduced vectors at a dimensionality of 2 for TREC6, for our proposed pipelines
(underlined), compared with existing UMAP configurations, with colours representing the true label for each point.
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FIGURE 6. Visualisation of reduced vectors at a dimensionality of 2 for AG’s News, for our proposed pipelines
(underlined), compared with existing UMAP configurations, with colours representing the true label for each point.
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FIGURE 7. Accuracy of k-Means clustering with dimensionality ranging from 1 to 16 for the proposed methods (our proposed pipelines underlined),
compared with existing UMAP configurations.

a decrease in the average accuracy relative to the k-Means
baseline for both UMAP, and parametric UMAP. At an output
dimensionality of 3, the UMAP algorithm (SD = 0.002,
M = 0.039) is on average 14.7% (U = 0, z-score = 6.054,
p < 0.001) poorer than the k-Means baseline score, which is
significant. Similarly, parametric UMAP (SD = 0.008,M =

0.392) performs 14.3% worse than the baseline (U = 0,
z-score = 6.054, p < 0.001). This decrease is similar for
the TREC-50 dataset, where at a dimensionality of 3, UMAP
(SD = 0.005, M = 0.22) is on average 9.1% less accurate
than the baseline score (U = 0, z-score = 6.054, p < 0.001),
and parametric UMAP (SD = 0.004, M = 0.22) is 7.1%
(U = 0, z-score = 6.054, p < 0.001) less accurate.
This is of interest, as it indicates that there is no guarantee
that UMAP can contribute to improvements in downstream

clustering accuracy. Considering that both TREC-6, and
TREC-50 have the lowest number of documents, consisting
of only 6000 rows (see Table 1), this may have an influence
upon the generalisation of the unsupervisedmodel for UMAP.
In comparison, all supervised variants of UMAP demonstrate
an improvement in clustering accuracy for both TREC-6, and
TREC-50 datasets. Most notably, the transformer-encoder
model attains the greatest improvement in accuracy relative
to the baseline score. At a dimensionality of 3, this is a
significant improvement of 30.3% for TREC-6 (U = 0,
z-score = 6.054, p < 0.001), attaining an average accuracy
that is greater than all other DR algorithms investigated in our
study.

The P-UMAP transformer-encoder architecture achieves
the greatest accuracy for three of our datasets, 20 Newsgroups,
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TREC-6, and TREC-50, which reflects the outcomes
observed in our visualisation analysis of TREC-6 in Figure 5.
However, on the fourth, the AG’s News dataset, the P-UMAP
transformer-encoder does not outperformUMAPSupervised,
the current SoA (Figure 7d). Nevertheless, both of our
proposed architectures, the transformer-encoder, and RNN
with attention, perform comparably with UMAP supervised
for the AG’s News dataset.

An interesting observation, which is evident only for
the AG News dataset, is the high degree of variance in
downstream clustering accuracy for the UMAP algorithm.
This is prevalent between the dimensionalities of 6 and 16,
where a considerable decrease in the accuracy of downstream
clustering appears. This presents a decrease in the average
accuracy of downstream clustering from 82.6% (SD =

0.054) at a dimensionality of 6, to a minima of 61.1% (SD =

0.08) at a dimensionality of 11. Furthermore, within the scope
of our experiments, it was observed that the population of
results for UMAP exhibited the highest standard deviation of
accuracy, at a dimensionality of 11 (SD = 0.08). This was the
most significant fluctuation in accuracy across all conducted
tests.

A general observation across all of the experiments
(Figure 7) indicates the presence of a ‘‘knee’’ in accuracy
for all derivatives of UMAP, which becomes apparent
between the dimensionalities of {2, 3}, when the reduced
dimensionality embeddings are used in k-Means clustering.
Increasing the output dimensionality of embeddings beyond
this degree tends to have little or diminishing influence on
the quality of the clustering solution for k-Means. This is
of interest, and merits a further discussion, as we have,
at this time, found no evidence of this phenomenon within the
literature. Notably, it is empirically apparent that the k-Means
algorithm experiences a decrease in the rate of improvement
beyond an output dimensionality of 3 for low-dimensional
representations produced by UMAP and UMAP derivatives,
for both a supervised and unsupervised training manner.
When considering computational complexity, there are
numerous benefits to choosing a lower output dimensionality.
As discussed in Section III-B, clustering algorithms, such as
k-Means, can be affected by data dimensionality. Notably in
the case of k-Means clustering, the time complexity scales
quadratically with relation to the dimensionality and the
number of clusters. Therefore, it is often advantageous to
perform clustering using a representation of the data with
reduced dimensionality. Considering the marginal accuracy
improvements beyond the knee curve point, it could be
more efficient to select a small output dimensionality,
such as 2 or 3, to optimise the runtime of the clustering
solution.

Overall, the proposed architecture based on the
transformer-encoder is demonstrated to contribute to signifi-
cant improvements in clustering accuracy across three of the
four experiments conducted. The RNN with attention also
contributes to improvements in accuracy relative to existing
methods, and outperforms the transformer-encoder by a small

TABLE 2. Average accuracy at an output dimensionality of 3 based on
25 iterations for each experiment (our proposed pipelines are
underlined).

margin on the AG’s News dataset. This addresses both RQ3
and RQ4 outlined in our introduction (Section I).

The maximum average accuracy based upon 25 iterations
of each experiment at a dimensionality of 3, for each
algorithm across our experiments is summarised in Table 2.

Overall, the results of these experiments are of value to any
applications of the parametric UMAP transformer-encoder to
dimensionality reduction in downstream tasks, as the model
requires fewer trainable parameters, compared to the RNN
with attention.

C. ANALYSIS OF PER-CLASS ACCURACY
In section III-A, we discussed the presence of a considerable
imbalance in the TREC-6, and TREC-50 datasets. Given the
supervised learning nature of our methodology, we consider
it essential to explore the performance of the proposed
transformer-encoder, given this imbalance. We focus upon
the proposed transformer-encoder pipeline, as it is apparent,
based upon the outcomes of our experiments, that this
architecture attains a higher accuracy when compared to
the contending pipeline proposed, based on RNN with
attention. In any form of supervised learning, there exists the
possibility of overfitting, where a model fails to generalise
upon unseen data, based on the training data provided [69],
[70]. In this case, any supervised derivative of the UMAP
algorithm would be susceptible to this phenomena. This is of
particular importance when working with highly imbalanced
data, such as the TREC-6 and TREC-50 datasets, where
the sampling of a training set from the data, which entails
only 6000 rows, would lead to an underrepresentation of
many of the classes. To facilitate this, we evaluate the
accuracy of the supervised transformer-encoder, and compare
this to parametric UMAP supervised. While an analysis
of the effects of all configurations of UMAP, and the
other algorithms used in our preliminary analysis, would
be beneficial, it does not fall within the main focus of our
study, which is the investigation of the transformer-encoder.
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FIGURE 8. Per-Class Accuracy of k-Means Clustering Performed Upon across all Dimensionalities, for the TREC-6, dataset, comparing our proposed
pipeline, P-UMAP Supervised Transformer, with the current state of the art, P-UMAP Supervised.

Therefore, we focus upon our comparisonwith the supervised
parametric UMAP algorithm. This algorithm, in its default
configuration, consists solely of fully-connected layers,
thereby offering the most comparable algorithmic structure.
The only point of divergence of our transformer-encoder
proposal lies in the architecture of the neural network.
In Figure 8, the average per-class accuracy is presented
for the transformer-encoder, and the default configuration
of parametric UMAP, for the TREC-6 dataset, showing the
accuracy for each individual class across a varying output
dimensionality. As with all other experiments in this study,
this average is calculated based on 25 individual iterations of
the dimensionality reduction and clustering pipeline.

Based on an analysis of the accuracy of each class
within the TREC-6 dataset, it is apparent that the
transformer-encoder confers an improvement to the accuracy
of some classes. At an output dimensionality of 3, when
comparing the accuracy of class 1 between the transformer-
encoder (SD = 0.024, M = 0.85), and default supervised
parametric UMAP architecture (SD = 0.034, M = 0.84),
we identify a p value of 0.02, indicating no significant
difference between results (U = 187, z-score = 2.42,
p = 0.02). For class 2, there is an improvement of 11.8% for
the transformer-encoder approach (SD = 0.012, M = 0.81)
compared to supervised parametric UMAP (SD = 0.045,
M = 0.696), which demonstrates a significant increase
(U = 0, z-score = 6.054, p < 0.001). Of particular
interest regarding this comparison, is class 3, where the
introduction of the transformer-encoder model demonstrates
an increase in the average accuracy of this class, after
k-Means clustering. For example, at an output dimensionality
of 3, this improves from an average accuracy of 2.3%
for parametric UMAP (SD = 0.016, M = 0.023),
to 14.8% for the transformer-encoder (SD = 0.075,
M = 0.141) derived model, a significant increase of
12.5% (U = 102, z-score = 4.07, p < 0.001). At an
output dimensionality of 4, the transformer-encoder (SD =

0.043, M = 0.19) demonstrates a significantimprovement
relative to parametric UMAP supervised (SD = 0.016,
M = 0.023) of 16.6% (U = 5, z-score = 5.95, p <

0.001). This is a considerable improvement, given that class
3 of the TREC-6 dataset contains only 95 documents and
represents the highest degree of imbalance. It is also worth
noting that this underrepresented class also observes the
greatest degree of change in accuracy as the dimensionality
increases for the transformer-encoder, as denoted by the
orange line in Figure 8. Returning our focus to an output
dimensionality of 3, class 4 observes a decrease in the
accuracy of transformer-encoder (SD = 0.013, M = 0.928)
compared to supervised parametric UMAP (SD = 0.026,
M = 0.952) of 2.3% (U = 110, z-score = 3.92, p <

0.001), which is significant based on the analysis using the
WMW test. For class 5, the transformer-encoder confers
a significant decrease in accuracy compared to supervised
parametric UMAP of 3.3% (U = 25, z-score = 5.56,
p < 0.001). Finally, for class 6, there is no significant
difference observed based on the 25 individual experiments
between the transformer-encoder, and supervised parametric
UMAP (U = 291, z-score = 0.4, p = 0.03).
Taking the assumption that an output dimensionality of

3 is the typical point at which the ‘‘knee’’ is observed in
the UMAP algorithm in Figure 7, beyond which there are
diminishing returns in the clustering result when UMAP
derivatives are used for DR, we present the per-class accuracy
for the transformer-encoder, and default configuration of
supervised parametric UMAP at an output dimensionality
of 3 in Figure 9. A full reference of the results at other
dimensionalities is provided within the repository1. As there
are too many classes in TREC-50 to analyse within this work
succinctly, we sample some which we argue merit discussion.
For instance, class 20, which is assigned to only 50 documents
within the dataset, observes a significant improvement for
the transformer encoder of 69% (U = 0, z-score = 6.054,
p < 0.001), based on our average of 25 experiments.
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FIGURE 9. Per-class accuracy of k-means clustering performed upon across all Dimensionalities, for the TREC-6 and TREC-50 datasets, comparing our
proposed pipeline, P-UMAP Supervised Transformer, with the current state of the art, P-UMAP Supervised.

Similarly, class 41 also represents 50 documents, and it can be
observed that the transformer-encoder leads to a significant
increase of 16.5% (U = 24.5, z-score = 5.578, p < 0.001).
In comparison, for class 5, the largest within the dataset,
there is no significant difference between the accuracy of both
models (U = 311.5, z-score = 0.009, p < 0.95). Based on
the analyses of individual class accuracy, a hypothesis may
be formed that the introduction of the transformer-encoder
architecture within parametric UMAP confers a degree of
robustness to the sensitivity of imbalanced data when used
in a supervised metric-learning methodology.

V. CONCLUSION
This work has investigated how two neural network architec-
tures can affect the accuracy of downstream clustering tasks,

when used in a parametric UMAP dimensionality reduction
pipeline, namely the P-UMAP Supervised RNN with Atten-
tion, and the P-UMAP Supervised Transformer. Our analysis
highlights several interesting findings. Firstly, we provide
an empirical investigation into the effects of ‘‘traditional’’
dimensionality reduction algorithms PCA, LDA, t-SNE,
and UMAP upon downstream k-Means clustering upon
four benchmark datasets. Through our evaluation of these
traditional algorithms across a range of dimensionalities,
we demonstrate the effectiveness of each with respect
to the output dimensionality, as well as discussing the
benefits and disadvantages of each technique in relation to
computational complexity. Furthermore, in our subsequent
analysis of UMAP, Parametric UMAP, and their supervised-
learning alternatives, we empirically identify a consistently
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observable ‘‘knee’’ curve in relation to the accuracy of
k-Means clustering upon the low-dimensional representa-
tions produced by variations of the UMAP algorithm. This
finding is beneficial for researchers or industry who seek
to perform any clustering of embeddings, as we have
demonstrated that there is no benefit from opting for a large
output dimensionality when using the UMAP algorithm as a
preprocessing step prior to downstream clustering, where it
is evident that an output dimensionality of 2 or 3 is suitable.

Through an investigation across a range of different
dimensionalities, we have identified that attention mech-
anisms can have a significant effect upon clustering
accuracy, when used in a metric learning framework
within parametric UMAP. Moreover, our second proposed
architecture, entailing a transformer-encoder, achieved the
best overall improvement across three of the four datasets
used in our investigation. Through a visual analysis of
the lower-dimensionality embeddings produced by the
transformer-encoder, we are able to demonstrate the effec-
tiveness of the transformer-encoder pipeline for downstream
clustering for a parametric UMAP dimensionality reduction
pipeline when used for metric-learning, when compared to
several other architectures. Additionally, we demonstrate that
the transformer-encoder ensures an improvement in accuracy,
while also maintaining significantly fewer trainable model
parameters compared to an RNN, which extends our findings
from investigating (RQ4).
Through an analysis of the accuracy of individual classes

within a dataset, it is apparent that the transformer-encoder
architecture confers a benefit when faced with imbalanced
data. More specifically, underrepresented classes have been
found to benefit from the introduction of the transformer-
encoder. These findings open novel avenues of research,
particularly in relation to the individual components of the
architecture, which confer the robustness of the model in
handling underrepresented data.

Our research has demonstrated the feasibility of our
proposed pipeline, employing a transformer-encoder within
a Parametric UMAP metric learning framework. However,
there are still unresolved issues and unanswered questions
which may affect researchers and real-world applications.
Firstly, there is a considerable increase in the training
time and computing requirements of the transformer-encoder
architecture, which is best represented by the number
of trainable parameters of the architecture. While the
low-dimensional representations produced by the proposed
UMAP architecture can contribute to a reduction in the
time required for clustering, it is worth considering that
the large number of trainable parameters of the architecture
confers a longer time required for preprocessing. This could,
however, be mitigated through optimisation strategies such
as parallelisation and GPU training of the neural network
architecture. Furthermore, our study has focused upon a
metric-learning methodology, wherein we have used a small
portion of labelled data to contribute to the dimensionality
reduction process. For many real-world applications of our

methodology, labelled data may not be available. Therefore,
it would be beneficial for future works to investigate how
the architecture proposed would perform when applied in
an unsupervised manner. Additionally, we have conducted
our study with a focus upon the downstream clustering of
low-dimensionality vectors by the k-Means algorithm. While
this clustering technique is widely known, the algorithm
requires the prior specification of a known number of clusters,
and as such is not suitable for applications, where the number
of clusters is not known. Consequently, it remains to be
determined if the transformer-encoder architecture can be
utilized for calculating low-dimensional representations and
subsequently subjected to alternative clustering algorithms.
Among these, the potential enhancement of results through
the application of density-based clustering methods such as
HDBSCAN [24], [25] or DBSCAN [71], which have been
demonstrated in tandem with UMAP for topic modelling,
is of particular interest [29]. Aside from our contribution of
showing how to apply a transformer-encoder to parametric
UMAP, we have provided further experimentation into the
outcomes of using various existing dimensionality reduction
algorithms to contribute to improvements to clustering
accuracy.Most notably, we demonstrate how the combination
of the transformer-encoder with metric learning, when using
parametric UMAP, can provide significant improvements
to the clustering solution. Finally, we provide a repository
containing our two proposed architectures and all algorithms
used in this study, for further studies to validate and compare
against the results presented in our paper1.

VI. FUTURE WORKS
In this study, metric-learning was performed upon a subset
of 20% of the overall dataset, which is provided along with
the class-labels, such that learning is conducted only upon
this sample. However, when using UMAP, one alternative
is to provide masked labels for data where a label which is
not known. In this case, a sample of 20% of labels could
be provided, with a larger sample entailing unlabelled data
also being used in the training process. This merits a further
investigation in how to address overfitting in undersampled
classes, however does not fall into the main scope of the goal
with this paper. Thus, in future works it is worth considering
the implications of this alternative training strategy in
improving the performance of downstream clustering.

To further contribute to the findings that the proposed
transformer-encoder pipeline with parametric UMAP confers
a benefit to underrepresented classes, and an improvement
in downstream clustering accuracy in general, we define
two avenues of research. Firstly, from a supervised metric-
learning perspective, an in-depth ablation study of the
transformer-encoder architecture, evaluated in relation to per-
class accuracy, could contribute to reinforcing our findings.
This could be applied to domains other than the cluster-
ing of text embeddings. Secondly, from an unsupervised
learning perspective, it would be beneficial to investigate
the performance of the transformer-encoder when applied
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outside of themetric-learningmethodology used in this study.
This could be evaluated similarly to the manner of this
study, based on accuracy. Alternatively, there remain open
questions as to the effects that the clustering method selected,
k-Means, has had upon the outcomes of the study. Subsequent
investigations could apply the transformer-encoder within
parametric UMAP in conjunction with different clustering
algorithms.
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