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ABSTRACT Ultrasound images acquired through various measuring devices may have different styles,
and each style may be specialized for diagnosing specific diseases. Accordingly, ultrasound image-to-image
translation (US I2I) has become an essential research field. However, direct application of conventional
I2I techniques to US I2I is difficult because it causes content deformation and has the problem of not
being able to accurately translate fine textures. To solve the aforementioned problems, this paper proposes a
novel feature decomposition scheme specialized for US I2I. The proposed feature decomposition explicitly
separates texture and content information in latent space. Then, fine textures of the US image are effectively
translated through translation of only the texture features.Moreover, I2I is carried out in a way that minimizes
changes to the original content through reuse of content features. In addition to the feature decomposition
scheme, we present a contrastive loss designed for content preservation. Specifically, the contrastive loss
can maximize the content preservation effect because it preferentially performs query selection, which
allows regions containing organ structures to be selected as queries (i.e., anchors). The proposed US
image-specific learning scheme leads to qualitatively superior results, and the excellence of each method
has been experimentally verified through various quantitative metrics.

INDEX TERMS Unpaired image-to-image tranlsation, ultrasound image, feature decomposition, contrastive
learning.

I. INTRODUCTION
Recently, with the development of neural networks, the
growth of the ultrasound (US) image processing field
is accelerating. In particular, the achievements in deep
learning-based US image processing, such as disease clas-
sification and lesion segmentation, are remarkable [1], [2],
[3], [4], [5], [6]. Such technological progress is expanding to
more high-level tasks, e.g., the field of image generation [7],
[8], [9].
US images can have various styles depending on the acqui-

sition method or equipment, and there is no absolute ‘‘correct
style.’’ Because of these characteristics, US image-to-image
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translation (shortly, US I2I) is emerging as an important
research topic in the field of deep learning-based medical
image processing. For example, we can imagine a scenario
where the US image of a specific device is changed to the US
image style of the preferred device depending on the doctor’s
preference. However, US I2I is quite challenging because the
technical difficulty of acquiring different styles of US images
for the same scene is very high.

Meanwhile, unpaired I2I methods can be effective for US
images that are difficult to configure in pairs. Note that the
core of unpaired I2I is to preserve the content (e.g., shape)
of the image and translate its appearance (e.g., texture). For
this purpose, Zhu et al. [10] proposed the so-called cycle-
consistency loss, which measures the pixel distance between
the input image and the reconstructed image. However,
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FIGURE 1. Description of each US image. Each US image has its own
strengths.

cycle-consistency loss may increase training costs because it
requires two generators. In addition, cycle-consistency loss
has limitations in preserving local details because it receives
the entire image as input. To solve these problems, CUT [11]
adopted patch-wise contrastive learning, which canmaximize
content representation between the same spatial regions with
only a single generator. This feature representation scheme is
learned through contrastive learning between latent features
of the source and translated images. Thus, CUT effectively
reduces training costs and improves generation performance
(i.e., content preservation) even in situations where there is
no clear ground truth (GT). However, conventional methods
still have difficulty in completely preserving the content and
translating the texture, and only focus on natural images.
Therefore, it is realistically hard to directly apply them to
US I2I task, which requires translation of fine texture while
preserving organ structure.

Specifically, let’s look at the limitations of conventional
techniques in terms of content preservation and texture
translation. Generally, conventional techniques map the input
image to latent space through an encoder and then attempt
translation to the target domain. At this time, the attributes
(i.e., content and texture) are entangled in the encoded
latent feature [12], [13]. So, if we decode the latent features
directly into the target domain, not only relevant attributes
(i.e., texture) can be translated, but even irrelevant attributes
(i.e., content) can be changed [14], [15]. Such a change can
lead to damage to fine organ structures during the US I2I
process, and it is difficult to translate targeting only relevant
attributes, resulting in qualitative limitations in terms of
texture expression. Therefore, this paper defines the ultimate
goal of US I2I as disentangling only relevant attributes and
mapping them to the target domain.

We present US image-specific generative adversarial
networks (US-GAN) that can effectively translate fine
textures while preserving the various contents of US images.
In detail, we propose feature decomposition that can
explicitly separate content and texture in latent space. The
proposed feature decomposition scheme normalizes modules

through representation learning that takes into account the
consistent characteristics (i.e., similar texture) that only
US images have. As a result, effective US I2I is realized
through translation targeting only texture features and reuse
of pre-separated content features.

Additionally, we combine patch-wise contrastive learn-
ing [11] with a query selection scheme that can further
improve the effect of content preservation [16]. Note that a
region with a prominent local structure needs to be selected
as a query in that it provides information that the query must
preserve for patch-wise contrastive learning. For this purpose,
we measure self-similarity between patches within the source
latent feature and select the latent feature in the region
containing the local structure as a query. This query selection
scheme, along with the feature decomposition scheme
mentioned above, shows amazing preservation performance
of detailed structures.

Contributions of this paper are as follows:
• We propose a framework specialized for US I2I and

a learning scheme for it. The proposed method guarantees
better qualitative and quantitative performance than existing
techniques.

• We propose a learning scheme that can explicitly
decompose content and texture features in latent space
through contrastive learning that takes into account the
consistent characteristics of US images. Since the proposed
feature decomposition scheme was designed considering
unique pattern(s) that US images in a mini-batch have in
common, it not only successfully translates fine textures but
also preserves the contents well.

• To preserve the detail structure contained in US images,
we propose a novel query selection scheme that can improve
the effectiveness of existing patch-wise contrastive learning.
It was experimentally proven that the combination of
patch-wise contrastive learning and query selection scheme
is effective in terms of preserving detail structures.

II. RELATED WORKS
A. IMAGE-TO-IMAGE TRANSLATION
Image-to-image translation (I2I) is classified into paired I2I
and unpaired I2I according to data structure. First, paired
I2I refers to a task for which GT is clearly defined when
mapping (X → Y) from source domain X to target domain
Y . Pix2pix [17] is the first case of realizing paired I2I by
adding an L1 regularization term between translated image
and GT to the existing GAN loss. In addition, Pix2pix-
HD [18] overcame the limitation of not being able to express
detailed texture in high resolution image translation by using
two generators, i.e., global generator and local generator.
Furthermore, Kim and Cho [19] alleviated the problem
of existing techniques in which boundaries are translated
unclearly through comparison between high frequencies in
the frequency domain. However, since matching data pairs
between domains is a difficult task in most configurations,
I2I for unpaired configurations can be regarded as more
desirable.
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Early unpaired I2I [10], [20] focused on pixel level
constraint using reconstructed images. They learn X →

G1
Y

and Y →
G2

X using two generators G1 and G2. And the

process of X →
G1
Y →

G2
X ′ gives the model a regularization

effect for content preservation by measuring the pixel-wise
distance between X and X ′. However, this approach not only
increases training costs, but also has the disadvantage that
the pixel-wise distance does not reflect the spatial structure
of a specific area. To alleviate this problem, Park et al. [11]
first applied patch-wise contrastive learning to an unpaired
I2I task. This patch-wise contrastive learning aimed to
preserve the same structural information between input and
translated images in pixel space by using the same channel
instances of latent features. This learning scheme inspired
subsequent studies. For example, F-LSeSim [21] used an
auxiliary encoder to extract regions with high self-similarity
and performed patch-wise contrastive learning using them.
Furthermore, in the most recent study, i.e., Qs-attn [16],
a model was designed to measure self-similarity using only
the existing encoder, and a learning scheme in which regions
containing important structural information are selected as
queries by introducing an attentionmechanismwas proposed.
It is true that the previous studies have alleviated existing
problems to some extent. However, they still show limitations
in both texture translation and content preservation because
they do not consider attribute entanglement issues.

B. DISENTANGLED REPRESENTATION IN THE LATENT
SPACE
The goal of disentangled representation learning is to identify
and generate explanatory factors in latent space. This learning
scheme achieves feature disentanglement within the model
through a parametric module or at the loss stage. In particular,
in the latter case, many vision tasks were solved using
various metrics (e.g., Wasserstein, mean discrepancy etc.)
or self-supervised learning schemes [22], [23]. In addition,
the video-driven generation task focuses on the consistent
characteristics of the input data to generate positive and
negative sample(s) and achieves the above-mentioned goal
through contrastive learning using them. For example,
Behramann et al. [24] encoded stationary features (i.e., sub-
ject’s identity) and non-stationary features (e.g., motion)
separately, and achieved successful disentangled representa-
tion through self-supervised learning using the two features.
Furthermore, Tulyakov et al. [25] used two discriminators
(video discriminator and image discriminator) to explicitly
separate the face identity component that appears the same for
each frame from the facial expression component that appears
differently, and then proposed a method to manipulate them
independently. Inspired by this learning scheme, we devise
a module that can explicitly separate the attributes (i.e.,
texture) that US images in a mini-batch typically have and
the objective for learning the module. Finally, we design an
attribute-wise disentangled representation based on them.

FIGURE 2. Examples of positive and negative samples. Z+ is a positive
sample and Z−,(n) is a negative sample. Here, n is the index of
augmentation method: 1) rotation, 2) vertical flip, 3) Gaussian blur,
4) perspective transformation, and 5) adding speckle noise. Please zoom
in on the figure to check the Gaussian blur and speckle noise.

III. PRELIMINARIES
This section defines problem(s) arising from conventional I2I
and presents an objective for performing feature decomposi-
tion in latent space.

A. PROBLEM DEFINITION
This paper aims to translate source style image x to target
style image x̃ through generator G. The detailed translation
process is described as follows: z = E(x) → x̃ = D(z),
whereE andD are the encoder and decoder ofG, respectively.
Here, the latent feature z of x can be subdivided into texture
feature zt and content feature zc (∴ z :=

{
zt , zc

}
). Therefore,

directly translating through x̃ = D(z) may cause the following
problem:

Problem 1. When x̃ is generated through D(z), zt as well as
zc are affected. So, transformationmay occur in both features.
In other words, the feature representation that should be
required in the translated image x̃ is

{
z̃t , zc

}
, but the image

corresponding to
{
z̃t , z̃c

}
can be produced.

According to Problem 1, a model that fails to target
only zt not only cannot translate the fine textures, but also
cannot preserve content because even zc is manipulated.
Therefore, if zt and zc are explicitly separated in latent space
and only zt is translated through an independent translation
module, we will be able to translate up to fine textures while
preserving the content. Thus, we pursue this strategy.
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FIGURE 3. Overview of the proposed US-GAN: The weights of the encoder and decomposition modules of each path are shared. In the testing phase,
only the central path is used.

B. DEFINING THE OBJECTIVE FOR TEXTURE-AWARE
DECOMPOSITION
We employ contrastive loss [26], which is often used in
self-supervised learning, for explicit feature separation in
latent space. The contrastive loss functions to regularize the
model based on the similarity between the original feature
(i.e., anchor) and positive/negative example(s). Because the
consistent characteristics of domain X are reflected in the
original feature set Z of input image X composed of
mini-batch units, its aggregation Z+ can be considered
a positive example. Additionally, augmentation techniques
(e.g., Gaussian blur) that can cause visible transformation
of the target attribute form a distribution that is different
from the original. Thus, the aggregation Z− of features
extracted from augmented images can be considered a
negative example [27] (see Fig. 2). This learning method has
already been proven to be good at distribution learning in
self-supervised learning without labels [25], [28]. Therefore,
a contrastive objective using anchor z (∈ Z) and candidate
set N :=

{
Z−,(n)

|n ∈ {1, · · · ,N }
}

∪
{
Z+

}
is designed as

follows:

sup
f ∈F

EN
[
log

(
exp(f (z,Z+))∑
z∈N exp(f (z, z))

)]
, (1)

where f is a similarity function such as cosine similarity.
Therefore, by maximizing the similiarity of z and Z+, the
model can learn the characteristics of the target attribute.
We aim to achieve successful feature decomposition by using
only zt as input to the contrastive objective.

IV. PROPOSED METHODS
As seen in the inference path of Figure 3, the proposed
ultrasound image-to-image translation (shortly, US I2I)
consists of the following five processes: 1) Extract latent
feature z(∈ Z) of input image x through encoder E , and
2) separate z into

{
zt , zc

}
using the feature decomposition

module, and 3) perform zt → z̃t using the translation module,
and 4) integrate

{
z̃t , zc

}
into z̃ using the aggregator, and

5) generate target style image x̃ using decoder D. Here,
E and D are convolutional neural networks (CNNs), the
decomposition and translation module is an MLP consisting
of a linear layer and LeakyReLU, and the aggregator is
a linear layer. In addition, since there is mapping to the
target domain before decoding using a translation module,
D is intended for simple up-scaling rather than generating
a target domain image through transposed convolution. The
next sections analyze in detail the learning schemes to realize
fine texture translation and content preservation through the
proposed US I2I framework.

A. SELF-SUPERVISED LEARNING FOR FEATURE
DECOMPOSITION
The proposed feature decomposition module is designed to
explicitly separate consistent characteristics (i.e., texture) and
inconsistent characteristics (i.e., content) of US images (see
the top path of Figure 3 for more visual details). To this end,
the feature decomposition module is optimized by contrastive
loss taking as input latent features of the input mini-batch X
(⊂ X ) and augmented images Xaug.
First, augmented images for producing negative examples

are generated using the following five functions: Rotation,
vertical flip, Gaussian blur, perspective transformation, and
adding speckle noise (see the examples of augmented images
in Figure 2). And, the features for X and Xaug are extracted
through E as follows (① of Figure 3):

Z = E(X ), Z (i)
aug = E(X (i)

aug), i ∈ {1, · · · , I } , (2)

where i indicates the index for each augmentation function,
and I is 5. Then, the decomposition module 1 separates Z
and Zaug into texture and content features (refer to ② of
Fig. 3):

1(Z) =
{
Z t ,Zc} , 1(Z (i)

aug) =

{
Z t,(i)
aug ,Zc,(i)

aug

}
, (3)

whereZ t andZc refer to texture and content features, respec-
tively. The consistent features of Z t and Z t,(i) separated by
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Eq. 3 are represented through the following process:

9 t
= A(Z t ), 9

t,(i)
= A(Z t,(i)

aug ), (4)

where A(·) refers to the aggregation function, and sum
was used as the aggregation function. According to the
interpretation of Sec. III-B, 9 t and 9

t,(i)
by Eq. 4 can be

regarded as positive and negative examples respectively in
terms of texture. Finally, we optimize the module using Eq. 1
designed in Sec. III-B for feature decomposition:

Ldecom = −EN

[
log

(
exp(f (zt , 9 t ))∑

9
t
∈N exp(f (zt , 9

t
))

)]
, (5)

where zt is a feature randomly sampled from Z t , and
N is

{
9
t,(i)

|i ∈ {1, · · · , I }
}

∪
{
9 t
}
. Also, f (·) means

cosine similarity. Therefore, according to Eq. 5, the feature
decomposition module can learn attribute-wise disentangled
representation in latent space. Since translation is performed
by targeting only zt , it becomes possible to express fine
textures of US images in pixel space. Additionally, thanks to
the reuse of zc, the content features of the input image can
be preserved, which helps preserve organ structures at the
pixel level. A more detailed explanation will be available in
Sec. V-D.

B. QUERY SELECTION-BASED CONTRASTIVE LEARNING
With explicit separation of zc, we introduce the
attention-based learning scheme of the latest research, i.e.,
Qs-att [16], as a regularization term to maximize the effect
of content preservation (see the bottom path of Figure 3 for
more visual details). The objective of Qs-attn was designed
based on CUT [11]. The basic loss function composition is
as follows:

Lqs = − log

[
exp (q · k+/τ )

exp (q · k+/τ ) +
∑N−1

i=1 exp (q · k−,(i)/τ )

]
,

(6)

where q, k+, and k−,(i) mean query, positive, and negative,
respectively. Among them, q is a standard factor for content
preservation, and Qs-attn focuses on the selection of q.
If the spatial region corresponding to the background of
the US image is selected as q, the function of the target
objective (i.e., content preservation) cannot operate correctly.
Therefore, we try to boost the effect of content preservation
by adopting a q selection scheme based on self-attention [29]
and information theory (i.e., shannon entropy) [30].
Revisiting for Qs-Attn Objective: q selection aims to define

a quantitative value that reflects the importance of features
per spatial region. To this end, query Q, key K , and value V
are defined by latent feature z ∈ RH×W×C for x (by using ①
in the Fig. 3) (Here, Q,K,V ∈ RHW×C ). Then, the attention
matrix is obtained by the following equation:

A = softmax(Q · K), A ∈ RHW×HW , (7)

where softmax(·) is calculated in the row direction. Here, each
row of A contains information of the same location in the
spatial region because it was measured with instances of the
same channel. Then, importance for each row is computed
according to the following equation:

H(i) = −

HW∑
j=1

A(i, j) logA(i, j), (8)

where i and j refer to the row and column of A, respectively.
According to Eq. 8, the closer H(i) is to 0, the fewer K
positions in the i-th row are judged to be similar to the
ith Q. So, by sorting H(i) in ascending order and selecting
the smallest N rows as q-selection matrix Aqs ∈ RN×HW ,
query candidates and keys (i.e., positive and negatives) can be
chosenwithin the texture region. As a result, query candidates
and keys (i.e., positive and negatives) are selected within
the area with the texture. Finally, the input of Lqs, i.e., q
and k :=

{
k+
}

∪
{
k−,(i)

|i ∈ {1, · · · ,N − 1}
}
are defined as

follows:

q = head(Aqs · V̂ ), k = head(Aqs · V ), (9)

where since q must be selected within the translated image,
the translated value obtained through ẑ ∈ RH×W×C , the latent
feature, is used. Additionally, head(·) plays a role in mapping
q and k to a low-dimensional space for effective contrastive
learning. Further, we use ẑ = E(x̃) instead of the output of 1,
i.e., z̃ (after ④ in Fig. 3) for regularization of D (⑤ in Fig. 3)
(see Fig. 3, ⑤ → ① ).

C. OVERALL OBJECTIVES AND TRAINING PROCEDURE
The final objective function is defined as follows:

L = Ladv + λdecomLdecom + λqsLqs, (10)

where Ladv is the loss function of LSGAN [31] for
discriminative learning. In this paper, Ladv is designed using
the PatchGAN discriminator [32], which is effective in fine
texture translation. Note that Ladv is the main loss function
for texture translation, the target objective of I2I. Meanwhile,
since Ldecom provides the model with the opportunity
to learn disentangled representations by self-supervising
disentangled features (i.e., texture features, Z t and Z t

aug),
it can boost the effectiveness of Ladv. Therefore, Eq. 10 is
an objective function specialized for fine texture translation
and content preservation.

V. EXPERIMENTS
A. DATASETS AND CONFIGURATIONS
We use two datasets to learn US I2I over two domains.
Two datasets consisted of 3000 images as a training set and
800 images as a validation set. Additionally, the original
resolution of the images was 1024 × 1024, and was resized
to 256 × 256 for the experiment.

• Style A domain are abdominal ultrasound (US) images
acquired by an equipment of a specific A company (see
Fig. 4 (a)). The advantage of style A domain is that it has
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FIGURE 4. Visual reference of each style domain. Cropped images clearly represent the characteristics of each domain.

an overall uniform signal. However, images in this domain
have the disadvantage of low lateral resolution. Here, lateral
resolution refers to the minimum distance that can separately
distinguish two adjacent structures (cells in US images) in the
horizontal direction within an image. Therefore, the lower the
lateral resolution, the longer the cell length, which makes it
impossible to clearly separate two adjacent organ structures.

• Style B domain are abdominal US images acquired
from equipment of a specific B company (see Fig. 4 (b)).
Style B domain has the advantage of high lateral resolution.
Because the cell length is short, the distinction between
adjacent structures is clear. Additionally, images in the B
domain have high contrast. This is an advantage in terms
of contour detection, which can improve the accuracy of
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FIGURE 5. Visual quality comparison with the other methods. For each method, the input image (style A) is translated into the style B domain.
Target ref. refers to the reference image of the style B domain and was used for texture comparison with translated images.
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FIGURE 6. Detailed qualitative results for the proposed method. Red
dotted boxes (i.e., (a), (b), (e), and (f )) represent regions containing
content (particularly complex organ structures), while blue dotted boxes
(i.e., (c), (d ), (g), and (h)) represent regions where texture is expressed in
bulk.

TABLE 1. Quantitative comparison with other methods. Bold and
underlined indicate the first and second place performances, respectively.

diagnosis. However, it has the disadvantage of having sparse
signals than the A domain.

Additionally, we utilize the BraTS dataset [33] to measure
the generalization performance of the proposed method.
The training dataset and test dataset consist of 8457 and
979 images, respectively. This dataset includes T1 and T2
MRI images, and we aim to perform translation from T1 to
T2. The images are provided at a resolution of 256 × 256.
Implementation Details. PyTorch library [34] was used

to implement the proposed model. Computing for learning
was done on AMD EPYC 7413 CPU and NVIDIA RTX
A6000 GPU. The parameters of convolutional and FC
layers were updated through Adam optimizer [35] with
learning rate (LR) 10−4. Additionally, the Adam optimizer
performs weight decay through L2 regularization of 10−4.
The mini-batch size used for learning was set to 8. Finally,
τ in Eq. 6 is 0.07 and λdecom and λqs in Eq. 10 were set to
0.5 and 10, respectively.

B. EVALUATION SETTINGS
1) BASELINE METHODS
We compare the proposed method with the following four
techniques to prove its superior quantitative and qualitative
performance: CycleGAN [10], CUT [11], F-LSeSim [21],
and Qs-attn [16]. Here, F-LSeSim is FSeSim trained with
only a single encoder, and only the Global attention method
is used in Qs-attn.

2) EVALUATION METRICS
To evaluate the similarity between target images and trans-
lated images, Fréchet Identity Distance (FID) [36] was used.
Since FID is measured using the Inception-V3 [37] model
pre-trained with ImageNet [38], we use images expanded to
3 channels (RGB). In addition, Structural Similarity Index
Map (SSIM) was adopted to quantify content preservation
between target images and translated images. SSIM has a
range of [−1, 1], and the closer it is to 1, the better the
structure (i.e., content) preservation performance. Note that
the calculation of SSIM involves not only the structure of
the image but also luminance and contrast. So, we conduct
experiments assuming the situation of StyleB −→

E,D
StyleB

to ensure a fair comparison of techniques solely in terms
of content preservation. Lastly, Root Mean Square Contrast
(RMSC) [39] was used to measure the contrast of the region
where the texture is distributed (i.e., inside the convex) in the
US image. RMSC is defined by

√
1
MN

∑M
i=1

∑N
j=1(Lij − L̄)2.

Here, Lij is the pixel intensity, L̄ is the average intensity of the
image, and M x N are the image size. Since the convex size
cannot be defined in terms of M and N , we use CenterCrop
images with a size of 128×128 in the experiment.We assume
that RMSC will allow us to determine the general contrast
level inside the convex.

C. VERIFICATION OF THE PROPOSED METHOD
This section compares the qualitative and quantitative
performance of the proposed method and baselines.

1) QUALITATIVE RESULTS
Fig. 5 shows the results of translating input images to the
target domain (style B) using each technique. We can observe
that the proposed US-GAN well expressed the texture of the
B domain while preserving the content of input images in US
I2I, which requires fine texture translation, a relatively high-
level task. On the other hand, compared to US-GAN, other
techniques show qualitatively poor results (see Fig. 6). Also,
US-GAN maintains the shape well when regions containing
complex organ structures are translated (see (a)→(b) and
(e)→(f ) in Fig. 6). Additionally, from (d) and (h) in Fig. 6,
we can see that the proposed method can translate the texture
of the target domain in terms of lateral resolution.

2) QUANTITATIVE RESULTS
Table 1 shows that US-GAN shows excellent performance
in terms of fine texture translation and content preservation.
Based on FID, US-GAN shows a gap of up to 151 compared
to other techniques. This supports the fact that US-GAN is
superior to other techniques in terms of texture expression
of domain B in most outputs. Additionally, US-GAN shows
a high SSIM of 0.73. US-GAN has outstanding content
preservation performance in that SSIM is used as a measure
of structural preservation of the original image. This is
very important due to the nature of US I2I, in which
organ structures must not change. In particular, the validity
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FIGURE 7. Qualitative comparison according to the application of each learning scheme. The structures represented in the blue circle are vessels.
And the red dotted box indicates the part where the texture is expressed the most.

TABLE 2. Ablation study results. Except for the decomposition method
and losses, other configurations remained the same. Here, baseline refers
to a model trained with only ‘‘discriminative learning using PatchGAN
discriminator’’ in Fig. 2. Bold and underlined indicate the first and second
place performances, respectively.

of selecting Lqs as the regularization term for content
preservation is verified because the SSIM of Qs-attn is only
0.60. Lastly, the RMSC of the proposed method was 34.3,
which is up to 10.3 higher than that of other techniques. This
is interpreted as the output images of US-GAN having overall
high contrast, which can be regarded as the excellent texture
translation performance of the proposed method.

D. ABLATION STUDIES
1) EFFECTIVENESS OF EACH LEARNING SCHEME
This section observes performance depending on whether
US-GAN’s core components (i.e., feature decomposition and
query selection-based contrastive learning) are applied or
not. First, let’s look at the qualitative performance depending
on whether each component is applied or not. (c)-(e) in
Fig. 7 is the result. (c) is the result without applying query
selection-based contrastive loss Lqs. Since the goal of Lqs is
to boost the content preservation effect of the input image,
it is observed that the organ structure inside the blue circle of
(c) is not preserved well. However, because texture-focused
translation was possible through feature decomposition,
the style of the B domain is well expressed in the crop

image. On the other hand, in the case of (d) where feature
decomposition is not applied, many cells with low lateral
resolution are observed in the crop image. From (c) and (d),
we can qualitatively examine that feature decomposition and
application of Lqs operate so that they meet our purpose.
Similar trend is also observed in (e).

The preceding qualitative analysis is linked to the results
in Table 2. From (c) of Fig. 7, we have already qualitatively
confirmed that Lqs can boost content preservation perfor-
mance. This is quantitatively re-confirmed in the second
row of Table 2. The SSIM of the second row where Lqs
is applied shows a difference of up to 0.47 compared
to the SSIM of the baseline. Additionally, from (d) in
Fig. 7, we confirmed that the proposed feature decomposition
greatly contributes to fine texture translation. FID and RMSC
performances support this. FID of the third row where feature
decomposition was applied is as low as 65 compared to the
baseline. Additionally, it is also worth noting that RMSC is
6.8 higher than the baseline in terms of contrast, which is one
of the textures in the B domain. Lastly, the performance of the
last row where both are applied shows the best performance
across all metrics.

2) ADDITIONAL VERIFICATION
In order to assess the generalization performance of
US-GAN, we use an open-access dataset [33]. Fig. 8
illustrates the results of translating T1 MRI images into T2
MRI images. The primary difference between T1 and T2 is
the inversion of brightness, which is well-preserved in the
results by US-GAN while maintaining the original structure
of the input images. Furthermore, considering the crucial role
of contrast enhancement in tumor detection, our results are
remarkable.
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FIGURE 8. Additional qualitative results on MRI-dataset.

TABLE 3. Quantitative comparison on MRI dataset. Bold and underlined
indicate the first and second place performances, respectively.

We substantiate the generalization performance of qualita-
tive results through a quantitative comparison using various
metrics. Tab. 3 presents the quantitative results for BraTS.
The FID score is 38 lower compared to CycleGAN. SSIM and
RMSC values are respectively 0.21 and 14.0 higher than the
lowest rank. Notably, the RMSC result indicates a significant
improvement over the others in ultrasound images. These
findings signify that the proposed method shows superior
generalization not only in representation ability for the target
domain but also in terms of content preservation compared
to the baseline methods. Ultimately, it can be interpreted that
the proposed feature decomposition and contrastive learning
can yield excellent results across various transformations in
medical image domain.

VI. CONCLUSION AND OTHER REMARKS
A. CONCLUSION
To successfully realize content preservation and fine texture
translation, which are very important factors in ultrasound
image-to-image translation (shortly, US I2I), we propose
a novel US I2I framework that separates texture features
and content features in latent space. Specifically, positive
and negative example(s) are generated through multiple
augmentations that have a visible effect on the texture, and
a decomposition module trained with a famous contrastive
objective successfully separates texture and content features.
The excellence of the proposed method was experimentally
verified through quantitative and qualitative performance

analysis. The proposed method will be a great inspiration
for future research in US I2I field in that it has succeeded
in expressing fine cells while maintaining complex organ
structures.

B. POTENTIAL SOCIETAL IMPACTS
The fact that US I2I can acquire images of various styles
through one device will be of great help to the development of
the medical field. For example, to diagnose a specific disease,
style B may be a better option than A. However, despite this
benefit, indiscriminate acquisition and modification of US
images is fatal to patients’ privacy. Therefore, in order for US
I2I technology to be studied stably, the ethical awareness of
engineers and researchers must be fostered.
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