
Received 11 February 2024, accepted 19 April 2024, date of publication 22 May 2024, date of current version 31 May 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3403924

YARS-PG: Property Graphs Representation for
Publication and Exchange
ŁUKASZ SZEREMETA 1, DOMINIK TOMASZUK 1,2, AND RENZO ANGLES 3
1Department of Computer Science, University of Bialystok, 15-245 Białystok, Poland
2Databases and Artificial Intelligence, Technischen Universität Wien, 1040 Vienna, Austria
3Department of Computer Science, Faculty of Engineering, Universidad de Talca, Curicó 3340000, Chile

Corresponding author: Łukasz Szeremeta (l.szeremeta@uwb.edu.pl)

The work of Renzo Angles was supported by ANID FONDECYT Chile under Grant 1221727.

ABSTRACT Graph serialization is a critical aspect of advancing graph-oriented systems and applications.
Despite the importance of standardized serialization for property graphs, there is a lack of a universal
format encompassing all essential features of graph database systems. This study introduces YARS-PG,
a simple, extensible, and platform-independent serialization format tailored for property graphs. YARS-PG
supports all the features permitted by current property graph-based database systems and is compatible with
other graph-oriented databases and tools. We delineate the design requirements of YARS-PG by detailing
both functional and non-functional aspects. Besides the basic features of property graph data, YARS-PG
supports schema definition, metadata, metaproperties, variables, and graph definitions.Moreover, we discuss
extensions of YARS-PG, demonstrating its flexibility through canonicalization techniques. Our comparative
analyses with existing formats provide valuable insights, emphasizing the unique strengths that distinguish
YARS-PG in the realm of graph data interchange. This paper serves as a definitive guide to YARS-PG,
unraveling its complexities and showcasing its potential as a communication protocol, a data storage format,
and a messaging specification.

INDEX TERMS Data models, data processing, data structures, database systems, metadata, NoSQL
databases, databases.

I. INTRODUCTION
Data serialization is important in data management as it
allows for database exchange, systems benchmarking, data
visualization, and data presentation. More specifically, data
serialization simplifies translation into other data formats,
enables automatic data processing, facilitates the comparison
of databases (because the same data can be shared between
systems), enables the interoperability of heterogeneous
databases, and results in a simpler backupmethod. Therefore,
graph serialization is a critical aspect of the advancement of
database systems and applications.

In the context of graph data management, there exists no
standard data format that encompasses the essential features
of graph databases. Hence, this paper endeavors to bridge this
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gap by introducing YARS-PG, a data format for serializing
property graph databases.

Property graph databases present unique challenges for
data serialization as they allow diverse and complex data
structures. Hence, YARS-PG stands out as a versatile
and efficient computer data interchange format specifically
designed to facilitate the serialization and deserialization of
complex data. This data format is adept at converting intricate
objects into streamlined sequences of bits, making it an
ideal choice for both persistent data storage and as a wire
format for client-service communication. Its cross-platform
compatibility ensures seamless data exchange, which is
particularly beneficial in networked environments.

The remainder of this article is organized as follows:
In Section II, we present the design requirements of
YARS-PG, establishing the criteria and parameters that
guided its development. In Section III, we formalize the
basic concepts associated with property graph databases.
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In Section IV, we describe all the components of YARS-PG.
In Section V, we describe the process of exporting a property
graph database into a YARS-PG data file. In Section VI,
we explore extensions of YARS-PG. In SectionVII, we assess
the effectiveness and performance of YARS-PG. Finally,
in Section VIII, we present conclusions, insights, and future
research.

II. DESIGN REQUIREMENTS
In this section, we elaborate on the design requirements for a
suitable data format for property graphs. These requirements
are compatible with SQL/PGQ [1] and GQL [2], two ISO
standards followed by current database technologies.

A. DATA FORMATS FOR PROPERTY GRAPHS
In this section we review the available data formats for
serializing property graphs. Such formats are divided into
four groups: XML-based, JSON-based, tabular-based, and
text-based data formats.

1) XML-BASED DATA FORMATS
In this group are GEXF, GraphML, DotML, DGML and
GXL. Graph Exchange XML Format (GEXF) [3] was
specifically designed to be used with Gephi, a network
analysis and visualization software. GEXF serves as a
serialization method for defining intricate network elements
like nodes, edges, properties, hierarchies, and associated
data. However, it does not support multi-labels for nodes.
GraphML [4] is a widely used data format which facilitates
properties for nodes and edges, sub-graphs, hierarchical
graphs, and hyperedges. However, it does not support null
values nor multi-labels. Dot Markup Language (DotML) [5]
is a data format developed along with Graphviz, a graph
visualization software. Although it supports the serialization
of different types of graphs, it has restrictions for encoding
property graphs. Directed Graph Markup Language (DGML)
[6] supports cyclical and acyclic-directed graphs but with
several limitations. Graph Exchange Language (GXL) [7] is
used for data interoperability between reverse engineering
tools, such as parsers and other tools. It is similar to GraphML
and also lacks support for multi-labels.

2) JSON-BASED DATA FORMATS
This group includes to GraphSON TinkerPop 2, GraphSON
TinkerPop 3 and JGF. GraphSON is a part of TinkerPop,
the open-source graph computing framework, which has
its implementations for many databases. In contrast to
GraphSON TinkerPop 2 [8], the latest version of this format
supports multiple labels for nodes, although these labels
must be unique. GraphSON TinkerPop 3 [9] has partial
support for defining several values for one key. Both versions
handle properties but do not support undirected edges. It is
worth noting that GraphSON TinkerPop 3 is not backward
compatible. Another JSON-based format, JGF [10], lacks
support for properties and multiple labels.

3) TABULAR-BASED DATA FORMATS
In this group are GUESS GDF, Pajek NET, Netdraw VNA
and pure CSV. GUESS GDF [11] is related to the GUESS
tool used for exploring and visualizing graphs. It has a
CSV-like structure and separates blocks of vertex and edge
declarations. Its syntax is basic and lacks support for
multiple values and properties. Pajek NET [12] supports
multiple labels for nodes and undirected edges, but it is not
possible to encode properties for edges. Netdraw VNA [13]
supports properties and multiple edges with the same label.
Unique labels are required for nodes, and column values are
separated by whitespaces. Unfortunately, it does not support
multi-values and multiple labels. Pure CSV format [14] is
supported by current graph database systems (e.g. Neo4j,
OrientDB, TigerGraph and Memgraph). It supports tables
with columns that can be mapped to different graph structures
in different ways. However, its use is system-dependent.

4) TEXT-BASED DATA FORMATS
This group includes to GML, GraphViz DOT, UCINET DL,
Tulip TLP, S-Dot, and TGF. Graph Modelling Language
(GML) [15] is a structure based on key-value lists that can be
nested. Unfortunately, GML does not support multi-values.
Graphviz DOT [16] is a data format used in various fields
as it allows data collection and stylization of graphs. The
drawback of this format is the lack of multigraph support.
UCINET DL [17] is a data format based on matrices and
lists. It is unable to use multi-values. Tulip TLP [18] has a
structure based on round brackets. It allows for collecting
data and stylizing the graph. S-Dot [19] is similar to the
DotML format. Unfortunately, this format does not support
properties. TGF [20] is extremely simple and supports only
labels.

B. FUNCTIONAL REQUIREMENTS
In order to define a list of functional requirements (FRs) for
YARS-PG, we conducted two tasks: (1) we created a lattice of
data models related to property graphs (Figure 1); and (2) we
evaluated the property graph features supported by current
graph database systems (Table 1). Based on these inputs,
we defined the following functional requirements:

FR1 Nodes: The data format must provide a way to
represent nodes in a graph. A node represents an
entity and must have a unique identifier within the
graph.

FR2 Edges: The data format must provide a way to
represent edges in a graph. An edge represents a
relationship between nodes, and it could have an
identifier.

FR3 Labels for nodes: The data format must support labels
for nodes. A node label provides a way to categorize
a node within the graph based on its type or purpose.

FR4 Labels for edges: The data format must support labels
for edges. An edge label provides a way to categorize
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a relationship, allowing users to differentiate between
different types of connections.

FR5 Properties for nodes: The data format must allow
users to attach properties to nodes. A node property
has both a name and a value.

FR6 Properties for edges: The format must allow users to
attach properties to edges. An edge property has both
a name and a value.

FR7 Types of edges. The data format must support
directed and undirected edges.

FR8 Types of property values. The data format must
support the representation of single-value properties,
multi-value properties and null-value-properties.

FR9 Schemas: The data format should support the organi-
zation of data as a blueprint of how the data format is
constructed.

FR10 Metadata representation: The data format should
incorporate a mechanism for embedding metadata
in properties. This feature enables additional con-
textual information about the properties, such as
creation date, authorship, and role. For instance,
given a node labeled as PERSON with a property
birthDate:“1983-03-31”, it should be possi-
ble to annotate this property with metadata indicating
that it was added on 2024-01-10 by a user named
editor1 fulfilling the role of writer.

FR11 Complex datatypes: The data format should support
composite or compound data types. These sophis-
ticated data structures can be assembled from both
primitive data types and other composite types. This
ability is crucial for representing complex data in a
more structured and hierarchical manner.

FR12 Reusing fragments: The data format should define a
variable as a named container designated for storing
specific data values. This concept is pivotal for
assigning and retrieving data efficiently within the
format. Additionally, the format must support the
capability to be used multiple times and from various
data structure segments.

C. NON-FUNCTIONAL REQUIREMENTS
In this section, we outline the non-functional requirements
(NFRs) for YARS-PG, i.e. quality attributes that guided the
design of the data format. Additionally, we also defined a
criterion for measuring each NFR, using metrics that are
categorized into two groups: discrete metrics and continuous
metrics. Each metric falls within the range of 0 to 1. The
evaluation of a data format should be conducted within the
context of a property graph data model.

We distinguish four NFRs:

NFR1 Descriptiveness: YARS-PG must support metadata.
NFR2 Well-definedness: YARS-PG must support a formal

syntax description.
NFR3 Flexibility: YARS-PG must allow encoding data

portions in different ways.

FIGURE 1. Lattice of data models related with property graphs.

NFR4 Expressiveness: YARS-PG must support syntactic
elements to express different conceptual elements.

III. PROPERTY GRAPH DATABASES
This section serves as a foundational introduction to the
notion of property graph databases. First, we explain basic
concepts by using a running example. Then, we present
formal definitions for property graphs and property graph
schemas.

A. RUNNING EXAMPLE
A property graph is a directed labeled multigraph where
nodes and edges could have a set of properties, each
represented as a label-value pair. The primary components
of a property graph are nodes, edges, and properties. The
secondary components are labels (for nodes, edges, and
properties) and data types for property values.

Figure 2 presents a graphical representation of a property
graph modeling bibliographic information. Nodes are drawn
as ellipses, edges as arrows, node labels are drawn inside
squares, edge labels occur as floating strings close to the
arrows, and properties are drawn as expressions of the form
label:value. In terms of data modeling, nodes are used to
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TABLE 1. Property graph features supported by current graph database systems.

represent entities (like authors, bibliographic entries, venues,
and journals), edges represent relations between entities,
labels can be considered as entity types (e.g., author) or
relation types (e.g., has_author), and properties represent
specific attributes for entities and relations (e.g., the order
of an author in an article).

The Entry with the InProceedings label is a con-
ference paper with a title beginning with Serialization
for..., comprises 10 pages, and is associated with
the Graph database keyword. This paper is part of
proceedings titled BDAS, dated May 2018. It is authored by
John Smith, who is indicated as the first author by the order
property on the has_author edge.
The Entry with the Article label is a journal article

titled Property Graph..., also comprising 10 pages,
and tagged with the keywords Query and Graph. This
article is published in the Journal named J. DB, year
2020, volume 30, and has a citation index value (if 4.321)
provided by Clarivate Analytics. Alice Brown is the sole
author of this article, as indicated by the order property on
the has_author edge.
The graph structure also contains a citation relationship,

where theArticle entry cites theInProceedings entry.
This relationship is depicted by the cites edge connecting
the two publication nodes.

B. PROPERTY GRAPH (FORMAL DEFINITION)
Assume that L is an infinite set of labels, V is an infinite set
of atomic values, and T is a finite set of data types (e.g.,
integer). Assume that for each value v ∈ V, the function

type(v) :V→ T returns the data type of v. The values inVwill
be distinguished as quoted strings. Given a set X , we assume
that SET+(X ) is the set of all finite subsets of X , excluding
the empty set.
Definition 1: A property graph is a tuple G = (g, N , E , P,

gp, σ , λ, ρ, γ , δ) where:

1) N is a finite set of identifiers for nodes;
2) E is a finite set of identifiers for edges;
3) P is a finite set of identifiers for properties;
4) It applies that N , E and P are disjoint sets;
5) g ∈ L is the label of G;
6) gp : L ↛ V is a partial function that defines a set of

properties which are specific to G;
7) σ : E → (N × N ) is a total function that associates

each edge with a pair of nodes;
8) λ : (N ∪ E) ↛ SET+(L) is a partial function

that associates each node/edge with a non-empty set of
labels;

9) ρ : P → L × V is a total function that associates each
property with a pair label-value.

10) γ : P × L ↛ V is a partial function that defines
meta-properties for properties;

11) δ : P ↛ (N ∪E ∪P) is a partial function that associates
each property with a node, edge, or property;

12) For each sequence of properties (p1, . . . , pn) where
δ(pk ) = pk−1 for 1 < k ≤ n, it applies that δ(p1) ∈

N ∪ E and pi ̸= pj.

We will use the term ‘‘object’’ to make reference to any
element in the set N ∪ E ∪ P. Given two nodes n1, n2 ∈ N
and an edge e ∈ E , such that σ (e) = (n1, n2), we will say that
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FIGURE 2. Example of property graph representing bibliographic information.

n1 and n2 are the ‘‘source node’’ and the ‘‘target node’’ of e
respectively. Given a property p with δ(p) = o and ρ(p) =

(l, v), we will use (o, l) = vi to denote that object o has a
property l with value v. Moreover, if there is γ (p, l) = v then
we will say that l is a ‘‘meta-property’’ of p.

Given two properties p1, p2 such that δ(p2) = p1, we say
that p2 is a ‘‘sub-property’’ of p1. Note that the definition of
δ allows multiple levels of sub-properties. However, a sub-
property belongs to a single property.

Following our formal definition, the property graph shown
in Figure 2 could be the tuple (g,N ,E,P, gp, σ, λ, ρ, γ, δ)
where:
g = Publications,
N = {n1, n2, n3, n4, n5, n6},
E = {e1, e2, e3, e4, e5, e6},
P = {p0, p1, p2, p3, p4, p5, p6},
gp(about) = “My publications...”,
λ(n1) = {Author},
ρ(p1) = (fname,“John”), δ(p1) = n1,
ρ(p2) = (lname,“Smith”), δ(p2) = n1,
λ(n2) = {Entry,InProceedings},
ρ(p3) = (title,“Serialization for ...”),

δ(p3) = n2,
ρ(p4) = (numpages,“10”), δ(p4) = n2,
ρ(p5) = (keyword,“Graph database”),

δ(p5) = n2,
λ(n3) = {Proceedings},
ρ(p6) = (title,“DBAS”), δ(p6) = n3,
ρ(p7) = (year,“2018”), δ(p7) = n3,
ρ(p8) = (month,“May”), δ(p8) = n3,
λ(n4) = {Author},
ρ(p9) = (fname,“Alice”), δ(p9) = n4,

ρ(p10) = (lname,“Brown”), δ(p10) = n4,
λ(n5) = {Entry,Article},
ρ(p11) = (title,“Property Graph ...”),

δ(p11) = n5,
ρ(p12) = (numpages, ‘‘10’’), δ(p12) = n5,
ρ(p13) = (keyword,[“Query”, “Graph”]),

δ(p13) = n5,
λ(n6) = {Journal},
ρ(p15) = (title,“J. DB”), δ(p15) = n6,
ρ(p16) = (year,“2020”), δ(p16) = n6,
ρ(p17) = (vol,“30”), δ(p17) = n6,
ρ(p18) = (if,“4.321”), δ(p18) = n6,
γ (p18,source) = “Clarivate”,
σ (e1) = (n2, n1), λ(e1) = {has_author},
ρ(p19) = (order,“1”), δ(p18) = e1,
σ (e2) = (n2, n3), λ(e2) = {booktitle},
ρ(p20) = (pages,“{start: 111, end: 121}”),

δ(p20) = e2,
σ (e3) = (n2, n4), λ(e3) = {has_author},
ρ(p21) = (order,“2”), δ(p21) = e3,
σ (e4) = (n5, n2), λ(e4) = {cites},
σ (e5) = (n5, n4), λ(e5) = {has_author},
ρ(p22) = (order,“1”), δ(p22) = e5,
σ (e6) = (n5, n6), λ(e6) = {published_in},
ρ(p23) = (pages,“{start: 222, end: 232}”),

δ(p23) = e6,

C. PROPERTY GRAPH SCHEMA (FORMAL DEFINITION)
The term data schema is related to a way to describe the data
structure and enforce its consistency. In this sense, a graph
schema allows to define types of nodes, types of edges,
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types of properties, and restrictions for these types. Next,
we present a formal definition of graph schema.

Recall that L is an infinite set of labels and T is a finite set
of datatypes (e.g., String, Integer, Date, etc.).
Definition 2: Aproperty graph schema, also called a graph

type, is a tuple S = (gt , TN , TE , TP, gtp, 3, 6, φ, 1, Min,
Max, T uniqueP , T optP , T nullP ) where:

1) gt ∈ L is the label of the graph type;
2) TN is a finite set of identifiers for node types;
3) TE is a finite set of identifiers for edge types;
4) TP is a finite set of identifiers for property types;
5) gtp : L ↛ T is a partial function that defines a set of

property types that are specific to S;
6) It applies that TN , TE and TP are disjoint sets;
7) 3 : (TN ∪ TE ) ↛ SET+(L) is a partial function that

associates each node/edge type with a non-empty set of
labels;

8) 6 : TE → (TN × TN ) is a total function that associates
each edge type with a pair of node types;

9) φ : TP → L × T is a total function that defines the
label and datatype for each property type;

10) 1 : TP → (TN ∪ TE ∪ TP) is a total function that
associates each property type with a node type, an edge
type, or another property type.

11) Min : Tp ↛ Z0+ is a partial function that allows
to specify the minimum cardinality (i.e., a positive
integer) for some property types.

12) Max : Tp ↛ Z0+ is a partial function that allows
to specify the maximum cardinality for some property
types.

13) T uniqueP ⊂ TP is the subset of property types that are
unique inside a node/edge type;

14) T optP ⊂ TP is the subset of property types that are
optional inside a node/edge type;

15) T nullP ⊂ TP is the subset of property types whose value
can be NULL.

Next, we describe a property graph schema corresponding
to the property graph presented in Figure 2.
gt = Publications,
TN = {nt1, nt2, nt3, nt4, nt5},
TE = {et1, et2, et3, et4},
TP = {pt1, pt2, pt3, pt4, pt5, pt6, pt7, pt8, pt9, pt10, pt11,

pt12, pt13, pt14, pt15, pt16, pt17, pt18, pt19},
gtp(s) = (about, String),
3(nt1) = {Author}, 3(nt2) = {Entry,InProceedings},
3(nt3)={Entry, Article},3(nt4)={Proceedings},
3(nt5) = {Journal},
3(et1) = {has_author}, 6(et1) = (nt2, nt1)
3(et2) = {booktitle}, 6(et2) = (nt2, nt4)
3(et3) = {has_author}, 6(et3) = (nt3, nt1)
3(et4) = {cites}, 6(et4) = (nt3, nt2)
3(et5) = {published_in}, 6(et5) = (nt3, nt5)
φ(pt1) = (fname,String), 1(pt1) = nt1
φ(pt2) = (lname,String), 1(pt2) = nt1
φ(pt3) = (title,String), 1(pt3) = nt2

φ(pt4) = (numpages,Integer), 1(pt4) = nt2
φ(pt5) = (keyword,String), 1(pt5) = nt2
φ(pt6) = (title,String), 1(pt6) = nt4
φ(pt7) = (year,Integer), 1(pt7) = nt4
φ(pt8) = (month,String), 1(pt8) = nt4
φ(pt9) = (title,String), 1(pt9) = nt3
φ(pt10) = (numpages,Integer), 1(pt10) = nt3
φ(pt11) = (keyword,List(String)), 1(pt11) = nt3
φ(pt12) = (if,Float), 1(pt12) = nt5
φ(pt13) = (title,String), 1(pt13) = nt5
φ(pt14) = (year,Integer), 1(pt14) = nt5
φ(pt15) = (vol,Integer), 1(pt15) = nt5
φ(pt16) = (order,Integer), 1(pt16) = et1
φ(pt17) = (pages,Struct), 1(pt17) = et2
φ(pt18) = (order,Integer), 1(pt18) = et3
φ(pt19) = (pages,Struct), 1(pt19) = et5,
T uniqueP = {pt3, pt9}
T optP = {pt11}
T nullP = {pt8}

IV. YARS-PG SYNTAX
In this section, we describe the components of a YARS-PG
serialization. The YARS-PG specification is divided in
5 levels: Core (see FR1-FR8 and FR11 in Subsection II-B),
Schema (see FR9 in Subsection II-B), Metadata (see
FR10 in Subsection II-B), Metaproperties (see FR10 in
Subsection II-B), Variables (see FR12 in Subsection II-B),
and Graph (see FR10 in Subsection II-B). Tools may provide
varying levels of support for YARS-PG, but theymust support
all elements within the selected level. The Core level is
mandatory.

In Listing 1, we present the YARS-PG serialization of the
property graph shown in Figure 2. Next, we will use this
example to explain the components of YARS-PG.

A. CORE
The Core level includes the declaration of nodes, edges,
properties and comments. A one-line comment is declared by
using the character #.

A node declaration begins with a node identifier, followed
by an optional list of node labels and optional node
properties. Examples of node declarations are shown in
lines 31 to 36 of Listing 1. The first node has Author01
as identifier, Author as label, fname and lname as
properties with values “John” and “Smith” respectively.
The third node (line 33) is identified by EI01, has two
labels (Entry and InProceedings) and three properties
(title, numpages and keyword).

An edge declaration begins with a source node identifier,
followed by an edge identifier (optional), the labels of the
edge, the properties of the edge, and the target node identifier.
An edge can be directed (->) or undirected (-). Examples of
edge declarations are shown in lines 39 to 44 of Listing 1. The
second edge (line 40) has EI01 as source node identifier,
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LISTING 1. Example of YARS-PG serialization.

followed by has_author as label, property order with
value 2, and Author02 as a target node identifier.

A property is represented as a pair k:v where k is the
property label and v is the property value. A property value
could be simple (e.g., a string) or complex (e.g., an array). For
example, in Line 34 we can see that the property numpages
has the simple value 10, and the property keyword has a

complex value consisting of a list of strings (“Query” and
“Graph”).

B. SCHEMA
YARS-PG allows to define node types, edge types, property
types and graph types. Additionally, YARS-PG supports
primitive and complex datatypes. The following primi-
tive datatypes are supported: Bool, String, Bytes, Integer,
Unsigned integer, Decimal, Float, DateTime, LocalDate-
Time, Date, Time, LocalTime, and Duration. User-defined
datatypes are also allowed.

The following complex datatypes are supported: Multiset,
Set, List, Distinct list, and Struct. A multiset (MULTISET)
is an unordered collection of elements allowing dupli-
cates. A set (SET) is an unordered collection of elements
where duplicate elements are not allowed. A list (LIST)
is an sorted collection of elements allowing duplicates.
A distinct list (DLIST) is an sorted collection of elements
where duplicate elements are not allowed. A structure
(STRUCT) is an unordered collection of key/value pairs
where the value indicates a primitive or a complex
datatype.

The declaration of a node type starts with the letter S,
followed by an identifier, a set of labels (optional), and a set of
property types (optional). Examples of node type declarations
are shown in lines 18 to 22 of the Listing 1. For instance, the
node type defined in line 21 has the identifier NS4, the label
Proceedings, and the property types title, year and
vol. A node following this node type declaration is shown
in line 35.

An edge type declaration begins with the letter S, followed
by a source node identifier (mandatory), a set of labels
(optional), a set of edge properties (optional), and a target
node identifier (mandatory). An edge type can be declared
as directed (->) or undirected (-). Examples of edge type
declarations are shown in lines 25 to 28 of Listing 1. For
instance, the edge type defined in line 27 has NS3 as the
source node identifier, cities as label, and NS2 as the
target node identifier. An edge following this edge type
declaration is shown in line 42.

A simple property type declaration has the structure k:t
where k is a property name and t is a datatype. The
keywords MIN, MAX, OPTIONAL, UNIQUE and NULL can
be used to add restrictions to a property type. The MIN
and MAX keywords allow to specify the minimum and
maximum number of elements in a list respectively. The
OPTIONAL keyword indicates that a given property may or
may not occur (similar to MIN 0 MAX 1). For example, the
line 20 in Listing 1 defines that the property keyword is
optional and could have a minimum of 1 and a maximum of
5 strings.

Assume that pt is a property type defined as part of a
node/edge type t . If pt includes the keyword UNIQUE then
all the nodes/edges following the type t must have a different
value for the property type pt . For example, the definition of
the property type title shown in the line 19 of Listing 1,
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indicates that all the nodes following the node schema NS2
must have a distinct value for their property title.
The NULL keyword defines that the value for a given

property could be null. An example of this is shown in the
line 22 of Listing 1.

C. METADATA
A metadata declaration begins with the symbol +, followed
by a list of properties enclosed by square brackets. The
scope of a metadata declaration depends on its location.
A metadata declaration located in a single line applies for
all the document (e.g. see line 2 in Listing 1). A metadata
declaration located at the end of a statement applies just for
such statement (e.g. see line 18 in Listing 1).

D. METAPROPERTIES
A metaproperty is a property associated with another prop-
erty. Hence, a metaproperty allows to include information
about a property. A metaproperty declaration begins with the
character @, followed by a list of properties enclosed by the
symbols < and >. Examples of metaproperty declarations are
shown in lines 15 and 22 of Listing 1.

E. VARIABLES
In YARS-PG, a variable can be used to store properties.
A variable declaration begins with the character $, followed
by a variable name, the character =, and a list of property
types. For example, the line 12 of Listing 1 shows the
declaration of the variable title_numpages.
For referencing a variable, the user must use the character

$ followed by the variable name. For instance, the variable
title_numpages is used in the line 20 of Listing 1.
Variables can be used more than once.

F. GRAPH TYPES AND GRAPHS
A graph type declaration begins with the string S/, followed
by a graph identifier, the character /, and a list of property
declarations (optional). An example of graph type declaration
is shown in line 6 of Listing 1.

A graph declaration starts with the character /, followed
by a graph identifier, the character /, a list of graph labels
(optional), and a list of properties (optional). An example of
graph declaration is shown in the line 9 of Listing 1.
YARS-PG enables assigning nodes and edges to one or

more graphs. This can be accomplished by adding the name
of the graph (e.g., /graphname/) at the end of the node or
edge declaration.

The YARS-PG grammar in ANTLR4 [21] and EBNF
notation,1 along with supplementary examples, are available
in [22].

1https://www.w3.org/TR/REC-xml/#sec-notation

V. FROM PROPERTY GRAPHS TO YARS-PG
This section delineates a systematic approach for mapping
various components of a property graph (as described in
section III-B) to YARS-PG (as described in section III-C).

A. STEPS FOR MAPPING A GRAPH TYPE
1) Create the schema definition in the syntax using the

label of S (g).
2) Include any graph-specific property types (gt) in this

definition.

B. STEPS FOR MAPPING A NODE TYPE
1) For each node type n ∈ TN , create a node schema

definition.
2) Use the 3 function to retrieve the labels for each node

type and include them in the schema.
3) Add properties to each node type using the φ and 1

functions to determine the properties associated with
each node type.

C. STEPS FOR MAPPING AN EDGE TYPE
1) For each edge type e ∈ TE , create an edge schema

definition.
2) Use the 3 function to retrieve the labels for each edge

type.
3) Use the 6 function to determine the node types

connected by the edge type.
4) Add properties to each edge type using the φ and 1

functions to determine the properties associated with
each edge type.

D. STEPS FOR MAPPING A PROPERTY TYPE
1) For each property p ∈ TP, determine its label and

datatype using the φ function.
2) Map the constraints (i.e. Min, Max, UNIQUE and

NULL) defined by each property type.

E. STEPS FOR MAPPING A GRAPH
1) Create the graph definition in the syntax using the label

of G (g).
2) Include any graph-specific properties (gp) in this

definition.

F. STEPS FOR MAPPING A NODE
1) For each node n ∈ N , create a node declaration.
2) Use λ to retrieve the labels for each node.
3) For each property p ∈ P, if δ(p) refers to a node, include

this property in the node’s definition, using ρ to get the
label-value pair.

G. STEPS FOR MAPPING AN EDGE
1) For each edge e ∈ E , create an edge declaration.
2) Use σ to determine the connected nodes (source and

target) for each edge.
3) Use λ to retrieve labels for each edge.
4) Similarly to nodes, include properties for edges where

δ(p) refers to an edge.
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H. MAPPING A PROPERTY
For each property p ∈ P, if it is a metaproperty (identified
by γ ), modify the property’s definition in its respective node
or edge to include the metaproperty.

I. MAPPING A SUBPROPERTY
For properties that have subproperties (as defined by δ),
recursively include these in the syntax, maintaining the
hierarchy of properties.

VI. EXTENSIONS OF YARS-PG
This section explores the serialization of RDF data and the
canonicalization process within the YARS-PG data format,
enhancing its functionality and interoperability in the realm
of Semantic Web technologies [23].

A. SERIALIZING RDF
RDF [24] is an abstract graph data model with several
serialization formats being essentially specialized file for-
mats. YARS-PG can store RDF triples without changing the
grammar and become an RDF serialization format.

Themethod for transforming an RDF graph into YARS-PG
is presented below.
Require: RDF Graph RG

for all t in RG do
subject:= readSubject(t)
sid := gen()
if typeOf(subject) == ’IRI’ then

createNode(sid, ‘IRI’, subject)
else

createNode(sid, ‘BNode’, subject)
end if
object := readObject(t)
oid := gen()
if typeOf(object) == ‘Literal’ and datatype(object) ==
‘string’ and lang(object) == true then

lang := readLang(object)
createNode(oid, ‘Literal’, object, ‘xsd:string’, lang)

else if typeOf(object) == ‘Literal’ and (datatype(object)
!= ‘string’ or lang(object) == false) then
datatype := readDatatype(object)
createNode(oid, ‘Literal’, object, datatype)

else if typeOf(object) == ’IRI’ then
createNode(oid, ‘IRI’, object)

else
createNode(oid, ‘BNode’, object)

end if
predicate := readPredicate(t)
createEdge(sid, ‘IRI’, predicate, oid)

end for
The algorithm takes an RDF graph (RG) as input.

An RDF graph consists of triples, each comprising a
subject, a predicate, and an object. The algorithm iterates
through each triple (t) in the RDF graph; extracts the
subject of the triple (subject) using the readSubject

LISTING 2. An RDF triple in YARS-PG.

function; generates a unique identifier for the subject (sid)
using the gen() function; determines the type of the
subject (IRI or Blank Node); and creates a corresponding
node using the createNode function. Similar steps are
for objects, but additionally, literals (with datatypes and
with/without languages) are supported. The algorithm, next,
extracts the predicate of the triple (predicate) using the
readPredicate function; creates an edge between the
subject and object nodes, associating it with the predicate.

In Listing 2, we present a simple example of representing
RDF in YARS-PG.

B. CANONICALIZATION OF YARS-PG
Canonicalization is the process of transforming data into a
standardized and normalized form. This is crucial for com-
putational tasks that require consistent data representation or
comparison.

The algorithm for YARS-PG canonicalization includes the
following steps:

1) Declaration roll-Up: Transform multi-line declara-
tions into singular-line declarations to enhance the
document structure’s uniformity and improve clarity.

2) Comment removal: Remove all comment lines from
the YARS-PG document.

3) Metadata removal: Remove all metadata from the
YARS-PG document.

4) Variables removal: Insert variable values where they
are used and remove variable declarations.

5) Declaration reordering: Reorder declarations sys-
tematically based on the following order: graph type
declarations, graph declarations, document metadata
declarations, node type declarations, edge type decla-
ration, node declarations and edge declarations.

6) Empty line removal: Eliminate whitespaces by
removing empty lines containing only line feed LF or
CR characters to compress the document and eliminate
redundant spacing.

7) Whitespace removal: Eradicate all unnecessary
white spaces, including spaces (U+0020) and tabs
(U+0009), between serialized elements to reduce file
size and eliminate non-semantic discrepancies.

The above algorithm provides a consistent and repli-
cable approach to YARS-PG canonicalization. It ensures
that YARS-PG documents with syntactic differences but
having the same meaning are serialized uniformly, pro-
moting coherence and comparability across platforms and
systems.
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LISTING 3. Example in YARS-PG after canonicalization.

Listing 3 shows a running example after canonicalization.
The YARS-PG running example before canonicalization can
be found in Listing 1.

VII. EVALUATION
This section evaluates the YARS-PG format, demonstrat-
ing its parsing efficiency and scalability across various
programming environments. The experiments conducted
utilized both real-life and synthetic datasets. Furthermore,
this section compares YARS-PG with other data formats
regarding non-functional and functional requirements.

A. USE OF YARS-PG
In this section we describe the use of YARS-PG in various
contexts.

1) SET UP
Our series of experiments were performed on Ubuntu
22.04.3 LTS, featuring an Intel Core i5-11400H processor,
32 GB of single-channel RAM operating at 3200 MHz, and

FIGURE 3. Parsing time of real-life data based on YARS-PG grammar in
Java.

a high-speed 1TB NVMe SSD using PCIe Gen3 × 4.2 With
the Java runtime environment installed at version 17.0.9 and
Python 3.10.12, we executed 10 runs to establish average
execution times. The YARS-PG parsers in Java and Python
can be found in [22], along with ready-to-use packages in the
YARS-PG release.3

2) REAL-LIFE DATA
As a real-world dataset, theMathematical LibraryKnowledge
Graph (MMLKG) [25] is used. It comprises computer-
verified mathematical definitions, statements, and proofs
from the Mizar proof-checker (Mizar Mathematical Library).
We prepared incremental dataset segments in the YARS-PG
format: the first 10, 20, 30, 40, 50, 60, 70, 80, 90, and 100MB,
without breaking lines. The files are available at [26].
Both languages demonstrate the relationship between file

size and parsing times in comparing file parsing plots
between Java and Python. In the Java plot, parsing times
increment gradually with file size, suggesting a relatively
linear correlation with a gentle slope. On the other hand, the
Python plot reveals a steeper increase in parsing times as
file size grows, indicating a potentially higher computational
load. Java generally exhibits lower parsing times across the
provided dataset, implying a more efficient parsing speed
compared to Python. The scaling behavior differs between
the two languages, with Python showing a more pronounced
increase in parsing times. Both plots indicate that parsing
times for YARS-PG follow a linear trend, and in both
cases, parsing times are satisfactory. The YARS-PG grammar
is constructed to be language-independent, showcasing its
versatility and adaptability across different programming
languages.

2Disk read: 2282.85 MB/sec.
3https://github.com/lszeremeta/yarspg/releases/tag/v4.0.0
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FIGURE 4. Parsing time of real-life data based on YARS-PG grammar in
Python.

TABLE 2. Characteristics of generated data.

3) BENCHMARK DATA
In addition to the dataset based on real data, we also used
data from the Knows 1.0.0 benchmark [27]. This benchmark
allows the generation of nodes and edges, supporting
multiple output formats, and providing visualization options.
The nodes are labeled as Person with unique numerical
identifiers. Each node features properties for firstName
and lastName with randomly assigned values. The edges
have random nodes and avoid cycles. They are labeled as
knows and include a createDate property with a random
date.

Knows 1.0.0 is available on PyPI4 and Docker Hub5 and
can be directly executed from Python’s source code. Table 2
shows the characteristics of the generated data. Generated
files are available at [28].

Figure 5 and Figure 6 present a comparison between Java
and Python across various node counts, ranging from 10,000
to 100,000. It shows a series of values for each language

4https://pypi.org/project/knows/1.0.0/
5https://hub.docker.com/r/lszeremeta/knows

TABLE 3. Comparison of graph data formats considering non-functional
features.

corresponding to each node count. For Java, the values
start at 0.23 for 10,000 nodes and incrementally increase
to 0.96 at 100,000 nodes. In contrast, Python starts at a
value of 9 for 10,000 nodes and progresses to 92.21 for
100,000 nodes. The consistent trend observed is that Java’s
values are significantly lower than Python’s for the same
number of nodes, suggesting better performance or efficiency
in this specific context. Both plots indicate that parsing times
for YARS-PG follow a linear trend, and in both cases, parsing
times are satisfactory. This trend is maintained across all node
counts, indicating a performance difference between the two
languages in favor of Java.

B. COMPARISON WITH OTHER DATA FORMATS
In this section, we compare YARS-PG with other data for-
mats examining both non-functional and functional aspects,
showing their strengths and weaknesses.

1) COMPARISON OF NON-FUNCTIONAL FEATURES
Table 3 presents a comparison of non-functional features
across various graph data formats or notations. Each data
format is evaluated on five specific criteria: descriptive-
ness, well-definedness, flexibility, and expressiveness (see
Subsection II-C). The criteria are measured on a scale from
0.0 to 1.0, with 1.0 representing the highest score in a
particular category.

YARS-PG excels with perfect scores in all categories,
demonstrating its comprehensive capabilities. Contrast-
ingly, GEXF, while performing well in descriptiveness,
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TABLE 4. Comparison of graph data formats considering functional features.

FIGURE 5. Parsing time of benchmark data based on YARS-PG grammar
in Java.

well-definedness, and flexibility with scores of 1.0, falls
behind in expressiveness with a score of 0.5. Formats like
CSV and TGF are at the lower end, scoring 0.0 across all
categories, highlighting a significant gap compared to YARS-
PG. Other formats, such as GraphML, GraphViz DOT, and
GXL, show variability in their capabilities. Formats like
GDF, GML, Pajek NET, and others exhibit a mix of low to

FIGURE 6. Parsing time of benchmark data based on YARS-PG grammar
in Python.

moderate scores, indicating areas where they are less effective
compared to YARS-PG.

2) COMPARISON OF FUNCTIONAL FEATURES
Table 4 compares different serialization formats for property
graphs based on functional features. The columns are
organized into categories like properties (support for property
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pairs, multiple properties, and null values), labels (support for
multiple and unique labels), edges (support for directed and
undirected edges, multiple edges, and edges with the same
label), other features (support for schema, metaproperties,
complex datatypes, and variables) and style (XML, JSON,
textual, or tabular). Each row represents a different graph
serialization format.

YARS-PG stands out as the most feature-rich format
in this table, supporting all listed features. It supports
property pairs, multiple properties, and null values, which
is broader than other formats. It supports multiple labels
but not unique labels, a feature less common among the
listed formats. YARS-PG supports all edge-related features
like directed, undirected, multiple edges, and edges with
the same label, which is more comprehensive than other
formats like GDF and Tulip TPL. It is marked as unstructured,
sharing this characteristic with GEXF and GraphML. YARS-
PG falls under the textual format category, similar to GML
and GraphViz DOT. GraphML, GraphSON TP3, and GXL
support a broad range of features, making them versatile for
various use cases. CSV has the least support, with only partial
support in all categories, which is understandable given its
simple, tabular nature.

VIII. CONCLUSION
A data format plays a pivotal role in the realm of graph
data management, serving as the backbone for database
exchange, system benchmarking, and data visualization.
Within this context, our research introduces YARS-PG,
a data format meticulously crafted for serializing property
graphs. YARS-PG stands out for its simplicity, extensibility,
and platform independence, making it a robust choice
for various applications. One of its key strengths lies
in its ability to seamlessly accommodate all the features
offered by contemporary database systems rooted in the
property graph data model. This versatility ensures that
YARS-PG is not only user-friendly but also capable of
meeting the evolving demands of modern graph-oriented
systems, fostering efficient data exchange, benchmarking,
and visualization practices.

Future research will concentrate on the binary version
of YARS-PG with advanced data compression algorithms.
Furthermore, we intend to integrate our serialization with
common graph databases. Additionally, we will endeavor to
provide tools that facilitate the transformation of data to and
from the YARS-PG format.
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