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ABSTRACT Transient simulation in power engineering is crucial as it models the dynamic behavior of
power systems during sudden events like faults or short circuits. Electromagnetic transient simulations
involve multiple coordinated tasks. Traditional simulations are centralized and struggle to meet scalability
requirements. To achieve these goals, distributed electromagnetic transient simulation has emerged as a new
trend. Nevertheless, the distributed electromagnetic transient simulation introduces network communication.
Achieving real-time simulation across distributed nodes poses the challenge of minimizing communication
costs. In this paper, our proposal focuses on optimizing the task orchestration to reduce communication
costs. Specifically, in the electromagnetic transient simulation, these tasks has certain communication pattern
where the communicated objects of each task are pre-defined. We represent the pattern as a graph, with tasks
represented as nodes and communications as edges. Furthermore, we propose to use graph partition with the
objective of minimal communication costs and fine tune the partitions with the resource requirements of
each distributed node. The experimental results demonstrate that our proposal has strength in achieving
high-performance electromagnetic transient simulation.

INDEX TERMS Electromagnetic transient simulation, distributed system, task orchestration.

I. INTRODUCTION
Real-time simulation of electromagnetic transients offers a
powerful tool for understanding andmitigating the challenges
posed by the integration of new energy sources [1]. It allows
for the dynamic assessment of power system behavior
under varying conditions, enabling the development and
validation of effective control strategies [2], [3]. In the face
of dynamic changes brought about by renewable energy
generation, energy storage, and other emerging technologies,
real-time simulation provides insights into system stability,
fault analysis, and protection coordination [4], [5]. The ability
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to capture transient responses in real-time is paramount for
ensuring the reliability and resilience of power systems. Real-
time simulations facilitate a proactive approach to addressing
potential issues, allowing for the timely implementation of
corrective measures. By providing a dynamic and accurate
representation of power system behavior, real-time electro-
magnetic transient simulation contributes to the efficient
integration and optimal utilization of new energy sources,
fostering the ongoing evolution of power systems towards
sustainability and adaptability [6], [7].

Within the domain of electromagnetic transient simulation,
centralized methodologies have long been the predominant
choice. Yet, the limitations of these centralized models,
particularly in terms of scalability, are becoming increasingly
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evident [8]. The complexity of modern power systems, cou-
pled with the demand for large-scale simulations, is pushing
the limits of traditional centralized approaches. This has led
to a growing recognition in the industry of the need for a
shift towards distributed transient simulation, which offers
a more scalable and viable solution. This shift represents
a significant evolution in simulation strategies, driven by
the need to accommodate the complexities arising from
integrating diverse energy sources and advanced technologies
into contemporary power systems [9], [10]. Distributed
transient simulation, characterized by its decentralized and
parallel processing capabilities, addresses the scalability
issues inherent in traditional methods. It caters to the
expanding scope of transient simulations and aligns with
the broader trend of exploiting distributed computing for
improved computational efficiency [11], [12].
Communication is fundamental, serving as the critical

element that facilitates seamless interaction and synchroniza-
tion among distributed components [13], [14] in the realm
of distributed real-time electromagnetic transient simulation.
The importance of efficient and effective communication is
particularly highlighted when striving to achieve accurate,
real-time results in simulating electromagnetic transients.
This complex interplay involving data exchange, coordina-
tion, and synchronization, managed through communication
protocols, constitutes the core of a robust distributed electro-
magnetic transient simulation system [15], [16]. Therefore,
a deep understanding and optimization of these communica-
tion mechanisms are essential to guarantee the success and
reliability of real-time simulations [17] in this intricate and
ever-evolving field.

In electromagnetic transient simulation, it is common
practice to view each task as process in operating system
and assign individual tasks to designated CPU cores. This
approach helps to minimize the performance issues associ-
ated with process switching. However, with the increasing
complexity of electromagnetic transient simulations, there
arises a need to distribute these tasks across multiple
computing nodes. This distribution strategy is crucial to
maintain exclusive access of each task to a CPU core,
thereby optimizing processing efficiency. One key aspect
of this approach is the communication between tasks,
which is vital for maintaining synchronization. Nonetheless,
this inter-task communication also significantly impacts the
overall efficiency of the simulation. In these simulations,
each task adheres to a specific communication pattern. Given
this scenario, optimizing the coordination of tasks across
the distributed computing nodes becomes imperative [18],
[19]. We propose a task orchestration algorithm aimed at
addressing the aforementioned challenge. In essence, the
algorithm partitions simulation tasks based on their individual
communication patterns. Subsequently, each partition is
allocated to a computing node based on its CPU requirements.

The primary contribution of this paper can be summarized
as follows:

• We abstract the orchestration of simulation tasks as
graph partition problem. The tasks can be viewed as
vertices and are partitioned according to the amount of
computing nodes.

• We carefully design a task orchestration algorithm based
on communication patterns of tasks to achieve minimum
communication cost.

• The experimental results demonstrate that our pro-
posal has advantages in realizing high-performance
simulation.

II. BACKGROUND
A. ELECTROMAGNETIC TRANSIENT SIMULATION
Electromagnetic transient simulation is a method of simulat-
ing the electromagnetic transient processes in power systems
ranging from microseconds to seconds through numerical
methods [20], [21]. The simulation of electromagnetic
transient processes must take into account the nonlinear
characteristics of the power system. For instance, when
analyzing transmission lines, it is necessary to consider their
distributed parameter characteristics and the electromagnetic
aspects within generators, including non-linear features.
Therefore, accurate modeling of the various characteristics
of different models is essential for precisely representing the
relevant components in the power system, thereby accurately
capturing the dynamic characteristics of the power system.
The world’s first commercial digital real-time simulator
(Real Time Digital Simulator, RTDS) [22], developed by the
Manitoba HVDC Research Centre in Canada, is based on the
classic electromagnetic transient solution theory established
by H.W. Dommel in 1969. This simulator provided technical
support for the hardware-in-the-loop testing of converter
controllers in early high-voltage direct current (HVDC)
transmission systems [12].
The development of real-time simulators has revolution-

ized research in power systems, yet the field faces several
evolving challenges. The integration of large-scale renewable
energy sources adds complexity to the dynamic analysis
of power systems, necessitating a delicate balance between
simulation efficiency, stability, and accuracy. Critical to this is
the selection of appropriate numerical integration algorithms
for effectively solving nonlinear stiff systems. Additionally,
the incorporation of numerous power electronic devices, each
with distinct dynamic characteristics, presents a dilemma:
smaller simulation step sizes enhance accuracy but increase
computational load, while larger steps may reduce precision.
Furthermore, as power systems expand in scale and diversity,
ensuring the efficiency and accuracy of simulators becomes
more challenging. Simulators must not only handle complex
and voluminous data for accurate mathematical modeling but
also maintain real-time performance without overwhelming
the hardware’s computational resources. These challenges
underscore the need for continued advancement in simulation
methodologies to keep pace with the rapidly evolving power
system landscape.
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FIGURE 1. The motivation of our proposal. Different task orchestrations on computing nodes result
in different communication cost.

B. EXECUTION ON COMPUTER SYSTEM
The electromagnetic transient simulation can be conceptu-
alized as a collaborative effort involving multiple tasks that
jointly execute computational operations. In order to effec-
tively implement this simulation within a computer system,
these tasks are best abstracted as distinct processes. The core
of the computation hinges on the intricate synchronization
among these processes, ensuring a cohesive and efficient
simulation workflow. The specific procedure is listed in
Algorithm 1.

Algorithm 1 Electromagnetic Transient Simulation
Input: Task id task_id , iteration steps steps, time interval

interval
Output: Simulation Results
1: bind_core(task_id)
2: clock← clock_synchronization()
3: for i← 1, 2, . . . , stpes do
4: wait_until(clock + i * interval)
5: receive()
6: execute()
7: send()
8: end for

The function presents the execution of tasks in real-time
electromagnetic transient simulations. Instantiated with
parameters such as task_id, steps, and interval, this
function describes a coarse simulation steps. The task_id
parameter uniquely identifies the computational task, steps
enumerates the temporal iterations of the simulation, and
interval indicates the time span between these iterations.
Commencing with the bind_core(task_id) proce-

dure, the function initially allocates a specific CPU core to
the computing process, a critical step in implementing real-
time simulation. This CPU binding is essential as it reduces
the overhead associated with process switching, particularly

when the operating system handles clock interrupts, thereby
significantly enhancing efficiency. Another crucial step in
the process is clock synchronization, which ensures that
all tasks commence their computations simultaneously. This
synchronization is vital for maintaining the coherence and
accuracy of the real-time simulation.

Entering the concrete simulation, the function encom-
passes a loop, methodically crafted to execute over a
pre-defined number of steps, each symbolizing a discrete
temporal step of the simulation. The wait_until(clock
+ i * interval) command within each iteration is
pivotal, enforcing the real-time constraints essential for
precise modeling. Each loop iteration is further characterized
by a series of functions—receive(), execute(), and
send(). These functions collectively manage the input data
gathering, execution of core simulation computations, and
scatter of results, respectively.

C. MOTIVATION
The simulation procedure of each task in compute function
would bring communication cost through receive()
and send(). During simulation, each task has certain
communication pattern that it would only send data to other
fixed tasks. As depicted in the upper section of Figure 1, there
are four tasks denoted as A, B, C, and D. The communication
pattern is such that tasks A and D engage in mutual
communication, while tasks B and C also communicate with
each other. We consider to perform a two-node distributed
simulation. As illustrated at the bottom of Figure 1, there are
two potential orchestrations for the four tasks. If tasks A and
C are allocated to one node and tasks B and D to another, this
configuration will result in intensive communications during
the simulation. Conversely, if tasks A and B are assigned
to one node and tasks C and D to the other, the situation
is markedly different, leading to a scenario with no inter-
node communication. Consequently, based on our analysis,
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FIGURE 2. The overview of our proposal. Our proposal has three steps: (a) Graph Construction, which
involves compiling a task list and their communication patterns. (b) Graph Partitioning to suit a
distributed computing environment. (c) Fine-tuning to adapt partitions to meet the computing resource
needs of each task.

it is evident that different task orchestrations lead to varying
levels of communication costs, which can adversely affect
the performance of real-time simulations. Therefore, it is
imperative to develop a task orchestration algorithm that
minimizes communication overhead to the greatest extent
possible, thereby facilitating the realization of efficient real-
time simulation.

III. METHODOLOGY
This section offers a comprehensive insight into our strategy
for achieving efficient communication synchronization, con-
sisting of three fundamental components: graph construction,
graph partitioning, and fine-tuning, illustrated in Figure 2.
For brevity, we post the significant notations of this paper in
Table 1.

A. GRAPH CONSTRUCTION
Electromagnetic transient simulation involves a sequence of
tasks represented as T = {t1, t2, . . . , tn}. In implementation,
each task is assigned to a dedicated process within the
operating system. Each process is then bound to a CPU
core, ensuring that inter-process scheduling and context
switching do not impact the simulation. Moreover, during
the simulation, these tasks have to communicate with
each other to achieve computation collaboratively. These
communications have certain patternB ∈ Rn×n.Bi,j indicates
the data volume to be transmitted from task ti to task tj.
Based on the communication pattern denoted as B, these

tasks can be abstracted into a graph G(V ,E,W ), abbreviated
as G. Each task is represented a vertex in the graph, and if
two tasks have communication link, there is an edge between
them. Each task has varying communication data volumes,

TABLE 1. Significant notations.

and we normalize their transmitted data volumes to a range
between 0 and 1, representing communication costs, using
the following formula. We use the communication costs as
the weight of graph.

Wi,j =
Bi,j

max{B}
(1)

The specific construction is described in Algorithm 2. The
time complexity of the algorithm is O(n2)

B. GRAPH PARTITION
After completing the process outlined in Section III-A to
transform the simulation tasks into a graph, we derive the
weighted directed acyclic graph G. In large-scale electro-
magnetic transient simulation, it is inevitable to distribute
these tasks across various computing nodes to meet the CPU
core requirements of each task. Specifically, our proposal
divide graph G into N partitions P = {G1,G2, . . . ,GN }
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Algorithm 2 Graph Construction
Input: Task list T = {t1, t2, . . . , tn}, communication pattern

B
Output: Graph G(V ,E,W )
1: V ← T
2: m← max{B}
3: for i← 1, 2, . . . , n do
4: for j← 1, 2, . . . , n do
5: if Bi,j > 0 then
6: add edge < ti, tj > into E
7: Wi,j← Bi,j/m
8: end if
9: end for

10: end for

according to the number of computing nodes. We can build
a hpyer graph Ĝ(V̂ , Ê, Ŵ ) over these partitioned subgraphs
{G1,G2, . . . ,GN } based on the following algorithm:

Algorithm 3 Hyper Graph Construction
Input: task graph G, partition P = {G1,G2, . . . ,GN }
Output: hyper graph Ĝ(V̂ , Ê, Ŵ )
1: Ŵ ← 0
2: for i← 1, 2, . . . ,N do
3: for j← 1, 2, . . . ,N do
4: ∀u ∈ Gi, and ∀v ∈ Gj {u and v are nodes in Gi and

Gj}
5: if Wu,v > 0 then
6: Ŵi,j← Ŵi,j +Wu,v
7: end if
8: end for
9: end for

Therefore, the communication cost of the partition P is
formulated as follows:

C(P) =
N∑
i

N∑
j

Ŵi,j (2)

and the purpose of graph partitioning is to identify a partition
P∗ that minimizes the above equation:

P∗ = argmax
P

C(P) (3)

The graph partition is proved as NP-hard problem by many
previous researches [23], [24]. Fortunately, METIS [25],
[26] is the state-of-the-art tool known for its ability to
efficiently partition large-scale graphs while aiming for
balanced partitions, minimizing edge cuts, and ensuring
scalability. It employs a multilevel approach and offers
high-quality partitioning for diverse graph structures. Thus,
we resort to METIS to solve the equation 3.

C. FINE TUNING
Upon performing graph partitioning, we obtain the optimized
partitions, denoted as P∗. The subsequent step involves

FIGURE 3. The mismatch between partitions and computing resources.
One partition consists of 4 tasks, while the other has 2 tasks. However,
there are two computing nodes, each with 3 CPU cores. Consequently, the
partition with 4 tasks cannot be assigned to any nodes, as each task
requires a dedicated CPU core.

allocating computing nodes to these partitions. However,
a perfect alignment between the divided partitions and the
computing nodes may not always be achievable. For instance,
consider a scenario where the number of tasks in partition
Gi(i = 1, 2, . . . ,N ) is represented by ni, and the number of
CPU cores in computing nodeMj(j = 1, 2, . . . ,N ) is denoted
as cj. It is possible that a given Gi may not match any Mj if
ni > cj, a situation illustrated in Figure 3.
We introduce a fine tuning algorithm to adjust the partition

according to available CPU cores of computing nodes.
Initially, we apply the best fit algorithm [27] to achieve
the assignment of partitions. The specific procedure is
shown in Algorithm 4. The best fit assignment first arranges
the partitions G1,G2, . . . ,GN (Line 1). Then, it seeks a
computing node Mk with the lowest cm that satisfies the
condition cm ≥ |Ĝi| to accommodate the arranged Ĝi (Lines
6 ∼ 14). Nevertheless, the best fit method might not allocate
the partitions optimally to computing nodes since a partition
could contain more tasks than the available CPU cores in any
computing node. This results in the partition cannot be match
to current computing resources.

From the analysis above, the next step involves adjusting
the partitions. The central idea of this adjustment is
transferring tasks from the larger partition to the smaller one.
It’s crucial to note that this task transfer will influence the
communication costs, and the primary concern is to minimize
these costs as much as possible. To execute the task transfer
as described, we adhere to the principle that a task can only
be transferred to a partition if a communication link exists
between them, illustrated in Figure 4.

Theorem 1: The above task transfer scheme is able to
maintain minimum increase in communication overhead.

Proof of Theorem 1: There two partitions Gi and Gj,
and task u ∈ Gi. We assume ∀v ∈ Gj, task u and v has no
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Algorithm 4 Best Fit Assignment
Input: partition P = {G1,G2, . . . ,GN }, computing nodes
{M1,M2, . . . ,MN } with CPU cores {c1, c2, . . . , cN }

Output: A: assignment of partition
1: {Ĝ1, Ĝ2, . . . ĜN } ← sort {G1,G2, . . . ,GN }with ascend-

ing number of nodes.
2: explore[1 . . .N ]← False
3: for i← 1, 2, . . . ,N do
4: best ←∞
5: k ←−1
6: for j← 1, 2, . . . ,N do
7: if cj ≥ ni and cj < best and explore[j] == False

then
8: best ← cj
9: k ← j
10: end if
11: end for
12: if best <∞ then
13: explore[k]← True
14: A[i]← k
15: end if
16: end for

FIGURE 4. The process of task transfer. If there is a communication link
between two tasks in seperate partitions, one task can be transferred to
the other partition.

communication link. If we move task u to partition Gj, the
increased communication overhead is

H1 =
∑
k∈Gi

(Wu,k +Wk,u) (4)

However, if we assume there exists task v ∈ Gj
that has communication link with task u, the increased
communication overhead is

H2 =
∑
k∈Gi

(Wu,k +Wk,u)− (Wu,v +Wv,u) (5)

It is obvious that H2 < H1, and from the above analysis,
the task transfer scheme can maintain the minimum increased
communication overhead.

Theorem 1 establishes the strategy for partition adjustment.
Subsequently, the decision on which tasks to transfer is

Algorithm 5 Fine Tuning
Input: partition P = {G1,G2, . . . ,GN }, computing nodes
{M1,M2, . . . ,MN } with CPU cores {c1, c2, . . . , cN },
incomplete assignment A, initial temperature Tmax ,
cooling rate α, minimum temperature Tmin

Output: adjusted partition P′ and complete assignment A
1: for all partition Gi(1 ≤ i ≤ N ) that ∀cj ∈
{c1, c2, . . . , cN }, ni > cj do

2: T ′← Tmax
3: while T ′ ≥ Tmin do
4: Select a partition Gj(j ̸= i) that Ŵi,j > 0 and cA[j] >

nj.
5: Choose a task u in Gi that has communication link

in the task of Gj
6: If task u has not been moved from Gj, transfer task

u to partition Gj and obtain new partition P′.
7: Compute C(P′) via equation 2.
8: 1E ← C(P′)− C(P)
9: if 1E ≤ 0 then
10: Accept this transfer
11: else
12: Accept this transfer with the probability

e−1E/Tmax

13: end if
14: if Accept this transfer then
15: P← P′

16: end if
17: T ′← α · T ′

18: end while
19: end for
20: for all new partition G′i(1 ≤ i ≤ N ) that A[i] == ∅ do
21: best ←∞
22: k ←−1
23: for j← 1, 2, . . . ,N do
24: if cj ≥ ni and cj < best and no partition is allocated

to Mj then
25: best ← cj
26: k ← j
27: end if
28: end for
29: Ai← k
30: end for

made to fulfill the CPU resource requirements of each
partition while minimizing the increase in communication
costs. The time complexity of the vanilla algorithm is O(nN ),
making it time-consuming. To achieve effective task transfer,
Algorithm 5 employs simulated annealing [28], [29]. We first
enumerate each oversized partition (Line 1), and then use
simulated annealing strategy to transfer the tasks in selected
partition to others. The algorithm according to the equation 2
to determine whether to accept this transfer. Upon accepting
this transfer, the task will not be moved back. Consequently,
we obtain a new partition, denoted as P′, and proceed to
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the next phase of the process. After the task transfer, the
algorithm (Line 20 ∼ 26) assigns computing nodes to those
partitions which were not previously allocated, owing to their
unmet computing requirements.

D. PUT EVERYTHING TOGETHER
According to the algorithms described in Section 2 to III-C,
the pipeline of our task orchestration is presented in
Figure 5. We begin by applying Algorithm III-A with task
lists and communication patterns as inputs. Subsequently,
we use METIS to generate graph partitions. We then
employ Algorithm 4 to formulate a tentative allocation plan.
In case any partition is not assigned to a computing node,
we invoke Algorithm 5 to adjust partitions and derive new
task allocations, ensuring each task occupies a CPU core with
minimal communication overhead. After determining each
task’s CPU core, these tasks can commence on simulation.

IV. EVALUATION
Our experiment was conducted using a hardware setup
consisting of four nodes interconnected to form a distributed
system. Within this setup, we performed two performance
evaluation tests to assess system efficiency and scalability.
Additionally, we employed five concurrent processes to
efficiently utilize the computational resources and enable
parallel execution of a simulation task. These simulation tasks
were conducted using five different models, allowing us to
evaluate the effectiveness and accuracy of our approach. The
experimental results obtained from this hardware configu-
ration provide valuable insights into the performance and
capabilities of our system.

A. HARDWARE EQUIPMENT
Our experimental setup involved four dual-socket nodes, each
powered by Intel Xeon Gold 6346 processors with a 3.1GHz
operating frequency. These nodes were each furnished
with 64GBytes ofmainmemory, distributed as 32GBytes per
socket. Network connectivity was established usingMellanox
ConnectX-5 VPI NICs, offering 100 GBit/s bandwidth via
FDR InfiniBand. A Mellanox SB7800 switch was used
for node interconnections, providing high-speed, reliable
communication. Tomitigate anyNUMA-related performance
inconsistencies, all experiments were conducted on sockets
directly connected to the network cards. For precise time syn-
chronization, critical for ensuring coordinated data exchange
during simulations, the Beidou Time Service [30] was
employed, maintaining accurate timing across the distributed
system nodes.

B. SOFTWARE SETUP
In our software configuration, we employed KylinSec, a real-
time operating system designed by the National University
of Defense Technology [31]. This system, tailored for the
x86_64 architecture, operates on a kernel derived from
Linux version 5.10.0-60.18.0.50.kb7.ky3.x86_64. To facili-

tate RDMA communication, we integrated key libraries and
drivers, including librdmacm, ibverbs, and mlx5, enabling
efficient data transfer via Remote Direct Memory Access
(RDMA). For enhanced experiment performance, the soft-
ware was compiled using GCC (GNU Compiler Collection)
version 10.3.1 with the ‘‘-O2’’ optimization flag. This
strategic amalgamation of specific OS components, RDMA
support, and compiler settings is instrumental in achieving
compatibility and high-performance outcomes in our setup.

C. COMMUNICATION EXPERIMENT
We conducted performance evaluation tests to measure
the communication time required in the distributed system
utilized by our task orchestration method. The code is revised
as follows:

Algorithm 6 Performance Evaluation of Communication
Input: Task id task_id , iteration steps steps, time interval

interval
Output: Statistics avg, min, and max
1: initialize cost[1 . . . interval]
2: bind_core(task_id)
3: clock← clock_synchronization()
4: for i← 1, 2, . . . , stpes do
5: wait_until(clock + i * interval)
6: t1← time()
7: receive()
8: send()
9: t2← time()

10: cost[i]← t2 − t1
11: end for
12: avg← mean(cost)
13: min← min(cost)
14: max ← max(cost)

We remove the function execute(), and reserve
receive() and send() for statistics of communication
cost. t1 and t1 record the start time and end time of commu-
nication, thus cost is computed by t2 - t1. We collect the
communication cost of each iteration, andavg,min andmax
respectively record the average, minimum and maximum
communication cost of the total steps iterations.

1) Communication between Four Tasks on TwoNodes:
We measured the time required for communication of
m KB between four tasks in the distributed system with
two nodes. The value of m varied from 0.5 to 2 KB
in steps of 0.5 KB. The communication pattern of
these four tasks (denoted as A, B, C, D) are presented
in Table 2. m indicates there are m KB data transfer
between two tasks in each iteration.

2) CommunicationAmongEight Tasks onFourNodes:
We also evaluated the time required for communication
of m KB among all eight tasks in the distributed system
with four nodes. Similarly, the value of m varied from
0.5 to 2 KB in steps of 0.5 KB. The communication
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FIGURE 5. The pipeline of our task orchestration.

TABLE 2. Communication pattern of four tasks.

pattern of these eight tasks (denoted as A, B, C, D, E,
F, G, H) are presented in Table 3. m indicates there are
m KB data transfer between two tasks in each iteration.

We present the averaged metrics of all tasks in Table 4.
Our iteration steps are set to 106, and from the results,
it is evident that, through our task orchestration method, the
communication costs are minor, especially in the four-task
scenario where communication is confined to the same node.

To demonstrate the effectiveness of our proposed orches-
tration method, we compare it with random orchestration
under identical experimental conditions. The results are
depicted in Figure 6. In the case of four tasks distributed
across two nodes, our proposed method exhibits significantly
lower communication costs compared to random orchestra-
tion. This is attributed to our task orchestration method’s
capability to place tasks involving mutual communication
into the same computing node, while random orchestration
may fail to eliminate cross-node communication. Similarly,
in the more complex scenario with eight tasks distributed
across four nodes, our method still outperforms random
orchestration.

D. SIMULATION EXPERIMENT
In Figure 7, we depict the performance experiment of our
proposed orchestration method applied to a real simulation
in a distributed environment with two nodes. This simulation
involves five tasks that engage in mutual communication.
These tasks correspond to five computational functions:
Angle, Gain, Cos, Sin, and Add. Each task is assigned to
a dedicated CPU core. To validate our task orchestration

TABLE 3. Communication patternhxh of eight tasks.

method, we impose constraints, allowing for two and three
CPU cores to be available in the two nodes, respectively. The
data size of each task sending to its receiver is m KB in every
iteration (The value of m varied from 0.5 to 2 KB in steps of
0.5 KB as above).

The Angle function generates an output that is transmitted
to both theGain and Sin functions. TheGain function receives
the input from the Angle function and sends its output to the
Cos function. Similarly, the Sin function receives the input
from the Angle function and transmits its output to the Add
function. The Cos function receives the input from the Gain
function and performs the required computation, sending the
results to the Add function. The Add function receives the
results from both Sin and Cos functions and performs the
necessary computation, recording the final result.

These tasks are expected to allocated to a CPU core
within the two nodes, and we apply our task orchestration
and random orchestration. After applying task orchestration
methods, the results are presented in Figure 8. The left part
of the Figure is our proposal. The Sin and Add functions are
allocated to the node with two CPU cores while Angle, Gain
and Cos functions are on the node with three CPU cores. Our
task orchestration method has only twice communications
during each iteration. The right part of the Figure is random
orchestration, The Gain and Sin functions are on the node
with two CPU cores, while Angle, Cos and Add functions
are on the node with three CPU cores. This allocation will
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FIGURE 6. Performance evaluation of our proposed task orchestration and random orchestration.
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TABLE 4. Communication costs of our task orchestration method in different test scenarios.

FIGURE 7. Simulation example: Five tasks–Angle, Gain, Cos, Sin, and
Add–collaboratively participate in a simulation. Each of these tasks is
allocated to a dedicated CPU core across two nodes. The available CPU
cores of two nodes are 2 and 3, respectively.

result in four times cross-node communication, which are
much larger than our proposed orchestration.

According to the results of task orchestration, we record
the performance of both methods. In contrast to Section IV-C,
we include the execute() cost in our statistics, and the
code is shown in Algorithm 7.
We choose the number of iterations for the simulation to

be 106. The performance evaluation is shown in Table 5

FIGURE 8. The results of orchestration through our proposal and random
orchestration. Our task orchestration method has fewer communications
than random orchestration.

and Figure 9. From the table and figure, it is obvious
that our proposal outperforms random orchestration. Across
all tested data transfer sizes, our method achieves lower
communication and execution times.

In conclusion, the simulation experiment demonstrates the
effectiveness and importance of our communication-efficient
task orchestration in enabling synchronized and efficient
interaction among the Angle, Gain, Cos, Sin, and Add
functions. The optimized communication scheme ensures
precise and timely data exchange, leading to accurate
real-time simulations of electromagnetic transients within
each time step.
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TABLE 5. Performance of our task orchestration method and random orchestration.

FIGURE 9. The performance evaluation on simulation of 5 tasks within two nodes.

Algorithm 7 Performance Evaluation of Real Simulation
Input: Task id task_id , iteration steps steps, time interval

interval
Output: Statistics avg, min, and max
1: initialize cost[1 . . . interval]
2: bind_core(task_id)
3: clock← clock_synchronization()
4: for i← 1, 2, . . . , stpes do
5: wait_until(clock + i * interval)
6: t1← time()
7: receive()
8: execute()
9: send()

10: t2← time()
11: cost[i]← t2 − t1
12: end for
13: avg← mean(cost)
14: min← min(cost)
15: max ← max(cost)

V. CONCLUSION
Electromagnetic transient simulation plays an indispensable
role in the analysis and design of power systems, offering

insights into the dynamic behavior of these complex systems.
Recently, distributed electromagnetic transient simulation
has emerged as a novel trend, particularly driven by the
need to manage large-scale appliances and models within
power systems. This approach, however, brings its own set of
challenges to realize real-time simulation, one of them being
the communication cost – a significant factor in distributed
scenario. In such simulations, numerous tasks are required to
perform computations collaboratively, which inevitably leads
to communication overhead, especially for synchronization
purposes between tasks.

In this paper, we propose a novel task orchestration
method aimed at optimizing task allocation across different
computing nodes, thereby minimizing communication costs.
Our method views these tasks as nodes within a graph and
consists of three components: Graph Construction, Graph
Partition, and Fine Tuning. The Graph Construction involves
mapping the tasks to a graph structure to represent the
communication and dependency relationships. The Graph
Partition component is designed to divide this graph into sub-
graphs, strategically distributing tasks to different computing
nodes in a way that minimizes inter-node communication.
Lastly, the Fine Tuning phase addresses scenarios where
certain subgraphs might initially not be allocated to any

74828 VOLUME 12, 2024



Q. Guo et al.: Optimizing Task Orchestration for Distributed Real-Time Electromagnetic Transient Simulation

computing nodes. It does this by implementing a task transfer
strategy, which ensures that all tasks are appropriately
assigned to computing resources whilemaintainingminimum
communication cost.

The effectiveness of our proposed method is validated
through extensive experimental results. These results demon-
strate our proposal can greatly reduce communication
overhead.
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