
Received 28 February 2024, accepted 14 May 2024, date of publication 22 May 2024, date of current version 3 June 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3404043

Counterfactual Explanation of AI Models Using an
Adaptive Genetic Algorithm With Embedded
Feature Weights
EBTISAM ALJALAUD 1,2 AND MANAR HOSNY 2
1Computer Science Department, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11564, Saudi Arabia
2Computer Science Department, College of Computer and Information Sciences, King Saud University, Riyadh 11451, Saudi Arabia

Corresponding author: Ebtisam AlJalaud (e.aljalaud@gmail.com)

ABSTRACT Explainable Artificial Intelligence (XAI) is a cutting-edge AI development motivated by the
need for transparency of black-box models in AI systems. This transparency enhances user trust, facilitates
accountability, and enables a better understanding of AI systems decisions, especially in critical applications
where insights into decision processes are essential. These benefits have increased XAI research interest,
aiming to provide techniques for interpreting and understanding the behavior of intelligent models. Counter-
factual explanation is a popular technique for model interpretation based on updating a few features such that
the outcome of an AImodel is changed. Users can gain insights into the critical features or factors influencing
the AI system’s decision by analyzing these counterfactuals. However, most counterfactual techniques
require more qualifications, such as simplicity, robustness, and coherence. In this research, we propose a
novel approach, Adaptive Feature Weight Genetic Explanation (AFWGE), for generating counterfactual
explanations of AI models, where a custom genetic algorithm (GA) is employed, incorporating adaptive
feature weights to enhance the algorithm’s performance. Experimental results on four benchmark datasets
show that AFWGE allows for the adaptation of feature weights during the evolutionary process, producing
more effective counterfactual explanations with superior proximity, sparsity, plausibility, and actionability.
Furthermore, it emphasizes feature weights as reliable indicators of the significance of the model’s features,
providing valuable insights for interpreting the model. AFWGE not only advances the field of counterfactual
explanation generation but also establishes a robust framework for assessing feature importance in machine
learning models.

INDEX TERMS Explainable artificial intelligence, counterfactual explanation, genetic algorithm, machine
learning, artificial neural network.

I. INTRODUCTION
The widespread adoption of artificial intelligence (AI) sys-
tems has hugely impacted human lives and society. Most
recent powerful AI models are based on ‘black box’ machine
learning (ML) approaches, meaning the rationale underlying
their decision-making mechanism is challenging to under-
stand and interpret [1]. This ambiguity makes these systems
difficult for end-users to trust. At the same time, the process
of inferring a classification model from examples cannot be
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controlled step by step because the size of the training data
and the complexity of the learned model are usually too
vast for humans [2]. These challenges have spurred research
interest in explainable AI (XAI). This research field seeks to
enable end-users to understand, trust, and effectively manage
their intelligent models by providing techniques for interpret-
ing and understanding the model’s behavior [3].

Some characteristics of good explanations include short-
ness/simplicity, robustness, and coherence. One popular
explanation technique involves updating features to identify
how the decisions change, called counterfactual explana-
tion [4], [5]. Counterfactual explanations can provide simple
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explanations that reflect human cognition, eliciting sponta-
neous causal thinking about what might have been the case
regarding a particular model’s output. A good counterfactual
explanation should be sparse; they need to adjust the fewest
or most important features [6], [7]. However, to the best of
our knowledge, none of the current counterfactual explana-
tion studies has considered these criteria in the explanation
generation itself.

Motivated by the limitations of existing techniques in
ML model explainability, this research aims to develop a
model that uses a custom genetic algorithm (GA) to generate
accurate counterfactual explanations. This model takes into
account feature characteristics such as correlations, impor-
tance, and weights. To assess the importance of each feature,
an adaptive GA method, inspired by [8], is proposed as an
enhancement of the custom GA. The model extends feature
weights as part of the solution (counterfactual), aiming to
adapt them automatically during the evolutionary process.
The final optimized solution, thus, will embed feature impor-
tance for analysis and consideration by the decision maker,
thereby enhancing the performance and explainability of the
AI model. By incorporating adaptive feature weights, our
GA significantly improves the productivity of the algorithm,
leading to the generation of more effective counterfactual
explanations. This not only enhances the generated counter-
factual explanations but also provides a robust framework
for assessing the significance of features in machine learning
models, thereby aiding their interpretations.

The remainder of this paper is structured as fol-
lows: Section II describes the problem formulation, while
Section III overviews some related work. Section IV explains
our proposed method. Then, Section V presents the detailed
experimental results. Finally, Section VI concludes this study
with a summary and future research directions.

II. PROBLEM FORMULATION
In this work, analyzing explainability of a model builds upon
and enhances the work in [4] named CERTIFAI (Coun-
terfactual Explanations for the Robustness, Transparency,
Interpretability, and Fairness of Artificial Intelligence). Our
proposedmodel is based on amodel-agnostic customGA that
aims to solve the following problem:

Given a black-box classifier f and an input instance x. Let
the counterfactual be a feasible generated point c. Then the
problem can be formulated as:

min d(x, c) s.t f (c) ̸= f (x) (1)

The objective is to solve (1) where d(x,c) is the distance
between x and c. Each individual c of the GA population that
has a different prediction from x is a candidate counterfactual.
The goal is to find the fittest possible c∗ to x using the
following definition:

fitness = 1/d(x, c) (2)

The possible set of individuals c ∈ I are defined by:

I = W \ P s.t P = {p|f (p) = f (x), p ∈ W } (3)

where W represent the space from which individuals can be
generated and P is the set of points with the same prediction
as x. If a user wants the counterfactual c to belong to a
particular class j, we define I as:

I = (W \ P) ∩ Q s.t Q = {q|f (q) = j, q ∈ W } (4)

FIGURE 1. The proposed model counterfactual generation process [4].

The proposed model relies on counterfactuals generated by
the GA. This generation process is based on fitness mea-
surement, where higher fitness (i.e., shorter distance) is
preferred (2). For example, Fig.1 shows the decision bound-
ary for a binary classifier with the input instance x (in blue
points). In (a), the model samples a set of points in the feature
space with the condition that they should be on the other side
of the decision boundary in (green points). Then, the GA
in (b), evolves these samples to generate individuals c that
are closer to the input point, but lie on the other side of the
decision boundary. Finally, in (c), a closer and smaller set of
counterfactuals, c∗, whose size is user-defined, is generated
which form the fittest possible counterfactuals.

III. RELATED WORK
In the last few years, a thriving field of study has been devoted
to the interpretability of machine learning models. There are
two primary techniques for ostensibly interpretable models.
One approach is to develop basic, memorized models by stor-
ing the input samples explicitly or by identifying the concept
behind the input data and memorizing their general rules,
such as decision trees and scoring systems [9], [10]. Scoring
systems are linear classification models that only require
users to do simple addition, subtraction, and multiplication
operations on a few small integers to predict without focusing
on machine learning methods to learn from data. Although
these models are widely used in medicine, using them to
learn from data is challenging because they must be precise
and sparse, contain co-prime integer coefficients, and follow
several operational restrictions [9].

For that, a more efficient approach, explainability, was
introduced, offering post-hoc explanations for possibly
sophisticated black-box models. These methods seek to
explain how a fixed model leads to a particular prediction,
either by fitting simpler, local approximations of a model
around a particular decision or data points, which is called
local approximation, or by perturbing variables to measure
how the prediction changes, which is called counterfactual
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explanation [11]. Numerous research threads are devoted to
post-hoc explanations that examine methods to explain indi-
vidual predictions. In the following subsections, we review
some local approximation methods, followed by counterfac-
tual ones.

A. LOCAL APPROXIMATION
The basic concept of local approximation is to focus on a
single instance and attempt to comprehend how the model
reached its prediction. This could be accomplished using
a simpler interpretable model to approximate a specific
region of interest in a black box model. It is described
as local because the prediction may depend linearly on
some features rather than having a complex dependence on
them [12].

In [13], they provide explanations for individual predic-
tions as a solution to ‘‘trusting a prediction’’ and ‘‘trusting
the model’’ problems, where if the users do not trust a
model or a prediction, they will not use it. These problems
directly relate to how a human understands a model’s behav-
ior rather than viewing it as a black box. They proposed a
method called Local Interpretable Model-agnostic Explana-
tions (LIME), which fits a sparse linear model to approximate
non-linear models locally. They tested simulated users and
human participants using two sentiment analysis datasets
(books and DVDs, 2000 occurrences each), where the task
was to classify product reviews as positive or negative. Their
research indicated that explanations benefit a range of models
in trust-related tasks in the text and image areas, with expert
and non-expert users choosing between models, rating trust,
improving untrustworthy models, and gaining insights into
forecasts.

In [2], they solved the challenge of explaining the
algorithm’s decision-making outcome by offering meaning-
ful explanations when automated decision-making occurs by
presenting Local Rule-Based Explanations (LORE). LORE
is an agnostic technique that uses GAs to create inter-
pretable and truthful explanations. They enhanced the LIME
technique in [13] by matching a decision-tree classifier
to approximate the nonlinear model and then tracing the
decision-tree routes to create explanations with rules for
which input attributes might differ and result in various
outcomes. To assess the mimicry performance of the deci-
sion tree inferred by LORE, they compared it to LIME
and Anchors [14] using three real-world tabular datasets:
Adult and German1 datasets from the UCI Machine Learning
Repository and Compas dataset [48]. They used the following
predictors as black boxes: support vector machines (SVM),
random forests with 100 trees (RF), and neural networks
(NN). The findings demonstrated the efficacy of the genetic
neighborhood technique, which enables LORE to outperform
other methods.

1D.DuaandC.Graff.(2017).UCIMachineLearningRepository.
http://archive.ics.uci.edu/ml.

B. COUNTERFACTUAL EXPLANATION
In counterfactual explanations, actionable feedback is
obtained by producing counterfactuals that explain alternative
scenarios. For example, a profile with changes to a candi-
date’s salary or skills is a ‘‘counterfactual’’ to the original
profile. The counterfactual explanation describes the change
to an input data point that would change a model’s prediction
for that point.

The counterfactual explanation was introduced by [15] as
a novel way for explaining automated decisions. It addresses
various issues raised by previous research on algorithmic
interpretability and accountability. Recently, new regula-
tions were enacted to ensure the verifiability, accountability,
and, most crucially, complete transparency of algorithmic
decisions. A major example is the new European General
Data Protection Regulation (GDPR and ISO/IEC 27001)
[16], which became effective in May 2018 and grants data
subjects the right to an explanation of algorithmic deci-
sions [17]. However, in [15] it was demonstrated that the
GDPR needs more support to achieve the stated objec-
tives. They proposed three objectives for explanations to
assist data subjects: (1) to inform and assist the subject
in comprehending why a particular decision was made,
(2) to provide foundation for contesting adverse decisions,
and (3) to comprehend what could be modified in the future
to achieve the desired outcome, using the current decision-
making model. They introduced the concept of unconditional
counterfactual explanations as a novel approach to explaining
automated decisions that solve several difficulties encoun-
tered in existing research on algorithmic interpretability and
accountability. They used the LSAT [18] and Diabetes [19]
datasets to demonstrate their approach to the problem of
law school admissions and risk variables that enhance a
patient’s likelihood of developing diabetes. They concluded
that unconditional counterfactual explanations could find a
middle ground between data subjects’ and controllers’ inter-
ests, which would otherwise function as an obstacle to a
legally obligatory right to explanation.

Producing counterfactuals does not imply that changes
have to be actionable or feasible. An actionable change
does not change immutable features nor mutable features
in an infeasible way (e.g., has_phd from true to false). The
mutable features are changeable attributes that can change
over time, such as tastes, preference for a specific genre of
music, support for a particular football team, or style of dress.
The immutable features represent those attributes that cannot
change, such as race or gender [20]. So, if the employment
system rejects a person, he would like to know how he can
get the job or what could be changed in his application to
get the job. In such a case, actionable changes are mandatory.
To this end, a person’s ability to change a model’s decision
by altering feasible input variables was proposed by [21].
They used an integer programming routine that produces
two methods. The first method evaluates the counterfac-
tual feasibility and difficulty of a linear classifier over its
population.
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In contrast, the second one generates a list called a flipset
of the actionable changes for the person. They used these
methods in credit scoring problems with three experiments,
each using a different real dataset: Credit dataset [22], Give-
MeCredit,2 and German dataset. Their experimental study
aims to evaluate the disparity in the counterfactual explana-
tion of a classifier and to demonstrate how common practices
in the development and deployment of machine learning
models affect actionable changes, such as feature selection
and parameter tuning. They found variance in the complexity
of gaining the provided counterfactual state across genders,
demonstrating a significant difference in the cost of counter-
factual generation.

For linear models, a recent paper by Russell [23] mainly
focuses on the problem of explaining financial decisions
where the classifier is linear. They used integer programming
to construct an efficient technique for discovering varied
counterfactuals. They validated it by creating varied counter-
factuals for mixed data (FICO dataset) on various of situa-
tions, where all produced explanations are human-readable
text that demonstrates the minimal adjustments required.
Additionally, when using the LSAT dataset [18] to examine
inequality, the variety of explanations presented highlights
the racial bias.

Evaluating models’ explainability, accountability, and fair-
ness is usually done separately usingmultiple tools. However,
in [4], analyzing the robustness, fairness, and explainability
of a classifier was done in one single framework named
CERTIFAI (Counterfactual Explanations for the Robustness,
Transparency, Interpretability, and Fairness of Artificial Intel-
ligence). CERTIFAI uses a custom GA, which is flexible,
model-agnostic, and does not need access to model internals.
It relies on counterfactuals generated by the GA given a
black-box classifier and an input instance. CERTIFAI uses
the generated counterfactuals to analyze models’ robustness,
fairness, and explainability. In the experiments, the CER-
TIFAI framework was tested to evaluate the robustness of
classic classifiers (decision trees (DT), SVM, and multilayer
perceptron (MLP)) using three data sets (Diabetes, Breast
Cancer, and Iris). On the other hand, explainability and fair-
ness were evaluated using the UCI Adult dataset. The results
demonstrate the flexibility of the GA in providing plausible
counterfactual explanations and how to use them to compre-
hend critical features, as well as how robustness and fairness
can be quantified using fitness values obtained during the
counterfactual generation process.

The explainability of a model usually comes as a response
to people’s concerns. People may feel that they do not under-
stand a model, what information the model relies on, and
how this information is being used. Also, people may be
worried that models might behave in unfair ways. Most
works, as shown above, focus primarily on explainability and
fairness (except for CERTIFAI [4], which adds robustness to

2Kaggle Give Me Some Credit. http://www.kaggle.com/c/GiveMeSome
Credit/.

these concerns). However, some applications focus only on
robustness, particularly within neural networks. For exam-
ple, the explainability of computer vision models poses an
especially compelling challenge since extremely tiny modifi-
cations to the input image can easily trick a neural network,
even when the benign case is correctly classified and the shift
is unnoticeable to the human eye. Apart from the obvious
security implications, such incidents reveal that our existing
models cannot robustly learn the fundamental concepts. Con-
sequently, an important question arises: How can we train
deep neural networks (DNNs) that are robust to adversarial
inputs?

To tackle this challenge, a defensive distillation approach
was proposed by [24]. Distillation is a training method origi-
nally developed to train a DNNwith knowledge from another
DNN. Instead of transferring knowledge between different
architectures, defensive distillation employs the knowledge
acquired from a DNN to improve its resilience to adversarial
samples. It is used to train an arbitrary DNN and increase its
robustness, reducing the success rate of the current attacks’
ability to find adversarial examples.

In [25], they presented GeCo, which relies on a customized
GA to favor searching counterfactual explanations with the
smallest number of changes (plausible counterfactual). The
primary performance limitation in GeCo is the repeated
calls to selection and mutation operations, so two optimiza-
tion procedures were introduced. They introduced a lossless,
compressed data representation of candidate counterfactu-
als (generated population during the genetic algorithm) to
optimize mutation. Also, to optimize selection, they used a
partial evaluation technique to optimize the evaluation of the
classifier. In the experiments, they compared GeCo against
five other systems: MACE [26], DiCE [27], WIT (Google’s
What-if Tool) [28], CERTIFAI [4], and SimCF [29]. They
used four real datasets: Credit [22] and Adult (from the
UCI repository), Allstate,3 and Yelp.4 GeCo finds a valid
counterfactual explanation close to the distance of the optimal
explanation in linear runtime.

In [30], they introduce the DisCERN algorithm, a case-
based counterfactual explanation generator. The counterfac-
tuals are generated by changing feature values from the
nearest unlike neighbor (NUN) until an actionable change
is found. The DisCERN algorithm utilizes explainers based
on feature relevance, such as LIME and SHAP, to deter-
mine the minimum feature changes required to provide a
counterfactual explanation from the returned NUN. The Dis-
CERN algorithm is evaluated on five datasets, compared
to the commonly used counterfactual approach DiCE [27].
The performance of both algorithms is measured using the
number and amount of changes made to the features. The
results indicate that DisCERNhas either surpassed or attained
performance similar to DiCE.

3Allstate. 2011. Allstate Claim Prediction Challenge. https://www.
kaggle.com/c/ClaimPredictionChallenge.

4Yelp. 2017. Yelp Dataset Challenge. https://www.yelp.com/dataset/
challenge/.
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FIGURE 2. Initial solution representation example.

In [31], they propose a novel optimization formulation
that generates sparse counterfactual explanations via another
custom genetic algorithm to explain the black-box model’s
predictions. They provide a novel formulation of the opti-
mization problem that leads to a single sparse counterfactual
explanation using GA, where the normalization of continu-
ous features and selection of predictive features achieves a
computationally efficient generation of counterfactuals. They
evaluated the efficacy of the proposed method on two credit
scoring datasets -German and Home Loan Equity (HMEQ) -
by comparing the generated counterfactual explanations with
explanations from credit scoring experts. The experimental
results indicate that the proposed approach efficiently gen-
erates sparse counterfactuals compared to a similar method,
CERTIFAI [4].

None of the proposed explanation techniques provides
counterfactuals that include the importance of features or
groups of features in the explanation. They may be able
to predict the importance of some features by analyzing
the results produced by the model, for example, by notic-
ing which features change more frequently in the produced
counterfactuals [4]. However, none of them produce coun-
terfactual explanations that include weights for features to
indicate their importance. Embedding feature weights in the
counterfactual explanation itself is helpful for individuals,
model developers, and regulators to understand the model’s
behavior and take more informed decisions that can help
resolve the current situation. For example, this is done by
focusing on the features (or groups of features) that are more
important in reversing the decision and producing the desired
outcome. Our proposed method attempts to bridge this gap
by embedding feature weights as part of the counterfactual
solution to optimize feature values and weights alongside
each other during the evolutionary process, as explained next.

IV. PROPOSED ALGORITHM
Natural genetics served as the foundation for the widely used
optimization methods known as evolutionary algorithms,
where GA (Genetic Algorithm) is the most popular variant.
To find a solution that is almost optimal, GA produces a
set of solutions through selection and merging. A population
is a collection of chromosomes, where each chromosome
represents an individual problem solution. In the first stage,
a population is generated through a random process, fol-
lowed by the assignment of a fitness score to each individual
chromosome based on a predetermined fitness function. The
following stages involve the selection of the most promis-
ing individuals, based on their fitness, to undergo genetic

operations, such as crossover and mutation, to generate a
new population. These operations are iteratively performed
until a predetermined number of generations is attained or a
termination condition is met.

It has been found in the literature that the search perfor-
mance of evolutionary algorithms is usually improved with
adaptive strategies or dynamic control parameters such as
adaptive GA [32]. Thus, our proposed GA algorithm: Adap-
tive Feature Weight Genetic Explanation (AFWGE) makes
use of features weights, which are experimentally deter-
mined. These weights take specific values in the algorithm,
where they are equally initialized and then evolved adap-
tatively during the search. Consequently, search accuracy,
exploration, exploitation, convergence speed, and overall
algorithm behavior are guided by these adaptive weights.
In fact, these weights have a significant impact on the behav-
ior of the method since they are also optimized together
with the main optimization of the counterfactual solution.
The general framework of AFWGE algorithm is shown in
Algorithm 1 and the flowchart in Fig.3, where the general
structure of CERTIFAI [4] is followed, but with key modi-
fications which are pointed out in the following subsections
that explain in detail the behavior of AFWGE.

A. POPULATION GENERATION
For a given instance x the counterfactual explanation c∗

is generated using a GA. Like CERTIFAI, the proposed
algorithm starts with an initial population N of randomly
generated k chromosomes, where k is the population size,
and each chromosome is an individual solution. As shown in
Fig.2 a solution in AFWGE is represented as a chromosome
composed of twomain parts: counterfactual and weights. The
counterfactual part is the list of n features Fx with their values
(top row of the chromosome in Fig.2), while the second
part (lower row of the chromosome) is the features weights.
In AFWGE, each feature is assigned an initial weight w=1/n
where the sum of all the feature weights w0 + w1+. . . . +wn
is equal to 1. Both features’ values and their weights are
the evolved elements of the solution during the processing
of the AFWGE algorithm. In the features values part of
the chromosome, a feature is either categorial or numerical
feature. A categorial feature value indicates one category of
a categories’ group and is represented in a textual format.
On the other hand, a numerical feature value, as the name
implies, is represented in the form of a number. In Fig.2, the
features F1, F2, and F4 are categorical features, while F3, and
F5 are numerical ones. To generate realistic chromosomes,
the features values are generated based on the values found
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in all data instances (line 8 in Algorithm 1). For categorial
features, the value is generated by choosing one of the feature
categories randomly over all instances, whole for numeri-
cal features, the value is generated randomly between the
minimum and the maximum values of the feature over all
instances. However, this feature values generation procedure
follows the constraints that consider mutable and immutable
features. Features values generated for mutable features can
be changed, such as body weight, blood pressure, salary,
and working hours. On the other hand, there are no values
generated for immutable features, such as sex, race, and age.
In other words, immutable features have fixed values all over
the generated chromosomes since they can’t be changed.
Moreover, some feature values can be generated following
partial constraints, where a feature can be changed according
to a certain limitation. For example, age can increase but not
decrease (i.e., obviously, people can get older, but none can
get younger).

After the population N , consisting of the k chromosomes,
has been generated, the chromosomes are evaluated based on
their objective function score (1), where the chromosomes
with minimum distance are the best, and the ones with the
maximum distance are the worst (line 9 in Algorithm 1).
Then, selection Select as refining process is performed,
where a predetermined number Z of the best chromosomes
are selected to undergo crossover, followed by mutation
(line 10 in Algorithm 1).

B. CROSSOVER
In crossover (line 11 in Algorithm 1), some of the chro-
mosomes Z ′ are selected from Z using binomial random-
ization with crossover probability Pc and a random list of
features Y are selected. Then, from Z ′, multiple couples of
chromosomes are randomly selected and crossed by exchang-
ing their Y features values. Fig.4 shows a crossover example
where chromosomes A and B are selected to be crossed-over
by exchanging a list of Y features values, which are the sec-
ond and fifth feature. The new produced chromosomes are the
children called offsprings O. Contrary to CERTIFAI, where
offsprings directly replace their parents in the population,
in AFWGE, if the offsprings have higher fitness -closer to
the instance x- than the parents, they replace their parents
in the population as new chromosomes; thus, the population
N is updated forming N ′, otherwise these offsprings are
discarded and the parents are retained. We also note that
only feature values are involved in the crossover operator
while feature weights remain intact in the chromosome dur-
ing crossover. Feature weights are evolved using mutation as
will be explained next.

C. MUTATION
After crossover, the new chromosomes O are mutated
by updating both feature values and weights (line 12 in
Algorithm 1). Feature values are mutated by updating a few
numbers of features, which are selected by binomial random-
ization with a certain mutation probability.

Algorithm 1 AFWGE
1: procedure findCounterfactuals(Model, Dataset, Select,

k, Generations, Constraints, q, pc, pm)
2: counterfactualsList← empty list
3: for x ∈ Dataset do // x is one instance of Dataset
4: bestFitness← large number
5: terminationCounter←0
6: populationList← empty list
7: for i← 0 to Generations do
8: N← generate(x, k, populationList, Constraints)
9: populationList← evaluate(N)
10: Z← select(N, Select)
11: N′, O← crossover(N, x, Z, pc)
12: N′′← mutate(N′, x, O, pm)
13: N′′′← filter(Model, N′′, x)
14: populationList← evaluate(N′′′)
15: if (populationList = k)

and (i ̸= Generations) then
16: j← randomInteger(k/2, k-2)
17: populationList← replace(populationList, j)
18: end if
19: fitness← getFitness(populationList[0])

//best counterfactual fitness at index[0]
20: if fitness < bestFitness then
21: bestFitness←fitness
22: terminationCounter← 0

//reset terminationCounter countdown
23: else
24: terminationCounter← terminationCounter+1
25: end if
26: if terminationCounter = 5 then
27: break
28: end if
29: end for
30: counterfactualsList← getCF(populationList, q)

//get best q counterfactuals
31: end for
32: return counterfactualsList
33: end procedure

For each chromosome in O, following the approach in
CERTIFAI, a categorial feature is mutated by copying the
same feature value from another randomly selected chro-
mosome in the N′ population, while numerical features are
mutated by the taking the average of the same feature values
of two randomly selected chromosomes from N ′. For exam-
ple, in Fig.5, chromosome A is selected for mutation, and the
first and third features are selected to be mutated. Since the
first feature value a is a categorial feature, it is mutated by
copying the feature value from any other randomly selected
chromosome. In this example, B is selected which has the
value d for the first feature. Thus, the first feature of chro-
mosome A is updated from a to d by copying the value of
chromosome B’s first feature. On the other hand, the third
feature, which is numerical, is mutated using the average
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FIGURE 3. Flowchart of AFWGE algorithm to generate counterfactual explanations.

value of the third feature in chromosomes B and C that are
selected randomly.

Additionally, in AFWGE, feature weights are mutated by
updating two different randomly selected feature weights
for chromosomes O. One feature weight will be incre-
mented while the other is decremented with the same
amount to preserve the features weights summation adding
up to 1. In Fig.5, the second and fourth feature weights
are selected for mutation. The second feature weight 0.2 is
incremented by 0.1 (which is half of the initial weight 0.2) and

becomes 0.3, while the fourth feature weight 0.2 is decre-
mented by 0.1 and becomes 0.1. The amount of change is
fixed to half of the initial weight w=1/n, as this value was
found to provide reasonable impact on the chromosome’s
features’ roles. 50% of the initial weight is considered a
median value that is neither too small to be useless nor too
large to potentially cause domination or vanishing problems
for the feature’s role. The dominating problem occurs when a
chromosome’s feature weight becomes the largest, with sig-
nificant differences compared to other weights. Conversely,
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FIGURE 4. Crossover example.

FIGURE 5. Mutation example.

the vanishing problem may occur when a chromosome’s
feature weight becomes the lowest, again with a significant
difference from other weights. In fact, in case the same feature
of the same chromosome has been accidentally incremented
or decremented multiple times, a dominating/vanishing prob-
lem may occur. For that, after each weight mutation, the
incremented weight should not exceed the maximum weight,
which is set to double the initial weight, and not less than the
minimum weight, which is set to the half the initial weight.
As done in crossover (Section IV-B), if the mutated chromo-
somes have higher fitness (i.e., closer to the original instance
x), their features’ new weights are set and the population is
updated to N ′′, otherwise the weights before mutations are
restored.

D. FILTRATION
The mutated population N′′ is then filtered by checking its
chromosomes’ predictions, using the same black box model
used to generate the original predictions. Since the intention
is to obtain counterfactual explanations having a different
outcome than the original instance, the chromosomes that
produce the same prediction as the original instance x are
removed. Thus, the population N′′ is updated to N′′′ by keep-
ing only the chromosomes that provide a different prediction
than the prediction of the instance x (line 13 in Algorithm 1).

E. RE-EVALUATION
Then, for the population N′′′ the chromosomes are
re-evaluated and sorted ascendingly based on their objec-
tive function score in (1), (line 14 in Algorithm 1). If the
maximum number of generations is not yet reached, nor the
termination condition occurred, all the steps are repeated,
starting with the generating stage. The population thus keeps
evolving from one generation to the next, until the termination

condition is satisfied, which is when the best fitness value
remains unchanged for five consecutive generations.

F. REPLACEMENT
Contrary to CERTIFAI that appends the population over
generations, with each generation’s round beginning with
a completely random population, AFWGE supplements the
filtering process. After the population undergoes filtration,
resulting in a decrease in the number of chromosomes from
the original population size k , AFWGE replenishes the
population list in the next round by producing enough chro-
mosomes to reach the required population size k . However,
generation after another, the population list may become full
of k chromosomes that provide different predictions from
the original instance prediction. In such a case, and if the
termination condition has not yet been met, it will not be
possible to proceed to the next round with a full population
list. Additionally, there will be no benefit from the generation
stage as there is no available space for any new chromo-
somes. For that, at the end of each round, the population
list size is checked for being full. If it is full, a number j
of fittest chromosomes is kept in the population and the rest
are discarded. The j number is determined randomly to be a
number between k/2 and k-2. This allows to update the pop-
ulation list over generations with different unknown number
k-j of new randomly generated chromosomes. In other words,
there is a chance to exchange only two chromosomes up to
half of the best of the population list with new randomly
generated chromosomes each generation. This approach is
contrary to a steady convergence in the objective space,
which may result in the elimination of converged sub-optimal
solutions that may be helpful to improve the diversity of the
population and avoid premature convergence [33]. To over-
come this drawback, AFWGE attempts to obtain a balance
between convergence and diversity over the search space.

75000 VOLUME 12, 2024



E. AlJalaud, M. Hosny: Counterfactual Explanation of AI Models Using an Adaptive GA

In other words, keeping the chromosomes with best fitness
increases the convergence speed to the best solutions, while
adding new randomly generated ones increases the diversity
of the solutions to reach better local optima. Moreover, the
random changing ratio between the best and random chromo-
somes dynamically control the diversity-convergence balance
(line 17 in Algorithm 1).

G. FITNESS
Each individual chromosome belonging to the
population N is a candidate counterfactual c for instance
x such that f (c) ̸= f (x). The goal is to find the fittest
possible counterfactual c∗ of the instance x. The fitness for
an individual chromosome is defined as in (2). For distance
calculation, theManhattanDistance is used for numerical fea-
tures, and a simple matching distance is used for categorical
features. Both types of distances, numerical and categorical,
are multiplied by their corresponding feature weights. For
that, min-max normalization (usually called feature scaling)
performs a linear transformation on the original data. This
technique converts all the scaled data to the range 0 to 1 [34].
Normalization requires access to the training data. In our
model development and experiments, the training data is
accessible, so normalization is possible. The distance metric
used wherem is the list of numerical features, and u is the list
of categorial ones is defined by (5):

d(x, c) =
∑m

i=1
[(|xi − ci|)× wi]

+

∑u

i=1
[Match (xi, ci)× wi] (5)

where for a categorical feature a, a simple matching distance
is defined by (6):

Match (xa, ca) =

{
0 if xa = ca
1 if xa ̸= ca

(6)

V. COMPUTATIONAL EXPERIMENTATION
The experiments aim to apply AFWGE and compare it with
the state-of-the-art method in [4] called CERTIFAI. As pre-
viously motioned, the main difference of AFWGE lies in
incorporating feature weights as part of the chromosome
and dynamically evolving them alongside the feature values
throughout the evolutionary process. AFWGE is experimen-
tally tested to determine its effectiveness in adapting feature
weights directly into the counterfactual explanation genera-
tion. Thus, the objective is to assess its utility for individuals,
model developers, and regulators in enhancing their under-
standing of themodel’s behavior. In the following subsections
we explain the details of the experimental setup and the
implementation environment used to test our approach, fol-
lowed by the detailed results obtained.

A. EXPERIMENTAL SETUP
1) DATASET
We considered the same four real datasets used in CERTI-
FAI [4]: (1) The Adult dataset [35], used to predict whether

the income of an adult exceeds $50K/year using US census
data from 1994; (2) The Diagnostic Wisconsin Breast Cancer
dataset [36] to diagnose whether a breast tumor is malignant
or benign; (3) Pima Indians Diabetes [37] to predict whether
or not a patient has diabetes, based on certain diagnostic
measurements, where all patients are females at least 21 years
old of Pima Indian heritage, and (4) The Iris dataset [38]
to predict the type of the Iris plant from 3 types. Table. 1
provides the considered datasets details for the experiments.

In each experiment, all the dataset’s instances, which is the
dataset size, was fully used as a sample input in the experi-
ment, with the exception of the Adult dataset. For this dataset,
a sample was chosen randomly (5000 & 100 instances)
because of the huge time needed to obtain the counterfac-
tuals for the whole dataset consisting of 48842 instances.
The 5000 Adult instances needed almost 17 to 21 days, so to
run multiple tests, only 100 instances were chosen randomly
and considered as the sample size.

2) RIVAL ALGORITHIMS
WebenchmarkedAFWGE against CERTIFAI reported in [4],
where we reimplemented CERTIFAI using its publicly avail-
able source code5 and used the same experimental parameters
for both for the sake of a fair comparison.

TABLE 1. Characteristics of the datasets.

3) EVALUATION METRICS
We used the following five metrics to evaluate the quality of
the produced counterfactual explanation:

1. Proximity: The distance between counterfactual c and
the original instance x. The higher the counterfactual expla-
nation fitness, the closer it should be to the original instance x
with respect to feature values [39]. We computed the dis-
tances in (5) based on the features including their weights.
On the other hand, CERTIFAI is a non-adaptive genetic
algorithm, so the features are assumed to have equal weights
to ensure a fair distance comparison. For CERTIFAI, these
weights have no role in the algorithm’s behavior nor its
decisions.

2. Sparsity: The number of features changes in a coun-
terfactual c. An efficient counterfactual explanation should

5https://github.com/Ighina/CERTIFAI
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minimize the number of changed features to enhance its
understanding and effectiveness [40].

3. Number of objective function evaluations: this mea-
sure is used as an indication of the computational cost
of the algorithm, as the objective function is the most
time-consuming part of the algorithm.

4. Plausibility: A counterfactual c should come from a
possible world. This implies that the feature values of the
counterfactual should not exceed or fall below those that are
observed in the data [39]. Additionally, the counterfactual
should not be identified as an outlier to the instances in the
data. The plausibility of an explanation is crucial for building
trust. It is difficult to trust a counterfactual of an unreal-
istic feature combination that is incompatible with existing
examples in the data. In contrast, a plausible counterfactual
becomes ‘‘realistic’’ when it is close to the known dataset and
follows the observed correlations between the features [39].
For example, if a counterfactual suggests increasing the edu-
cation level to a Master’s degree to obtain a different desired
outcome, then the age of the person also needs to change as
it is linked with the educational level over the data.

5. Processing time: The average CPU time it takes to
generate an explanation for single instance x. To compare
runtimes, both AFWGE and CERTIFAI return multiple coun-
terfactuals for each instance. We only consider the highest
fitness counterfactual in this evaluation.

4) THE CLASSIFICATION MODEL
We evaluated the performance of the algorithms on a
multi-layered perceptron (MLP). For the comparison with
existingmethods, we should use the same classifier to guaran-
tee a fair comparison. Thus, we considered the same classifier
proposed by CERTIFAI [4], which is a four layers neural
network with an input layer, two hidden layers of 20 neurons
each, and an output layer with ReLU activation, trained on
the four datasets listed above with an 80-20 training-testing
split.

5) SETUP
We implemented AFWGE and CERTIFAI in Python 3.10. All
experiments were run on MAC studio M1 Ultra with 128 GB
RAM.We used the default hyperparameters as recommended
in [2] and [41]. The parameters of the genetic procedure,
namely probabilities of crossover and mutation, number of
generations, and population size were set with the default
values of 0.7, 0.2, 10 and 1000, respectively. The number
of generations was set to 10 after multiple tests with dif-
ferent numbers of generations equal to 10, 15, and 20. The
termination condition was set to no improvement for 5 con-
secutive iterations; however, it was noted that the fitness does
not improve beyond the ninth generation in both AFWGE
and CERTIFAI for all four datasets. For the selection, it is
recommended to select 40% of the population to undergo the
evolutionary process [42]; however, after multiple tests with
selection values equal to 200, 400, and 600 individuals, we set

the selection value to 400, which achieved best performance
for all datasets.

B. RESULTS AND DISCUSSION
This section presents the outcomes of AFWGE in comparison
to CERTIFAI [4] and analyzes them in various subsections
according to the aforementioned evaluation criteria. At first,
we assess and compare the distances and the number of fea-
ture changes. Next, we analyze the features importance and
correlations from various perspectives. After that, we com-
pare the number of objective function evaluations. Next,
we analyze the counterfactual plausibility of AFWGE and
CERTIFAI. Finally, we compare the computational time for
both methods.

1) COMPARISON OF DISTANCES AND NUMBER OF
FEATURE CHANGES
Table.2, 3, 4 and 5 present the results obtained from running
each algorithm ten times. The tables display the mean and
standard deviation values of the distance between the original
instance and the generated counterfactuals, along with the
number of feature changes for the Adult, Breast Cancer, Pima
Indian Diabetes, and Iris datasets, respectively. What stands
out in these tables is the significantly lower distance and
number of feature changes observed in the counterfactuals
generated by AFWGE. In comparison to CERTIFAI’s coun-
terfactuals; the mean distance of AFWGE is lower by 19.5%,
8.5%, 12%, and 37.2% for the Adult, Breast Cancer, Pima
Indian Diabetes, and Iris datasets, respectively. Additionally,
AFWGE reduces the mean number of feature changes in
CERTIFAI’s counterfactuals for the Adult, Breast Cancer,
Pima Indian Diabetes, and Iris datasets by 13.7%, 2.3%,
10.1%, and 4.8% respectively. Moreover, AFWGE exhibits a
very low standard deviation (STD), indicating its robustness,
although slightly lower than CERTIFAI.

TABLE 2. Comparison between the distance and the number of features
changes, for the counterfactual explanations of AFWGE and CERTIFAI on
the Adult dataset.
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TABLE 3. Comparison between the distance and the number of features
changes for the counterfactual explanations of AFWGE and CERTIFAI on
the Breast Cancer dataset.

TABLE 4. Comparison between the distance and the number of features
changes, for the counterfactual explanations of AFWGE and CERTIFAI on
the Pima Indian Diabetes dataset.

To facilitate a side-by-side comparison of the distance
and number of feature changes results between AFWGE and
CERTIFAI, box plots were used, as illustrated in Fig.6 and
Fig.7 for the distance and the number of feature changes
respectively. From both figures, it is evident that AFWGE
exhibits significantly lower values for both distance and num-
ber of feature changes compared to CERTIFAI. Furthermore,
a Wilcoxon Signed-Rank test was conducted on the results
to ascertain the presence of any statistically significant dif-
ference between the two methods. The Wilcoxon test uses
the following null h0 and alternative hA hypotheses (h0 : The
average distances and number of changes is equal between
the two groups, hA: The average distances and number of
changes is not equal between the two groups). Interestingly,

TABLE 5. Comparison between the distance and the number of features
changes, for the counterfactual explanations of AFWGE and CERTIFAI on
the Iris Diabetes dataset.

for both measures and for all four datasets, there was a
significant difference at a significance level of α = 0.05; thus
the null hypothesis was rejected. This is a sufficient evidence
that the distances and number of feature changes produced
by AFWGE are significantly less than those generated by
CERTIFAI.

2) ANALYSIS OF FEATURES IMPORTANCE
Changing a particular feature more often than another when
comparing the input and its counterfactuals implies that that
feature is more significant for a model [4]. As reported in [4],
CERTIFAI’s number of feature changes represents features’
importance, since it is similar to those returned by Python’s
XGBoost library [43]. On the other hand, AFWGE changes
less features than CERTIFAI, which indicates sparser coun-
terfactuals (refer to the definition of sparsity at the beginning
of Section V.1, Evaluation Metrics). It is intriguing to inves-
tigate whether AFWGE alters features in a manner that
contradicts their importance as reported in [4]. In other words,
does the achieved sparsity by AFWGE impact the interpre-
tation of feature importance as reported in CERTIFAI? To
answer this question, we plot the number of feature changes
distribution for both algorithm for all four datasets in Fig.8.

Looking at Fig.8, it appears that AFWGE changes the
features in a similar manner to CERTIFAI. To confirm this
observation, a Chi-Squared test was carried out. It uses the
following null and alternative hypotheses (h0: There is no
difference in the distribution of the number of feature changes
between AFWGE and CERTIFAI, hA: There is a significant
difference in the distribution of the number of feature changes
between AFWGE and CERTIFAI). If the Chi-squared value
is equal to or larger than the critical value, the null hypothesis
rejected. Otherwise, the null hypothesis is accepted. In the
results, for all four datasets, the Chi-squared value is smaller
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FIGURE 6. Comparison between the averages of the distances of the
explanations produced by AFWGE and CERTIFAI on the four datasets. The
green dashed line ( _ _ _ _ ) represents the mean value, and the blue
straight line ( ____ ) represents the median.

than the critical value at α = 0.05, so the null hypothesis can
be accepted. Thus, there is no difference in the distribution of
the number of feature changes between AFWGE and CER-
TIFAI. However, same distribution does not necessarily mean
that they are identical. The distribution describes the feature
changes behavior from a probabilistic standpoint [44]. This
implies that the occurrence of each feature change is equally
likely in both. In other words, although AFWGE changes less
features than CERTIFAI, meaning that is sparser, it preserves
the features significance as in CERTIFAI.

We also questioned whether feature weights correspond
to features importance for the model. To investigate this,
we compared the feature weights produced by AFWGE with
the feature importance returned by Python’s XGBoost [43]
for the Pima Indians Diabetes dataset, which is also reported
in CERTIFAI. For both XGBoost and CERTIFAI, BMI and
Glucose were found to be the most important features in

FIGURE 7. Comparison between the averages of the number of features
changes for the explanations produced by AFWGE and CERTIFAI on the
four datasets. The green dashed line ( _ _ _ _ ) represents the mean value,
and the blue straight line ( ____ ) represents the median.

predicting diabetes risk. Interestingly, the feature weights
produced by AFWGE, as depicted in the chart in Fig.9, pro-
vides almost the same feature ranking of feature importance
as done by both XGBoost and CERTIFAI. BMI and Glucose
have the highest weights, while skin thickness feature is the
lowest.

3) COMPARISON OF NUMBER OF OBJECTIVE FUNCTION
EVALUATIONS
In the next experiment, we examine the fitness values and
the quantity of objective function evaluations for both algo-
rithms, as depicted in Fig.10. Fig.10 (b) shows that AFWGE
carries out a larger number of evaluations of the objective
function than CERTIFAI, with a percentage difference of no
more than 40% for generating counterfactuals. Indeed, this
is somehow expected since AFWGE assesses each chromo-
some following crossover and mutation and compares it with
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FIGURE 8. Distribution of the number of feature changes for the explanations generated by AFWGE and CERTIFAI on the four datasets.

FIGURE 9. Feature importance for the model, trained on the Pima Indian
diabetes dataset, measured by the weight of a feature to generate the
counterfactual.

its parents to choose the best one, prior to updating the popu-
lation. On the other hand, with respect to fitness, as computed
by (2), Fig.10 (a) shows that the average fitness achieved by
AFWGE exhibits a larger value compared to CERTIFAI’s.
Overall, upon examining Fig.10, it is evident that AFWGE
yields superior fitness as the number of objective function
evaluations increases. However, a direct comparison of the
ratios of these AFWGE metrics reveals that they are not
proportional. In other words, the number of objective function
evaluations increases at a higher rate than the improvement in
fitness, which is a side effect of the enhanced fitness achieved
by AFWGE.

FIGURE 10. Comparison of the overall averages fitness and objective
function evaluations by AFWGE and CERTIFAI on the four datasets.
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TABLE 6. AFWGE generated counterfactuals properties.

FIGURE 11. Comparison of the overall average processing time for the
explanations of ten runs by AFWGE and CERTIFAI on the four datasets.

4) ANALYSIS OF PLAUSIBILITY
As previously mentioned, plausibility in counterfactuals is
fundamentally a relationship concept that if one feature
changes, we must consider how other features change along-
side that feature [39]. To assess the plausibility achieved by
both methods under consideration, we analyzed the corre-
lation of features using Pearson’s correlation on the Breast
Cancer dataset. This dataset was chosen because it contains
highly correlated features, as illustrated in Fig.11 (a). The
correlation is calculated and represented using a heat map,

where the more the features are correlated, the more the cor-
responding cell becomes red. To get an accurate perception
of the correlations, we considered twelve features which are
the most correlated features of the Breast Cancer dataset.
Then, we compared which method, AFWGE or CERTI-
FAI, provides more plausible counterfactuals. Recall, though,
that AFWGE’s produces counterfactuals guided by feature
weights, where the higher the weight of the feature, the more
the probable the change in this feature. Thus, we calculated
the feature weights correlation for AFWGE in Fig.11(b),
as opposed to the number of feature changes correlation for
CERTIFAI in Fig.11(c).

When analyzing correlations, the method that yields more
plausible counterfactuals takes into account the dataset’s
feature correlations more effectively than the other method.
In other words, the plausibility of the produced counterfactu-
als increases as they better preserve the correlation among the
features in the dataset [4], [31]. So, in Fig.12, we compared
the correlations exhibited by both AFWGE and CERTIFAI to
the Breast Cancer’s features correlation.

As can be seen in Fig.12 (a) and (b), the similarity between
AFWGE’s and Breast Cancer features correlations is remark-
able, while CERTIFAI’s correlation tends to move farther
from the Breast Cancer features ( Fig.12 (c)).
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FIGURE 12. Correlation graph using Pearson’s correlation for the twelve most correlated features of Breast Cancer dataset.

FIGURE 13. Compare (b)AFWGE and (c)CERTIFAI counterfactuals plausibility by comparing which one provides more similar correlation graph to the
(a)Breast Cancer dataset features correlation.
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The aim of calculating the correlations is to ensure the
plausibility of counterfactuals. This means that a model
should consider changing more features that are correlated
when generating the counterfactuals. For instance, if an
applicant is denied a housing loan, a plausible counterfac-
tual may suggest changing multiple associated features to
increase the likelihood of loan approval, such as increasing
their salary, which may require obtaining higher educa-
tion, or changing their social status to married, as couples
have higher chances of loan approval. However, altering
all three correlated features can complicate the genera-
tion of counterfactual explanations and affect their sparsity.
Hence, it is preferable to change fewer correlated features to
achieve counterfactual sparsity while maintaining plausibil-
ity. To strike a balance between these requirements, the model
should prioritize highly correlated features when generating
counterfactuals [31].

5) COMPARISON OF PROCESSING TIME
Finally, we investigated the tradeoff between the quality and
the processing time of the counterfactual explanations for the
considered algorithms on all datasets. As shown in Fig.13,
AFWGE consumes considerably more processing time than
CERTIFAI. However, as suggested in [40], the processing
time overhead is not significant for all counterfactual expla-
nation applications. In fact, the rapid development of one
or more counterfactual explanations is relevant for only cer-
tain applications that require an immediate response such
as machine teaching, where explanation algorithms need to
perform in real-time, and in low-complexity platforms like
mobile devices [45].

6) RESULTS SUMMARY
Based on the extensive experimental results on various
data sets, the Wilcoxon test indicates that the distances
produced by AFWGE are significantly less than those
of CERTIFAI. Similarly, the number of feature changes
with AFWGE is significantly lower than those of CERTI-
FAI. Additionally, AFWGE changes features according to
weights, demonstrating closer correlations to the dataset fea-
tures’ correlation compared to the number of feature changes
correlation exhibited by CERTIFAI. In summary, AFWGE
results reported smaller distances and a fewer number of
feature changes, indicating better counterfactual explanation
effectiveness [40]. Moreover, AFWGE generated counterfac-
tual explanations that fulfill fundamental properties: validity,
proximity, sparsity, plausibility, and actionability of expla-
nations. These properties of AFWGE counterfactuals are
reviewed and validated in Table. 6.

VI. CONCLUSION
This study introduced an Adaptive Feature Weight Genetic
Explanation (AFWGE) method, a novel approach for
generating counterfactual explanations in explainable AI.
By leveraging a genetic algorithm with embedded feature
weights, AFWGE significantly enhances the performance of

counterfactual generation, producing more efficient coun-
terfactual explanations. The innovation lies in introducing
feature weight adaptation, seamlessly integrated into the opti-
mization process of generating counterfactuals. The empir-
ical results demonstrate the effectiveness of this approach,
showcasing superior proximity, sparsity, plausibility, and
actionability of the generated counterfactuals. Furthermore,
the analysis highlights the role of feature weights as a reliable
indicator of feature importance, providing valuable insights
for understanding and interpreting the underlying mecha-
nisms of the model. AFWGE contributes to counterfactual
explanation generation and offers a robust framework for
evaluating the importance of features in machine learning
models. This research attempts to bridge the gap in XAI by
offering a powerful method for generating interpretable and
trustworthy explanations for AI models.

The proposed method currently requires a long process-
ing time; however, we are committed to optimizing its
efficiency in the future. This may involve leveraging exter-
nal libraries to parallelize the algorithm and implementing
cache functions for enhanced speed. Additionally, we aim to
extend the method’s assessment across various AI models to
ensure its robust applicability and performance across diverse
scenarios.
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