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ABSTRACT To balance customer satisfaction across virtual and real-world interactions, we focus on
enhancing service for dine-in customers at restaurants that typically prioritize online orders, such as those
on Uber Eats. Utilizing three-agent scheduling strategies that adhere to each agent’s specific requirements—
whether they are hard constraints or soft objectives—we effectively manage various types of orders,
including immediate individual online orders, group reservations, and oral requests from dine-in customers.
This approach significantly reduces waiting times and improves overall customer satisfaction. We propose a
branch-and-bound algorithmwith a tight lower bound based on preemption, which prioritizes agents A and B
while reducing the total waiting time for agent C, representing dine-in customers. Computational experiments
reveal that our algorithm significantly reduces total waiting times compared to existing two-agent scheduling
strategies, demonstrating its effectiveness. Despite its efficiency, the algorithm incurs computational over-
heads, particularly with larger problem sizes. Our unique lower bound can be extended to other industries
requiring multiple constraints or objectives. For example, in the film and television industry, real actors
(represented by agent A) need to align their shooting times with 3D studios (represented by agent B) and
stunt doubles for virtual avatars (represented by agent C) for scenes where they interact. That is, more agents
are required to accommodate their constraints and objectives in such a scenario.

INDEX TERMS Multi-agent scheduling, branch-and-bound algorithm, lower bound, waiting time, comple-
tion time.

I. INTRODUCTION
In today’s technologically advanced world, the integration of
virtual and real environments in applications is increasingly
common, which underscores the importance of effectively
allocating resources between these two worlds. As technolo-
gies such as VR, MR, and AR become essential in areas
like medical training, education, and surgical guidance, they
highlight the critical need to manage resources across both
virtual and real settings [1], [2]. For example, Hsiao et al. [2]
observed that the application of AR is based in the real world,
as the Pokémon game requires access to the participants’
location information in the real world and also requires par-
ticipants to pay, yet many players are tirelessly enthusiastic.

The associate editor coordinating the review of this manuscript and
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This growing interdependence between virtual and physical
realms demands sophisticated resource management strate-
gies that can accommodate the unique needs of each, without
compromising the efficiency and quality of user experiences.

Time, as a crucial resource in both the virtual and real
worlds, requires careful management to maximize efficiency
and meet the expectations of all users. The challenge lies not
only in effectively allocating time but also in ensuring that
this allocation benefits users in both realms equally. Effective
time management strategies are vital for maintaining com-
petitive operations and ensuring customer satisfaction across
both platforms. For example, Su and Wang [3] indicated that
in the gaming industry, the cost of a game project often
exceeds tens of millions of dollars and requires multiple
professionals in the real world (e.g., real desert oasis scenery)
or the virtual world (e.g., virtual 3D paradise scene). A delay

73470

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 12, 2024

https://orcid.org/0000-0001-6625-9689
https://orcid.org/0000-0003-3306-6148


Y.-C. Chen, J.-Y. Wang: Lower Bound for Minimizing Waiting Time

in any job could lead to a daily penalty of $100. Therefore, it is
crucial to schedule all jobs without tardiness. By optimizing
how time is allocated and used, businesses can better syn-
chronize their services to enhance overall user engagement
and satisfaction.

The emphasis on online ratings often leads to a resource
allocation bias towards virtual services, adversely affecting
real-world interactions. This trend is particularly evident in
sectors like dining, where restaurants might prioritize online
orders over dine-in customers due to the perceived impor-
tance of online reviews, e.g., [4]. Such practices can diminish
the quality of service for dine-in customers and lead to
a disparity in customer satisfaction. Addressing this issue
requires a balanced approach that considers both virtual and
real-world demands, ensuring that no customer experience is
undervalued.

In view of the above observations, we aim to balance
resource sharing in the virtual and real worlds. Due to lim-
ited resources, it is challenging to ensure equitable resource
distribution between these two worlds. Decision makers will
often make choices that align with their corporate culture,
business rules, and legal standards to best serve their preferred
customers. While it is understood that not all customers can
be prioritized equally and resources are finite, we must strive
to prevent any undue disadvantage. Thus, to fairly accommo-
date the interests of customers in both worlds, it is essential
to develop a new job scheduling algorithm.

This study introduces a novel three-agent scheduling
problem to address these imbalances. The proposed branch-
and-bound algorithm, with a tight lower bound, is designed to
optimize customer satisfaction by effectively balancing the
needs of both virtual and real-world customers. By priori-
tizing the scheduling needs of various agents, this algorithm
manages the competing demands of maintaining high online
ratings and ensuring minimal wait times for dine-in cus-
tomers. The model’s effectiveness has been validated through
computational experiments, demonstrating its capability to
significantly reducewait timeswithout compromising service
quality in either realm. Consequently, this model can be
extended to other industries that require addressing multiple
constraints or objectives, such as the film and television
industry, where real actors, virtual avatars, and expensive 3D
studios each have unique requirements.

II. RELATED WORK
In this section, we will clearly identify the gaps between
previous research and this study by exploring waiting time
management in both virtual and real environments, as well as
multi-agent scheduling and lower bound design.

As the integration of virtual and real worlds becomes more
prevalent, competition for critical resources, such as time,
inevitably intensifies. For instance, [1] illustrated how VR
is employed to enhance life skills for autistic children by
developing a serious game specifically designed to train them
to cross streets safely. In such scenarios, it is crucial that
the computation determining whether a real person collides

with a VR vehicle is not excessively delayed, as prolonged
retrieval of information from the virtual world could result in
a loss of realism. Similarly, in the case of Pokémon, when
a player captures a monster, the response must be quick
enough to ensure it is recognized by other AR players and
prevent the peculiar situation where the same virtual monster
is claimed by multiple players. Inadequate management of
these resources could undermine the essential purpose of
integrating the virtual and real worlds.

In our research, waiting time serves as a crucial indicator
of customer satisfaction, representing the average duration
each customer spends within a system from the moment they
enter a store or when a service commences. This includes both
idle and processing times, with shorter durations indicating
better customer satisfaction [5]. In the field of job scheduling,
average waiting time is calculated as

∑n
i=1Wj(π )/n, akin to

the total completion time,
∑n

i=1 Cj(π ), where π denotes the
job scheduling scheme. Mathematically, the lowest average
waiting time and the lowest total completion time are consid-
ered equivalent indicators. Previous studies, such as [6] and
[7], have primarily focused on minimizing total completion
time for all jobs. From a producer’s perspective, a reduced
total completion time indicates more efficient scheduling;
from a customer’s perspective, shorter average waiting times
contribute to higher satisfaction. Thus, from both business
and customer viewpoints, managing waiting time remains a
pivotal area of research.

Inspired by two-agent scheduling, this study adopts
three-agent scheduling strategies to model the allocation
of time resources between the virtual and real worlds.
The concept was initially introduced in [8] and [9], illus-
trating scenarios where a company might need to share
machine resources between two departments due to limited
availability, necessitating appropriate scheduling to satisfy
both departments’ demands. This involves distinguishing
between soft objectives and hard constraints. However, pre-
vious research predominantly focused on two-agent schedul-
ing [10], [11], [12], [13]. In today’s integrated virtual and
real world, where the number of stakeholders continues to
grow and each has distinct positions, traditional two-agent
scheduling may no longer adequately represent the vast array
of objectives and constraints. Taking the film industry as
an example, the planning department should try to sched-
ule top-paid actors to shoot for several consecutive days
at the end of December to reduce idle costs. However, the
technical department is engaged in filming elsewhere during
December, and the human resources department opposes hav-
ing employees work over the holidays. Such demands from
these three different perspectives can lead to conflicts in time
management. This indicates a need for scheduling models
that incorporate more agents.

TABLE 1 shows research related to multi-agent scheduling
focusing on completion time and waiting time since 2021.
The data indicates that the majority of researchers have
concentrated on improving completion time in two-agent
scheduling scenarios, with only a few studies addressing
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TABLE 1. Recent literature on two-agent and three-agent scheduling.

three-agent scenarios. Therefore, the scheduling algorithms
from these studies are often not directly applicable to our
problem involving three agents. Moreover, most research
prioritizes total completion time, considering it from the per-
spective of decision makers, rather than from the perspective
of customer satisfaction, which aims to reduce average wait-
ing times. This highlights the uniqueness of this study, which
considers scheduling from the customer’s perspective.

Given the scarcity of algorithms that effectively integrate
three-agent scheduling in both virtual and real worlds, we aim
to develop a branch-and-bound algorithm to establish a
benchmark for future metaheuristic algorithms. It is crucial
to note that exact algorithms consistently produce optimal
solutions. Although they are time-intensive, their optimal
outcomes provide objective benchmarks for accurately evalu-
ating the performance of approximate algorithms. Branch and
bound is a well-recognized paradigmwithin exact algorithms.

The essence of a branch-and-bound algorithm lies in its
lower bound. Moreover, while a branch-and-bound algorithm
must explore the entire search tree, the computation required
is substantial. This necessitates the prevention of futile
searches in branches destined to fail. A well-crafted lower
bound serves to determine if a branch is certain to fail.
Early identification of such branches can significantly con-
serve computing time. Consequently, a precise lower bound
can greatly enhance the efficiency of a branch-and-bound
algorithm.

In this study, we aim to develop a lower bound using two of
the most classic techniques: preemption and agreeable jobs.
Preemption is recognized as a fundamental strategy in lower
bound design [23], [24]. In scenarios where a large job cannot
be allocated to a machine due to its impending due date
or the limited capacity of the machine, a preemptive lower
bound will divide the job and assign its surplus part to another
machine, ensuring that the lower bound never exceeds the
corresponding exact cost. Making jobs agreeable is another
straightforward and effective approach for designing lower
bounds [25], [26], [27]. To estimate a tight lower bound,
researchers will sort the release times, processing times, and
due dates in ascending order. This sorting method is simple,
time-efficient, and consistently yields a lower bound that
does not surpass the actual minimal cost. Therefore, we plan
to apply these two techniques to the three-agent scheduling
problem in our study to develop a lower bound that closely
mirrors the true optimal solution.

In light of the above observations, we need the optimal
solutions for resource scheduling in this integrated virtual
and real environment. However, due to the complexity of
the three-agent scheduling problem in both virtual and real

FIGURE 1. A problem instance.

worlds, existing lower bounds are insufficient. Therefore,
there is a clear need to develop a new lower bound.

III. PROBLEM DESCRIPTION
A three-agent scheduling problem for minimizing the total
waiting time of real-world customers is formulated as fol-
lows. For a given time period, there are n non-preemptive
jobs contracted by three agents, i.e., A, B, and C. Each job j
belongs an agent agj and has a processing time pj as well as a
release time rj, and it is about to be assigned one ofm identical
cooks. A cook can process one job at a time. There are two
constraints. First, the completion time of each job j of agent A
cannot be greater than its due date, i.e., Cj(π ) ≤ dj, where π

means a schedule. That is, agent A has zero tardiness. Second,
all the jobs of agent B are released at time 0, i.e., rj = 0; all
their completion times must be within a given due window,
i.e., Cj(π ) ∈ [U ,V ]. Namely, agent B has zero earliness and
tardiness. This hard constraint stems from an observed unfair
scenario in the real world where agent B, being dominant,
always achieves its objective by undermining the interests of
other agents. Moreover, the waiting time of a job j belonging
to agent C is defined asWj(π ) = Cj(π )− rj. Under the above
assumptions and constraints, the objective is to minimize
the total waiting time for agent C. The objective function is
defined as

Min f (π ) =

∑
agj=C

Wj(π ), (1)

s. t.∑
agj=A

Tj(π ) =

∑
agj=A

max
{
0,Cj(π ) − dj

}
= 0, (2)∑

agj=B

[
Ej(π ) + Tj(π )

]
=

∑
agj=B

[
max

{
0,U−Cj(π )

}
+max

{
0,Cj(π )−V

}]
=0.

(3)

FIGURE 1a illustrates a problem instance and FIGURE 1b
depicts a schedule π = (3, 1, 5, 0, 6, 4, 2) for this instance,
where the numeral 0 serves as a separator dividing jobs
between cooks. Since the jobs of agent B must be completed
within [3], [7], jobs 3 and 4 are allocated to cooks 1 and
2 respectively. Furthermore, job 1 is processed by cook 1 at
time 4 and completed at time 6, ensuring no tardiness. Simi-
larly, cook 2 begins processing job 2 at time 8, also without
tardiness. As a result, agent A has no tardy jobs. Lastly,
jobs 5 and 6 are assigned to cooks 1 and 2 respectively,
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as early as possible, maximizing efficiency. Consequently,
agent C achieves considerable customer satisfaction, with a
total waiting time of 11 (= 12 – 4 + 5 - 2).
The following features distinguish this problem from pre-

vious research: First, there are three agents representing
parties in both the virtual and real worlds, making the prob-
lem more complex with additional constraints. Second, the
jobs associated with each agent have varying due dates or
windows, posing challenges for scheduling. Lower bounds
that rely solely on simple preemption may compromise the
structure of jobs and reduce the effectiveness of these bounds.
Third, this study prioritizes two hard constraints—zero tardi-
ness from dominant agents—unlike previous studies where
such constraints were often treated as soft objectives. As a
result, the development of new exact algorithms and more
precise lower bounds is imperative.

IV. BRANCH-AND-BOUND ALGORITHM
To optimally solve this problem, we develop an exact
algorithm, i.e., a branch-and-bound algorithm, to generate
the optimal schedules and ensure solution quality. Initially,
we develop some dominance rules to accelerate its execution
speed. Then we also propose a lower bound to enhance BB’s
efficiency. Finally, we introduce the pseudo code of BB step
by step.

A. DOMINANCE RULES
For convenience, we first introduce some simple notations.
Suppose there are two incomplete schedules π ′

= (α′, β)
and π = (α, β), where α′ and α are two determined partial
schedules and β is the remaining undetermined jobs. The only
difference between the two schedules is their two last two
jobs in α′ and α, i.e., α′

= (. . . , j, i) and α = (. . . , i, j).
Moreover, the earliest time that job i in α or job j in α′ can
start is t . To show that π ′ is dominated by π , we must ensure
that Cj(π ) ≤ Ci(π ′), Ci(π ) ≤ di, and Cj(π ) ≤ dj hold. Since
all the dominance rules are similar, we prove the first only.
Situation 1: Consider both jobs i and j belonging to agent

A. In Rules 1–4, α has an earlier completion time, so π ′ is
dominated by π . In Rules 4–6, although α is tied with α′ in
terms of completion time, we let π dominate π ′ if i< j. In this
situation, schedules with earlier completion times are deemed
winners. In the event of a tie, the job with a smaller job ID
wins.

Rule 1. If agi = A, agj = A, ri ≤ t < rj ≤ t + pi, and
t + pi + pj ≤ dj, then π ′ is dominated.

Proof: We have Cj(π ) = max{Ci(π ), rj} + pj = t +

pi + pj < rj + pj + pi = max{Cj(π ′), ri} + pi = Ci(π ′).
Moreover, we have Ci(π ) = max{t, ri} + pi = t + pi ≤ dj
and Cj(π ) = max{Ci(π ), rj} + pj = max{max{t, ri} + pi, rj}
+ pj = max{t + pi, ri} + pj = t + pi + pj ≤ dj. The proof is
complete. ■

Rule 2. If agi = A, agj = A, ri ≤ t , and t + pi ≤ rj, then
π ′ is dominated.

Rule 3. If agi = A, agj = A, t ≤ ri < rj ≤ ri + pi, and
ri + pi + pj ≤ dj, then π ′ is dominated.

Rule 4. If agi = A, agj = A, t ≤ ri, ri + pi ≤ rj, then π ′ is
dominated.

Rule 5. If agi = A, agj = A, t ≤ ri = rj, i < j, and
ri + pi + pj ≤ dj, let π ′ be dominated.
Rule 6. If agi = A, agj = A, ri ≤ t , rj ≤ t , i < j, and

t + pi + pj ≤ dj, let π ′ be dominated.
Situation 2: Consider both jobs i and j belonging to agent

B. In Rules 7–8, α has an earlier completion time, so π ′ is
dominated. In Rules 9–10, although α is tied with α′ in terms
of completion time, we let π dominate π ′ if i < j. Similarly,
the situation for agent B is the same as Situation 1 for agent
A.

Rule 7. If agi = B, agj = B, U − pi ≤ t < U − pj,and
t + pi + pj ≤ V , then π ′ is dominated.
Rule 8. If agi = B, agj = B, t ≤ U − pi < U − pj, and

U + pj ≤ V , then π ′ is dominated.
Rule 9. If agi = B, agj = B, t ≤ U − pi = U − pj, i < j,

and U + pj ≤ V , let π ′ be dominated.
Rule 10. If agi = B, agj = B, U − pi ≤ t , U − pj ≤ t ,

i < j, and t + pi + pj ≤ V , let π ′ be dominated.
Situation 3:Consider both jobs i and j belonging to agent C.

In Rules 11–14, α has not only an earlier completion time but
also a shorter waiting time, so π ′ is dominated. In Rules 15–
16, α has a tied completion time but a shorter waiting time,
so π ′ is dominated. In Rules 17–18, although α is tied with
α′ in terms of completion time and waiting time, we let π

dominate π ′ if i< j. The two jobs belonging to agent C follow
the same pattern, comparing completion times first and then
job IDs in case of a tie.

Rule 11. If agi = C, agj = C , ri ≤ t < rj ≤ t + pi, and
2(t − rj) + pi − pj < 0, then π ′ is dominated.
Rule 12. If agi = C, agj = C , ri ≤ t , and t + pi ≤ rj, then

π ′ is dominated.
Rule 13. If agi = C, agj = C , t ≤ ri < rj ≤ ri + pi, and

2(ri − rj) + pi − pj < 0, then π ′ is dominated.
Rule 14. If agi = C, agj = C , t ≤ ri, and ri+pi ≤ rj, then

π ′ is dominated.
Rule 15. If agi = C, agj = C , ri ≤ t , rj ≤ t , and pi < pj,

let π ′ be dominated.
Rule 16. If agi = C, agj = C , t ≤ ri = rj, and pi < pj, let

π ′ be dominated.
Rule 17. If agi = C, agj = C , t ≤ ri = rj, i < j, and

pi < pj, let π ′ be dominated.
Rule 18. If agi = C, agj = C , ri ≤ t , rj ≤ t , i < j, and

pi = pj, let π ′ be dominated.
Situation 4: Consider job i belonging to agent A and

job j belonging to agent B. In Rules 19–22, α has an ear-
lier completion time, so π ′ is dominated. In Rules 23–24,
although α is tied with α′ in terms of completion time, we let
π dominate π ′ if i < j. This situation involves comparing
the completion times of jobs belonging to different agents
A and B.

Rule 19. If agi = A, agj = B, ri ≤ t < U − pj ≤ t + pi,
and t + pi + pj ≤ V , then π ′ is dominated.
Rule 20. If agi = A, agj = B, ri ≤ t , and t + pi ≤ U − pj,

then π ′ is dominated.
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Rule 21. If agi = A, agj = B, t ≤ ri < U − pj ≤ ri + pi,
and ri + pi + pj ≤ V , then π ′ is dominated.

Rule 22. If agi = A, agj = B, t ≤ ri, and ri + pi ≤ U − pj,
then π ′ is dominated.
Rule 23. If agi = A, agj = B, t ≤ ri = U − pj, i < j, and

ri + pi + pj ≤ V , let π ′ be dominated.
Rule 24. If agi = A, agj = B, ri ≤ t , U − pj ≤ t , i < j,

and t + pi + pj ≤ V , let π ′ be dominated.
Situation 5: Consider job i belonging to agent B and job j

belonging to agent A. In Rules 25–28, α has an earlier com-
pletion time, so π ′ is dominated. In Rules 29–30, although α

is tied with α′ in terms of completion time, we let π dominate
π ′ if i < j. This situation involves comparing the completion
times of jobs belonging to agents B and A.

Rule 25. If agi = B, agj = A, U − pi ≤ t < rj ≤ t + pi,
and t + pi + pj ≤ dj, then π ′ is dominated.

Rule 26. If agi = B, agj = A, U − pi ≤ t , and t + pi ≤ rj,
then π ′ is dominated.
Rule 27. If agi = B, agj = A, t ≤ U − pi < rj ≤ U , and

U + pj ≤ dj, then π ′ is dominated.
Rule 28. If agi = B, agj = A, t ≤ U − pi, and U ≤ rj,

then π ′ is dominated.
Rule 29. If agi = B, agj = A, t ≤ U − pi = rj, i < j, and

U + pj ≤ dj, let π ′ be dominated.
Rule 30. If agi = B, agj = A, U − pi ≤ t , rj ≤ t , i < j,

and t + pi + pj ≤ dj, let π ′ be dominated.
Situation 6: Consider job i belonging to agent A and job

j belonging to agent C. In Rules 31–32, α has a tied waiting
time but an earlier completion time, so π ′ is still dominated
by π . Similarly, in this situation, we observe the mutual
influence of jobs belonging to agents A and C.

Rule 31. If agi = A, agj = C , ri ≤ t , and t + pi ≤ rj, then
π ′ is dominated.

Rule 32. If agi = A, agj = C , t ≤ ri, and ri+pi ≤ rj, then
π ′ is dominated.
Situation 7: Consider job i belonging to agent C and job

j belonging to agent A. In Rules 33–36, α has not only an
earlier completion time but also a shorter waiting time, so π ′

is dominated. In Rules 37–38, α has a tied completion time
but a shorter waiting time, so π ′ is still dominated by π .
Similar to the previous situation, this time the two jobs belong
to agents C and A respectively.

Rule 33. If agi = C, agj = A, ri ≤ t < rj ≤ t + pi, and
t + pi + pj ≤ dj, then π ′ is dominated.

Rule 34. If agi = C, agj = A, ri ≤ t , and t + pi ≤ rj, then
π ′ is dominated.

Rule 35. If agi = C, agj = A, t ≤ ri ≤ rj ≤ ri + pi, and
ri + pi + pj ≤ dj, then π ′ is dominated.

Rule 36. If agi = C, agj = A, t ≤ ri, and ri+pi ≤ rj, then
π ′ is dominated.

Rule 37. If agi = C, agj = A, t ≤ ri = rj, and ri+pi+pj ≤

dj, then π ′ is dominated.
Rule 38. If agi = C, agj = A, ri ≤ t , rj ≤ t , and t + pi +

pj ≤ dj, then π ′ is dominated.
Situation 8: Consider job i belonging to agent B and job

j belonging to agent C. In Rules 39–40, although α has a

tied waiting time, it has an earlier completion time. Hence,
π ′ is still dominated by π . Similarly, this time we observe
the interaction of jobs, first belonging to agent B and then the
subsequent job coming from agent C.

Rule 39. If agi = B, agj = C , U − pi ≤ t , and t + pi ≤ rj,
then π ′ is dominated.
Rule 40. If agi = B, agj = C , t ≤ U − pi, and U ≤ rj,

then π ′ is dominated.
Situation 9: Consider job i belonging to agent C and job

j belonging to agent B. In Rules 41–44, α has not only an
earlier completion time but also a shorter waiting time, so π ′

is dominated. In Rules 45–46, α has a tied completion time
but a shorter waiting time, so π ′ is still dominated by π .
Finally, we examine the interaction of jobs, first belonging
to agent C and then the subsequent job belonging to agent B.

Rule 41. If agi = C, agj = B, ri ≤ t < U − pj ≤ t + pi,
and t + pi + pj ≤ V , then π ′ is dominated.
Rule 42. If agi = C, agj = B, ri ≤ t , and t + pi ≤ U − pj,

then π ′ is dominated.
Rule 43. If agi = C, agj = B, t ≤ ri < U − pj ≤ ri + pi,

and ri + pi + pj ≤ V , then π ′ is dominated.
Rule 44. If agi = C, agj = B, t ≤ ri, and ri+pi ≤ U −pj,

then π ′ is dominated.
Rule 45. If agi = C, agj = B, t ≤ ri = U − pj, and

ri + pi + pj ≤ V , then π ′ is dominated.
Rule 46. If agi = C, agj = B, ri ≤ t , U − pj ≤ t , and

t + pi + pj ≤ V , then π ′ is dominated.
These dominance rules will be embedded in later branch-

and-bound algorithms, serving to exclude unnecessary candi-
dates in a search tree.

B. LOWER BOUND
In this subsection, we propose a lower bound (named LB)
in a preemptive way. Let π = (α, β) be a semi-determined
schedule; i.e., the former l jobs form a determined partial
sequence α and the (n− l) remaining jobs form a set of β.
FIGURE 2 shows the pseudo code of the lower bound.

In Step 1, let cook c process the last job of α. In Step 2,
we prepare each cook’s time slots to indicate if he is available
or not. In Step 3, we sort the jobs in β in ascending order of
release time, agent, and processing time for j = l + 1, l +

2, . . . , n. Note that we only sort these jobs and do not disrupt
their structures or create agreeable jobs artificially. Therefore,
the proposed lower bound can more accurately approach the
trueminimal costs. The job at position j in the sorted sequence
is denoted by job (j) for j = l + 1, l + 2, . . . , n. In the
following steps, we allocate the jobs belonging to agents A
and B first, since they cannot tolerate tardiness. For each job
(j), we partition it into units and allocate these units to several
available cooks as late as possible, i.e., in a preemptive way,
if they are available during the period of [r(j), d(j)] in Steps
7–8; otherwise, we directly allocate the remaining units to
some buffered slots in [0, r(j)] in Steps 9–10. It is equivalent
to shifting previously allocated slots to earlier buffered slots
and making new room in [r(j), d(j)] for the remaining units
of job (j). If there are still some unused slots for job (j) (i.e.,
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d(j) − r(j) is much larger than p(j)) in [r(j), d(j)], Step 11 lets
them be a buffer for future jobs. So far, we have allocated all
the remaining jobs of agents A and B in a preemptive way.
Now we can start to estimate the objective cost for agent C
and set the initial cost in Step 12. In Steps 16–19, if there is no
sufficient room in [r(j), r(j) + p(j)] for accommodating job (j),
we shift some slots containing jobs of agent A and B to earlier
buffered slots and make new room for job (j) belonging to
agent C in Steps 17–19. Then we accumulate the cost of each
job of agent C in Step 20. In Step 21, let the lower bound be at
least the sum of the processing times of agent C’s remaining
jobs. Lastly, we output the final result in Step 22.

The novelty of this lower bound method lies in two
key aspects. First, unlike the approach outlined in [23],
we avoid the creation of new virtual jobs to alignwith existing
ones, thus preserving the original structure of each prob-
lem instance. Second, we minimize job partitioning unless
absolutely necessary. A combined buffer is utilized for the
remaining jobs, with job i initially placed at the rear of this
buffer when allocated to agents A or B. Subsequently, if job j
cannot be accommodated due to space constraints, job i is
shifted to the front empty space of its buffer, if available.
If space is still insufficient, we partition job i and distribute
its excess to other jobs’ buffers. This strategy minimizes job
preemption and ensures the problem’s structural integrity is
maintained, leading to a more accurate lower bound estima-
tion without significant underestimation.

C. BRANCH-AND-BOUND ALGORITHM
In this section, we propose a branch-and-bound algorithm
(named BB) based on these dominance rules and the lower
bound. Note that the algorithm is recursively performed in a
depth-first-search (DFS) manner

The main program is shown in FIGURE 3. Before calling
the recursive algorithm, we initially let π∗ be any feasible
schedule and f ∗

= f (π∗), where f () means the objective
function. Then BB(π ,0) is called for obtaining the optimal
schedules. If the current node is at level n, i.e., a leaf node,
we can calculate its objective cost. If a lower cost is found,
the optimal cost and the optimal schedule are replaced by the
current one (Steps 1–2). If BB is halfway, i.e., l < n, and the
current search is dominated by any rule or the lower bound,
BBwill be bounded and not explore this branch further (Steps
3–4). Otherwise, we will prepare n − l + 1 new dummy
schedules and explore them recursively. That is, we keep
traversing the n − l + 1 child branches in DFS order (Steps
6–9). In the end, all the nodes are either visited or pruned, and
the optimal solutions are stored in the two global variables f ∗

and π∗.

V. COMPUTATIONAL EXPERIMENTS
In this section, we aim to compare the performances of
different lower bounds. Therefore, for convenience, let BB1

denote a branch-and-bound algorithmwith the simplest lower
bound estimated only by summing up the processing times of
all the remaining jobs of agent C; BB2, a branch-and-bound

algorithmwith the lower bound proposed by Shiau, et al. [28];
and BB3, a branch-and-bound algorithm with our proposed
lower bound shown in FIGURE 2. Moreover, we integrate
the three lower bounds into a hybrid one and let BB∗ denote a
branch-and-bound algorithmwith the hybrid bound. Note that
the solution quality of each branch-and-bound algorithm is
the same (i.e., the optimal); we compare their performances in
terms of nodes and run time. Moreover, we also observe how
the number of cooks (m), number of jobs (n), due window (U ,
V ), and release time (rj) influence the performance of BB∗ in
greater detail.

TABLE 2 shows all the parameters used in the follow-
ing experiments. Parameters m, n, pj, dj, rj, U , and V are
defined as earlier. Each pj follows a discrete uniform distri-
bution DU(1, 100); U follows a discrete uniform distribution
DU(100, 50n/m). Control parameter γ forces release time
rj to follow DU(0, 100nγ /m); control parameter ω forces
V to follow DU(U + 100, U + 50 + 10nω / m); control
parameters τ and R let due date dj follow DU(100n(1 – τ -
0.5R), 100n(1 - τ + 0.5R)). All the related algorithms are
implemented in object-oriented Pascal and executed on an
Intel Core i7-9700 CPU @ 3.00GHz with 32 GB RAM in a
Windows 10 environment. For each later setting, 50 random
trials are conducted and recorded. All the execution times are
measured in seconds.

A pilot study is conducted initially to contrast the per-
formance of our four branch-and-bound algorithms against
other mathematical software. As demonstrated in TABLE 3,
we utilizeMATLAB to execute a brute force search algorithm
and employ its in-built ga solver with standard configurations.
We adjust the parameters τ and R for a specific setup charac-
terized bym= 2, n= 8, n1 = 2, n2 = 2, n3 = 4,U = 200, and
V = 330, to scrutinize their performances. Significantly, our
proposed algorithms consistently deliver the optimal results,
approximately 0.001 seconds, starkly contrasting with the
basic MALTAB algorithm which demands at least 10 sec-
onds. On another note, for this generic solver dependent
solely on basic crossover and mutation operations, struggles
to approximate the optimal solutions, consequently incurring
a time cost that exceeds that of the brute force algorithm. The
quality of solutions provided by this solver is quantified by
the relative error percentage (REP), calculated as 100% ×

(Cost_ga - Cost_BB∗) / Cost_BB∗. It is evident that the solver
is inept at solving our problem in its default nonlinear integer
programming manner. In sum, these observations accentuate
the needs of tailored algorithms for optimally solving our
problem with a larger problem size, e.g., n = 25.

TABLE 4 shows the performances of the four branch-and-
bound algorithms for n = 10. Note that a branch-and-bound
algorithm always generates the optimal solutions. Therefore,
BB∗ outperforms the other three in terms of execution speed.
That is, all of them have the same solution quality, where
column NUmeans the number of unsolvable instances within
100 million nodes. Since BB1 is equipped with the simplest
lower bound, i.e., limited ability, it must take much run time
to traverse a search tree. On the other hand, BB2 adopts
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FIGURE 2. The proposed lower bound.

FIGURE 3. The proposed lower bound.

TABLE 2. The related parameters used in this section.

a re-structured strategy; i.e., the processing times, release
times, and due dates are all re-sorted before estimating lower
bounds. Such re-organization usually leads to underestimated
lower bounds. Moreover, such a re-arrangement is more suit-
able for single-machine (or single-cook in the context of the

presented problem) scheduling. For multi-machine schedul-
ing, after re-sorting processing times, release times, and due
dates, each machine will take a small and early job if it
can. This will also cause underestimation. By contrast, BB3

will preempt a job only as a last resort. Therefore, the lower
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TABLE 3. The comparison between our algorithms and other software for m = 2 and n = 8.

TABLE 4. The performances of four algorithms for m = 3 and n = 10.

TABLE 5. The performances of four algorithms for m = 3 and n = 15.

TABLE 6. The performances of four algorithms for m = 3 and n = 20.

bounds obtained by BB3 will not be underestimated much.
For traditional multi-machine tardiness minimization prob-
lems, their problem sizes for a branch-and-bound algorithm
are usually not larger than 20. That is, the proposed lower
bound achieves tight lower bounds while retaining execution
efficiency.

TABLES 5 and 6 show the limits of abilities of BB1 and
BB2. Intrinsically, the presented problem is an NP-hard total
completion time minimization problem for multiple cooks;
hence, n = 20 is a reasonable problem size that an exact
algorithm, e.g., a branch-and-bound algorithm [28], can solve
within a given time, e.g., 3600 seconds. Consequently, for
the presented problem, most instances of 20 jobs cannot be
optimally solved BB1 within 100million nodes. Furthermore,

BB2 cannot solve all the 20-job instances either. The reason
is that the lower bound proposed by [28] needs to re-sort
and re-assign the remaining due dates, release times, and
processing times for each job; i.e., it must use a destructive
way. Evidently, this re-structured strategy for designing a
lower bound cannot trim unnecessary nodes in the presented
problem as early as possible. On the other hand, a closer
look at BB3 reveals that, although the proposed lower bound
can prune a lot of unnecessary nodes, it cannot prune all
the unnecessary nodes. It implies that such a powerful lower
bound still needs additional aid. That is, BB∗ is superior to
other branch-and-bound algorithms.

FIGURES 4 and 5 illustrate the performance of our
algorithm, BB3. From the data previously presented in
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TABLE 7. The performance of BB∗ for m = 3 and n = 25.

TABLE 8. The performance of BB∗ for n = 20.

FIGURE 4. The curves of the average nodes in TABLE 5.

TABLE 5, it is evident that the performance of BB3 is closely
comparable to that of BB∗, with almost overlapping results.
This indicates that our lower bound (BB3) or the hybrid
branch-and-bound algorithm BB∗, which incorporates our
lower bound, demonstrates significantly lower nodes and run
times compared to other lower bounds. Therefore, BB3 and
BB∗ can serve as benchmarks for evaluating other meta-
heuristic algorithms in future studies.

FIGURE 5. The curves of the average run times in TABLE 5.

TABLE 9. The performance of BB∗ for m = 3 and n = 20.

TABLE 7 shows the ability of BB∗ for n = 25. BB∗

can solve most problem instances within 10 minutes, i.e.,
100 million nodes. However, for a situation of jobs with early
due dates (i.e., τ ≥ 0.75), all three agents wish to complete
their jobs in an early time period. The temporary objective
cost of each partial schedule is similar to those of others;
that is, semi-complete schedules are similar and cannot be
distinguished as early as possible, and more explorations of
a search tree are needed. Moreover, early and scattered due
dates (i.e., largeR) alsomake the situations worse. It therefore
needs to visit more nodes and cannot generate the optimal
solutions within 100 million nodes. Consequently, n = 20 is
a proper problem size that BB∗ can optimally solve within
10 minutes for a real-world problem instance.

TABLE 8 shows the effect of m on the performance of
BB∗. Note that there are 20 jobs. A small number of cooks
(i.e., m ≤ 3) means intense resource competition. Even if
cook 1 is assigned 8 jobs, we still cannot determine if such
a partial schedule is worth keeping or not. This uncertainty
implies that more trial and error runs are still needed to prune
or retain it. Consider an extreme example and suppose there
are 20 cooks. Then each cook is intuitively assigned only one
job, and we can obtain an optimal schedule easily, i.e., less
run time. That is why a 5-cook instance will take less run
time. Or consider that cook 1 is assigned 8 jobs in a 20-job-
and-5-cook instance; it will almost certainly determine that
it is a bad partial schedule. The reason is that each cook is
most likely to be assigned 4 or 5 jobs in an optimal schedule.
In this example, cook 1 is overloaded, so we can prune this
bad partial schedule as early as possible when m = 5.
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TABLE 10. The performance of BB∗ for m = 3 and n = 20.

In TABLE 9,we observe the performance of BB∗ if the jobs
of three agents vary with amount. In general, BB∗ will spend
much execution time if three agents have equal amounts of
jobs. If agent B does not have any jobs, the problem degen-
erates into a two-agent scheduling problem, i.e., a simpler
problem. On the other hand, if n2 is more than half of n, it is
difficult to cram agent B’s jobs into a fixed length duewindow
[U , V ]. Instead, a large n3 will not make the problem more
difficult. This implies that constraints such as due window
and zero tardiness mainly dominate the execution time.

TABLE 10 shows the effect of release time on the perfor-
mance of BB∗. A small γ means early release times. All the
jobs are released at the beginning of a whole makespan, and
thus BB∗ has greater flexibility to schedule them.On the other
hand, a large γ means that all the jobs are uniformly released
in a whole makespan. For those jobs released in the rear
time period, we have little chance to adjust their schedules,
even if all the cooks are idle during the front time period.
Moreover, early and scattered due dates (i.e., large τ and R)
alsomake the situationworse. For a decisionmaker, he should
determine release times as early as possible and request later
due dates as much as he can. If so, BB∗ can generate the
optimal solutions in time.

TABLE 11 shows the influence of due window on the
performance of BB∗. A small ω means a narrow due window.
In general, a narrow due window increases the amount of
computation needed for BB∗ to solve the problem. Compress-
ing all the completion times of agent B’s jobs into a small due
window [U, V ] yields many similar partial schedules. It is
hard to tell if a partial schedule is worth exploring further.
Consequently, a narrow due window may exhaust all the

TABLE 11. The performance of BB∗ for m = 3 and n = 20.

manpower for agent B and deter all the cooks from processing
other agents’ jobs during this period.

In this section, BB∗ outperforms the other branch-and-
bound algorithms in terms of execution speed. This superior
performance can be attributed to the proposed hybrid lower
bound. Since it retains most structures of the jobs, its resultant
lower bound is able to approach the corresponding minimal
objective cost and will not exceed it.

VI. CONCLUSION
In this study, we present an interestingmulti-agent scheduling
problem, highlighting the significant imbalance in resource
allocation between the real and virtual worlds. This imbal-
ance is particularly noticeable in environments where cus-
tomer interactions span both digital and physical spaces, such
as restaurants on platforms like Uber Eats or retail stores with
both online and dine-in services. Our model addresses these
challenges using three-agent scheduling strategies that opti-
mize the distribution of resources, ensuring that no customer
segment is disproportionately disadvantaged.

Our model employs three-agent scheduling strategies by
effectively preempting some urgent jobs from agents A andB,
while also striving tominimize the total waiting time for agent
C. This model not only balances the immediate demands of
virtual interactions but also respects the needs of real-world
customers, who often suffer from longer waiting times due
to the prioritization of online ratings. By preempting some
large jobs, we significantly improve both service efficiency
and customer satisfaction across all agents.

While this exact algorithm can handle different constraints
and objectives from three distinct agents simultaneously,
it faces limitations, particularly when dealing with larger
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problem sizes. The proposed branch-and-bound algorithm,
while effective, becomes very time-consuming when the
problem size grows beyond a certain threshold. This limi-
tation highlights the necessity for further enhancements in
some approximate algorithms, particularly to expand the scal-
ability of three-agent scheduling for larger problem instances.

The insights gained from this study could be applied
to other industries facing similar challenges with multiple
requirements from multiple agents. Industries such as health-
care, logistics, and manufacturing, which often grapple with
complex and multifaceted scheduling needs, could bene-
fit significantly from the scheduling strategies developed
here. Looking forward, we aim to adapt these strategies to
metaheuristic algorithms, which are particularly suited to
scenarios exceeding problem sizes of 25, where real-time and
near-optimal solutions are essential.We plan to developmeta-
heuristic algorithms, such as genetic algorithm, to deal with
larger-scale real-world instances. Furthermore, we intend to
use the exact algorithm as a benchmark to assess the effective-
ness of these metaheuristic solutions in complex multi-agent
environments.
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